用户名: 密码: 验证码:
石煤中钒硅资源综合利用的理论与新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石煤是我国一种重要的含钒资源,目前从石煤中提钒普遍使用酸浸工艺,但该工艺存在设备腐蚀大、浸出液中杂质种类多、浸出剂不能循环使用等缺点。石煤碱浸提钒工艺钒浸出率高、设备腐蚀小、浸出液中杂质种类少、对环境友好,但该工艺浸出剂价格昂贵、成本高,因此难以得到广泛应用。为了降低生产成本、增加附产值、提高石煤碱浸工艺的竞争力,本文主要研究石煤碱浸提钒工艺过程中硅资源的提取和浸出剂的循环使用技术,旨在实现石煤中有价元素钒高效提取的同时将石煤碱浸液中的硅制备成具有商业价值的高比表面积白炭黑产品,并使浸出剂得到循环使用,最终形成石煤中钒硅资源综合利用新技术。在系统工艺研究的基础上,本文从石煤碱浸液体系的溶液化学性质出发,研究了实现石煤中钒硅资源综合利用的二大关键环节:即碱性溶液中钒、硅的分离问题和碱性溶液中钒的提取问题。主要成果如下:
     (1)碱性溶液中碳分法钒硅分离的理论与技术
     碳分法可以实现石煤提钒碱浸液中钒、硅的良好分离。往石煤提钒碱浸液中充入CO2气体,一方面充入的CO2气体将与强碱性介质NaOH溶液发生化学反应生成Na2CO3或NaHCO3,体系pH值降低,生成的Na2CO3或NaHCO3可经过后续苛化处理制备NaOH,从而为浸出剂的循环使用奠定基础;另一方面,随着体系pH值的降低,溶液中硅的过饱和度增大,当体系呈中性或弱碱性时,溶液中的硅将以沉淀形式析出而此时钒在溶液中保留,从而实现了碱浸液中的钒、硅分离。
     石煤碱浸液碳分过程热力学研究表明,硅从溶液中析出的主要原因是由于溶液中硅过饱和度升高而产生的白发析出。碳分过程动力学研究表明,CO:的吸收受液膜扩散控制。
     (2)高品质白炭黑的制备
     从石煤提钒碱浸液中制备白炭黑的主要影响因素为反应温度和终点pH值,此外,适量表面活性剂的加入和二次碳分工艺均可提高白炭黑产品比表面积。
     在石煤碱浸液的碳分法脱硅过程中,溶液中钒的存在不影响硅沉淀的生成。碳分脱硅渣中的钒是以V4O124-物理吸附的形式存在的,稀硫酸对脱硅渣中钒的脱除效果好。碳分法制备高纯度、高比表面积白炭黑的技术关键在于对产品进行酸洗处理,酸洗处理不仅可使产品得到净化还可改变其孔结构、提高比表面积。采用碳分法脱硅-酸洗处理脱硅渣工艺可以从石煤碱浸液中制备出了比表面积大于500m2/g的高品质白炭黑产品。
     (3)碱性溶液中钒的萃取行为与技术
     本文比较了碱性溶液中钒酸钙沉淀法和萃取法两种钒富集方法。在钒酸钠与碳酸钠共存的体系中,Ca(OH)2对溶液中的钒酸根离子和碳酸根离子均有良好的沉淀效果。热力学计算表明,碳酸钙沉淀将优先生成。实现碳酸钙与钒酸钙分步沉淀的关键在于控制反应温度和Ca(OH)2用量。N263对于弱碱性环境下钒的萃取效果好,采用N263为萃取剂,可从石煤碳分母液中高效回收钒。由于钒酸钙沉淀法提钒工艺流程相对较复杂、且对操作要求高,因此为了最大限度的提高钒提取效率,应优先考虑萃取法提钒工艺。
     (4)石煤中钒硅资源综合利用新技术
     根据试验研究结果,形成了以控制焙烧、强化碱浸、碳分脱硅、萃取富集钒、钒产品制备、白炭黑产品制备、苛化回收浸出剂为特征的石煤中钒硅资源综合利用新技术工艺流程。实验室小试结果表明,全流程可获得高于75%的V205总回收率;每生产lt V2O5产品,可副产9t以上比表面积大于500mZ/g的高品质白炭黑;全流程75%左右的浸出剂可以得到循环使用。浸出剂的循环使用以及碱浸液中硅资源的高效利用大大降低了石煤碱浸提钒工艺的生产成本,增加了工艺副产值,且碱浸提钒工艺环境污染小,使得碱浸提钒工艺较酸浸提钒工艺更具竞争力。
Stone coal is important vanadium resources of our country. Currently, acid leaching process is widely used to extract vanadium from the stone coal. The process has many disadvantages, such as corrosion of the equipment, complex constituents of the leaching solution, leaching agent not recycled. The alkali leaching process overcomes these shortcomings with a high leaching rate, but the leaching agent used is cost which hinders the widely application of the process. To lower the cost, increase the added value of the product and improve the competitive strength of the process, the utilization of the silicon from the stone coal and recycle of the leaching agent were investigated in this paper. The goal is to invent a novel technology of comprehensive utilization of vanadium and silicon from stone coal, which produces high-quality white carbon black products from the silicon in the leaching solution and recycles the leaching agent when efficiently extracting vanadium from the stone coal. On the basis of the systematic research of the process, two key points of the process were investigated theoretically, which are the separation of vanadium and silicon in alkali solution and the extraction of vanadium from alkali solution, starting from the solution chemistry properties of the leaching solution of the stone coal. The major results are as below:
     (1) Separation of vanadium and silicon in alkali solution
     Good separation of vanadium and silicon was achieved by carbonation method。 Adding CO2gas to the leaching solution of stone coal in one aspect produces Na2CO3or NaHCO3through the reaction of CO2with the alkali medium NaOHwhich is recycled through the causticization process from the Na2CO3orNaHCO3; in the other aspect reduces the solution pH and the silicon will deposit as precipitate when the solution turns natural or slightly alkaline while vanadium stays in solution. Consequently, the vanadium was separated from silicon in alkali solution.
     The thermodynamics research of the process of adding CO2to the leaching solution of stone coal indicates that the increase of the supersaturation of the silicon in solution leads to the precipitation of the silicon and the adsorption of CO2is controlled by the film diffusion.
     The major factors of producing carbon white from alkali leaching solution of stone coal is temperature and the final pH. Besides, certain amounts of surfactants and a secondary carbonation process improves the specific area of the carbon white product.
     (2)Preparation of high-quality carbon white
     Vanadium in the solution didn't influence the precipitation of silicon in the desilication carbonation process。 Vanadium in the silicon precipitates exsists in the form of V4O124-physically adsorped, the desorption of which could achieved with dilute sulfuric acid. The key to producing high-specific area carbon white is washing the precipitates with acid, which can not only purify the product but also change its pore structure and improve the specific area. The process of carbonation followed by washing with acid can produce high-quality carbon white with the specific area larger than500m2/g
     (3) Extracting vanadium from the week alkaline solution
     In this research, the fractional precipitation of calcium carbonate and and calcium vanadate and the extraction of vanadium were investigated to separate vanadium from the alkaline medium. In the system of sodium vanadate coexisting with sodium carbonate, Ca(OH)2can precipitate the two constituents well. Thermodynamics calculations indicated calcium carbonate precipitates first. And the key to the fractional precipitation of sodium vanadate and sodium carbonate is temperature and amount of Ca(OH)2added.In slight alkaline solution N263is a good extractant for vanadium. With N263vanadium can be efficiently recovered from the leaching solution after carbonation process and the separation of vanadium from the alkaline medium was achieved.
     (4) The novel technology of comprehensive utilization of vanadium and silicon from stone coal
     Through tests was formed a process of comprehensive utilization of vanadium and silicon from stone coal, including controlling roast, enhancing alkaline leaching, desilication by carbonation method,extracting and enrichment of vanadium, producing vanadium and carbon white and recycling the leaching agent by causticization. The results of laboratory tests indicate the total recovery of V2O5of the complete process reached higher than75%;9t of high-quality white carbon with specific area of larger than500m2/g can be produced when It V2O5was produced;75%leaching agent of the whole process can be recycled. Efficient utilization of the silicon and the recycle of the leaching agent increase the by-product value and largely reduce the cost of the process of extracting vanadium from leaching stone coal with alkaline, andin addition of alkaline leaching's little environmental pollution, consequently make the alkaline leaching more competitive than acid leaching.
引文
[1]蒲心纯.中国南方寒武纪岩相古地理与成矿作用[M].地质出版社,1993.
    [2]蒋述兴,王锋,胡晓林.石煤的综合利用[J].佛山陶瓷,2010,9:43-45.
    [3]何东升.石煤型钒矿焙烧—浸出过程的理论研究[D].中南大学,2009.
    [4]杨剑,易发成.贵州-湖南黑色岩系的有机碳和有机硫特征及成因意义[J].地质科学,2005,40(4):457-463.
    [5]姜月华,岳文浙,业治铮.中国南方下寒武统石煤的特征,沉积环境和成因[J].中国煤田地质,1994,6(4):26-31.
    [6]游先军.湘西下寒武统黑色岩系中的镍钼钒矿研究[D].中南大学,2010.
    [7]梁子豪.浙西北下寒武统石煤及石煤分布区植物中钒的分布特征[J].地球化学,1990,1:54-57.
    [8]吕惠进,王建.浙西寒武系底部黑色岩系含矿性和有用组分的赋存状态[J].矿床地质,2005,24(5):567-574.
    [9]WANG XW, PENG J, WANG MY, et al. The role of CaO in the extraction of Ni and Mo from carbonaceous shale by calcification roasting, sulphation roasting and water leaching [J]. International Journal of Mineral Processing,2011,100: 130-135.
    [10]ZHAO Z, ZHANG G, HUO G, et al. Kinetics of atmospheric leaching molybdenum from metalliferous black shales by air oxidation in alkali solution [J]. Hydrometallurgy,2009,97:233-236.
    [11]ZHANG Y-M, BAO S-X, LIU T, et al. The technology of extracting vanadium from stone coal in China:History, current status and future prospects [J]. Hydrometallurgy,2011,109:116-124.
    [12]WANG M,WANG X. Extraction of molybdenum and nickel from carbonaceous shale by oxidation roasting, sulphation roasting and water leaching [J]. Hydrometallurgy,2010,102:50-54.
    [13]ANJUM F, SHAHID M, AKCIL A. Biohydrometallurgy techniques of low grade ores:A review on black shale [J]. Hydrometallurgy,2012,117-118:1-12.
    [14]ANJUM F, BHATTI H N, GHAURI M A. Enhanced bioleaching of metals from black shale using ultrasonics [J]. Hydrometallurgy,2010,100:122-128.
    [15]PASAVA J,吴志勇.黑色页岩成矿作用—IGCP254项活动及最新进展[J].地球科学进展,1990,6:85-86.
    [16]徐耀兵.中间盐法石煤灰渣酸浸提钒工艺的试验研究[D].浙江大学,2009.
    [17]李昌林.难处理石煤提钒工艺及相关理论研究[D].中南大学,2011.
    [18]MOSKALYK RR, ALFANTAZI AM. Processing of vanadium:a review[J]. Minerals Engineering,2003,16(9):793-805.
    [19]ZHANG Y, HU Y, BAO S. Vanadium emission during roasting of vanadium-bearing stone coal in chlorine [J]. Minerals Engineering,2012,30: 95-98.
    [20]HE D S, FENG Q M, ZHANG G F, et al. An environmentally-friendly technology of vanadium extraction from stone coal [J]. Minerals Engineering,2007,20(12): 1184-1186.
    [21]CHEN Y, MARIBA E R M, VAN DYK L, et al. A review of non-conventional metals extracting technologies from ore and waste [J]. International Journal of Mineral Processing,2011,98:1-7.
    [22]翁迪义.石煤发电及综合利用[J].煤炭加工与综合利用,1986,1:28-30.
    [23]王自明.湖南石煤综合利用综述[J].矿产综合利用,1983,4:67-72.
    [24]沈敦明.石煤发电及综合利用[J].电力技术,1982,8:21-24.
    [25]刘定宇,李普生.石煤发电及综合利用[J].现代节能,1987,4:28-30.
    [26]董晓伟,牛磊.石煤发电含钒烟灰提钒工艺研究[J].湖南有色金属,2012,28(4):36-38.
    [27]陈军武,王正华,张珊,et al.应用CFB锅炉进行石煤资源综合利用初探[J].湖南电力,2012,32(3):48-50.
    [28]蔡晋强.石煤综合利用现状[J].矿产综合利用,1984,4:18-24.
    [29]马荣骏.湿法冶金原理[M].冶金工业出版社,2007.
    [30]雷辉.复合添加剂对石煤提钒焙烧与浸出工艺研究[J].无机盐工业,2012,44(1):33-36.
    [31]陈铁军,邱冠周,朱德庆.循环氧化法石煤提钒新工艺试验研究[J].煤炭学报,2008,33(4):454-458.
    [32]陈铁军,邱冠周,朱德庆.石煤循环氧化法提钒焙烧过程氧化机理研究[J].金属矿山,2008,6:62-66.
    [33]CAI Z, FENG Y, LI H, et al. Co-recovery of manganese from low-grade pyrolusite and vanadium from stone coal using fluidized roasting coupling technology [J]. Hydrometallurgy,2013,131-132:40-45.
    [34]肖彩霞.石煤钠化焙烧提钒新工艺研究[D].中南大学,2011.
    [35]王学文,刘万里,张贵清,等.石煤氯化钠焙烧水浸液纳滤提钒过程[J].过程工程学报,2009,9(2):289-292.
    [36]张萍,蒋馥华,何其荣.低品位钒矿钙化焙烧提钒的可行性[J].钢铁钒钛,1993,14(2):18-20.
    [37]张萍,蒋馥华.苛化泥为焙烧添加剂从石煤提取五氧化二钒[J].稀有金属,2000,24(2):115-118.
    [38]蒋馥华,张萍,何其荣.钙化焙烧法从石煤中提取五氧化二钒[J].化学与生物工程,1992,20-22.
    [39]别舒,王兆军,李清海,et al.石煤提钒钠化焙烧与钙化焙烧工艺研究[J].稀有金属,2010,34(2):291-295.
    [40]戴文灿,孙水裕.石灰在石煤钙化焙烧中固硫作用的研究[J].环境污染治理技术与设备,2002,3(9):42-45.
    [41]邹晓勇,彭清静,欧阳玉祝,等.高硅低钙钒矿的钙化焙烧过程[J].过程工程学报,2001,1(2):189-192.
    [42]马胜芳,张光旭.钙化焙烧粘土钒矿提钒过程的研究[J].稀有金属,2007,6(81):3-8.
    [43]李静,李朝建,吴雪文,等.石煤提钒焙烧工艺及机理探讨[J].湖南有色金属,2007,23(6):7-10.
    [44]李昌林,周向阳,王辉,等.强化氧化对石煤钙化焙烧提钒的影响[J].中南大学学报(自然科学版),2011,42(1):7-10.
    [45]陆芝华,周邦娜,余仲兴,等.石煤氧化焙烧-稀碱溶液浸出提钒工艺研究[J].稀有金属,1994,18(5):321-327.
    [46]普世坤.酸浸-萃取-氨沉淀法从石煤钒矿中提取钒[J].稀有金属与硬质合金,2012,40(1):14-17.
    [47]汪平.高碳石煤流态化氧化焙烧提高钒的浸出率[J].中国有色金属学报,2012,22(2):566-571.
    [48]汪平.采用氧化焙烧-酸浸法从高碳石煤中提钒试验研究[J].中南大学学报:自然科学版,2011,42(10):2917-2921.
    [49]冯雅丽.循环流态化焙烧加压浸出从极难浸石煤中提取钒[J].中国有色金属学报,2012,22(7):2052-2060.
    [50]郑祥明.石煤提钒新工艺研究[D];湘潭大学,2003.
    [51]张超达,王国生.提高石煤钒浸出率的新工艺研究[C].全国金属矿节约资源及高效选矿加工利用学术研讨与技术成果交流会论文集,2006.
    [52]谢传理.石煤型钒矿的选矿研究[J].有色金属(选矿部分),1989,1:46.
    [53]孙伟,王丽,曹学峰,等.石煤提钒的浮选工艺及吸附机理[J].中国有色金属学报,2012,22(7):2069-2074.
    [54]ABISHEVA Z S, ZAGORODNYAYA A N. Hydrometallurgy in rare metal production technology in Kazakhstan [J]. Hydrometallurgy,2002,63(1):55-63.
    [55]MEHTAP P, MERYEM S, GUL A A, et al. Acid leaching of ash and coal:Time dependence, and trace element occurrences [J]. International Journal of Mineral Processing,2006,79(1):27-41.
    [56]ZHU X B, ZHANG Y M, HUANG J T, et al. A kinetics study of multi-stage counter-current circulation acid leaching of vanadium from stone coal [J]. International Journal of Mineral Processing,2012,114-117:1-6.
    [57]LI M T, WEI C, FAN G, et al. Extraction of vanadium from black shale using pressure acid leaching [J]. Hydrometallurgy,2009,98(3-4):308-313.
    [58]LI M T, WEI C, QIU S, et al. Kinetics of vanadium dissolution from black shale in pressure acid leaching [J]. Hydrometallurgy,2010,104(2):193-200.
    [59]LI M T, WEI C, FAN G, et al. Acid leaching of black shale for the extraction of vanadium [J]. International Journal of Mineral Processing,2010,95(1-4):62-67.
    [60]李曼廷.含钒黑色页岩加压酸浸过程动力学及机理研究[D].昆明理工大学,2012.
    [61]ZHOU X Y, LI C L, LI J, et al. Leaching of vanadium from carbonaceous shale[J]. Hydrometallurgy,2009,99:97-99.
    [62]ZHANG X Y, YANG K, TIAN X D, et al. Vanadium leaching from carbonaceous shale using fluosilicic acid [J]. International Journal of Mineral Processing,2011, 100:184-187.
    [63]张小云,覃文庆,田学达,等.石煤微波空白焙烧-酸浸提钒工艺[J].中国有色金属学报,2011,21(4):908-912.
    [64]何东升,冯其明,张国范,等.碱法从石煤中浸出钒试验研究[J].有色金属:冶炼部分,2007,4:15-17.
    [65]李许玲,肖连生,肖超.石煤提钒原矿焙烧-加压碱浸工艺研究[J].矿冶工程,2009,29(5):70-73.
    [66]肖超,肖连生,丁文涛.石煤钒矿焙砂加压碱浸试验[J].钢铁钒钛,2010,31(3):7-9.
    [67]肖超,肖连生,李青刚.石煤提钒碱浸液的除硅实验研究[J].稀有金属与硬质合金,2010,38(1):8-10.
    [68]YANG K, ZHANG X Y, TIAN X D, et al. Leaching of vanadium from chromium residue[J]. Hydrometallurgy,2010,103(1-4):7-11.
    [69]QIU S, WEI C, LI M T, et al. Dissolution kinetics of vanadium trioxide at high pressure in sodium hydroxide-oxygen systems [J]. Hydrometallurgy,2011,105: 350-354.
    [70]邱爽,魏昶,李旻廷,等.三氧化二钒的非等温氧压碱溶动力学研究[J].稀有金属,2011,35(2):269-275.
    [71]刘景槐,谭爱华.我国石煤钒矿提钒现状综述[J].湖南有色金属,2010,26(5):11-14.
    [72]谭爱华.某石煤钒矿空白焙烧-碱浸提钒工艺研究[J].湖南有色金属,2008,24(1):24-26.
    [73]戴晓钟.石煤综合利用的新途径—用细菌法从石煤中浸取多种金属和放射元素[J].科技简报,1980,1:9-10.
    [74]冯孝善,叶立扬,王献凤,等.氧化硫硫杆菌或氧化铁硫杆菌溶浸含钒石煤的研究[J].浙江大学学报(农业与生命科学版),1981,2:12.
    [75]石爱华,李志平,李辉,等.石煤中钒的超声浸取研究[J].无机盐工业,2007,39(8):25-27.
    [76]戚斌斌.石煤中钒的分离提取新方法研究[D].中南大学,2009.
    [77]肖新望,刘绍书,熊平.用树脂矿浆法从石煤中提取钒[J].湿法冶金,2007,26(2):84-87.
    [78]孙健程.D201离子交换树脂分离钒,磷,硅的应用基础研究[D].中南大学,2008.
    [79]BAL Y, BAL K E, COTE G. Kinetics of the alkaline stripping of vanadium(V) previously extracted by Aliquat336 [J]. Minerals Engineering,2002,15(5): 377-379.
    [80]CHAGNES A, RAGER M-N, COURTAUD B, et al. Speciation of vanadium (V) extracted from acidic sulfate media by trioctylamine in n-dodecane modified with 1-tridecanol [J]. Hydrometallurgy,2010,104(1):20-24.
    [81]LOZANO L J, GODINEZ C. Comparative study of solvent extraction of vanadium from sulphate solutions by primene 81R and alamine 336 [J]. Minerals Engineering,2003,16:291-294.
    [82]BISWAS R K, MONDAL M G K. Kinetics of VO2+ extraction by D2EHPA [J]. Hydrometallurgy,2003,69:117-133.
    [83]CHENG C Y. Purification of synthetic laterite leach solution by solvent extraction using D2EHPA [J]. Hydrometallurgy,2000,56(3):369-386.
    [84]EL-NADI Y A, AWWAD N S, NAYL A A. A comparative study of vanadium extraction by Aliquat-336 from acidic and alkaline media with application to spent catalyst [J]. International Journal of Mineral Processing,2009,92(3-4): 115-120.
    [85]LI W, ZHANG Y M, LIU T, et al. Comparison of ion exchange and solvent extraction in recovering vanadium from sulfuric acid leach solutions of stone coal [J]. Hydrometallurgy,2013,131-132:1-7.
    [86]MAZUREK K. Recovery of vanadium, potassium and iron from a spent vanadium catalyst by oxalic acid solution leaching, precipitation and ion exchange processes [J]. Hydrometallurgy,2013,134-135:26-31.
    [87]WANG X W, WANG M Y, SHI L H, et al. Recovery of vanadium during ammonium molybdate production using ion exchange [J]. Hydrometallurgy,2010, 104:317-321.
    [88]ZENG L, LI Q G, XIAO L S. Extraction of vanadium from the leach solution of stone coal using ion exchange resin [J]. Hydrometallurgy,2009,97:194-197.
    [89]RAKIB M, DURAND G. Study of complex formation of vanadium(V) with sulphate ions using a solvent extraction method [J]. Hydrometallurgy,1996,43: 355-366.
    [90]ZENG L, LI Q G, XIAO L S, et al. A study of the vanadium species in an acid leach solution of stone coal using ion exchange resin [J]. Hydrometallurgy,2010, 105:176-178.
    [91]李大标.酸性铵盐沉钒条件实验研究[J].过程工程学报,2003,3(1):53-56.
    [92]YE P H, WANG X W, WANG M Y, et al. Recovery of vanadium from stone coal acid leaching solution by coprecipitation, alkaline roasting and water leaching [J]. Hydrometallurgy,2012,117-118:108-115.
    [93]ZHAO Z, LONG H M, LI X B, et al. Precipitation of vanadium from Bayer liquor with lime [J]. Hydrometallurgy,2012,115-116:52-56.
    [94]CHEN L, LIU F Q, LI D B. Precipitation of crystallized hydrated iron(Ⅲ) vanadate from industrial vanadium leaching solution [J]. Hydrometallurgy,2011, 105:229-233.
    [95]陈厚生.钒渣石灰焙烧法提取V2O5工艺研究[J].钢铁钒钛,1992,13(6):1-9.
    [96]王其,杨爱江.石煤提钒钒渣制备微晶玻璃研究进展[J].玻璃与搪瓷,2012,40(06):32-37.
    [97]周宛谕.灰渣资源化综合利用试验研究[D].浙江大学,2010.
    [98]时亮.石煤提钒浸出渣制取陶粒和建筑用砖的工艺研究[D],昆明理工大学,2009.
    [99]戴文灿.石煤资源清洁利用及固废资源化研究[D].广东工业大学,2001.
    [100]吴道琼.石煤钒渣页岩烧结砖的研究[J].新型建筑材料,2012,2:25-27.
    [101]魏昶,李存兄,李曼廷,等.在压力场下从石煤中浸取钒和浸出渣综合利用[J].矿冶,2009,18(3):33-39.
    [102]宋廷扬.石煤渣水泥某些理化性能的研究与应用[J].科技简报,1978,6:30-34.
    [103]时亮,魏昶,樊刚,等.石煤提钒浸出渣制取建筑用砖的研究[J].矿产综合利用,2009,6:35-37.
    [104]陈文祥.含钒炭质页岩提钒废渣资源化利用研究进展[J].湿法冶金,2011,30(4):268-271.
    [105]李晓湘.石煤渣制橡胶填料的研究[J].环境污染与防治,2001,23(6):271-273.
    [106]胡华陆,李华伦.含钒石煤中钾的综合回收[J].矿产综合利用,1981,(Z1):87-89.
    [107]王荣华.石煤渣用作肥料好[J].吉林农业,1996,3:17.
    [108]湖南省土壤肥料研究所.石煤渣粉的肥效及其施用技术[J].湖南农业科技,1978,2:27-28.
    [109]XIAO Q, CHEN Y, GAO Y, et al. Leaching of silica from vanadium-bearing steel slag in sodium hydroxide solution [J]. Hydrometallurgy,2010,104: 216-221.
    [110]DOPSON M, L VGREN L, BOSTR M D. Silicate mineral dissolution in the presence of acidophilic microorganisms:Implications for heap bioleaching [J]. Hydrometallurgy,2009,96:288-293.
    [111]樊刚,李旻廷,魏昶,等.高硅石煤氧压酸浸中硅的行为研究[J].矿产综合利用,2008,4:6-8.
    [112]WANG X W, XIAO C X, WANG M Y, et al. Removal of silicon from vanadate solution using ion exchange and sodium alumino-silicate precipitation [J]. Hydrometallurgy,2011,107:133-136.
    [113]吕纪霞,张一敏,刘涛,等.石煤提钒水浸渣酸浸液的除杂试验研究[J].金属矿山,2008,4:149-151.
    [114]邢学永,李斯加,宁顺明.高硅石煤钒矿酸浸液的脱硅工艺研究[J].湿法冶金,2011,30(4):326-328.
    [115]陈惠.石煤中钒的提取与分离新方法研究[D].中南大学,2011.
    [116]肖超,肖连生,李青刚.石煤提钒碱浸液的除硅实验研究[J].稀有金属与硬质合金,2010,38(1):8-10.
    [117]和晓才.钨酸钠溶液中除硅、磷、砷工艺[J].云南冶金,2005,34(1):30-32.
    [118]张曦,邹晓勇.含钒液体除硅过程的研究[J].无机盐工业,2008,40(4):41-43
    [119]张曦,邹晓勇.含钒液体除硅过程的研究[J].金属材料与冶金工程,2007,35(6):19-22.
    [120]李捷,姚金江,王智友,等.石煤钒矿碱法提钒浸出液净化过程中回收白炭黑的工艺研究[J].湖南有色金属,2011,27(6):26-29.
    [121]周良玉,尹荔松,周克省,等.白炭黑的制、表面改性及应用研究进展[J].材料导报,2003,17(11):56-59.
    [122]辛晓晶.白炭黑在轮胎中的应用及其研究进展[J].广东化工,2012,39(11):133-134.
    [123]李玉芳,伍小明.白炭黑的生产及国内外发展前景[J].化学工业,2012,7:25-29.
    [124]李玉芳,伍小明.国内外白炭黑的发展现状及前景[J].精细化工原料及中间体,2012,7:20-23.
    [125]李军,黄金霞,赵金德,等.白炭黑发展现状及市场前景[J].化工科技,2011,19(4):67-71.
    [126]崔小明.“十二五”期间我国气相法白炭黑生产装置新建扩建概况[J].橡胶科技市场,2012,10(6):55-56.
    [127]周帼红,柳惠平,聂鹏飞,等.由含氟废气制备白炭黑的工艺研究[J].武汉船舶职业技术学院学报,2012,11(2):42-45.
    [128]薛彦辉,郭婷婷,薛真.化学法处理油页岩渣制备白炭黑的研究[J].矿产综合利用,2012,2:40-43.
    [129]吴艳.从粉煤灰中提取氧化铝和二氧化硅的研究[D].东北大学,2008.
    [130]吴涛.硅微粉制备沉淀法白炭黑与传统方法指标对比分析[J].铁合金,2012,43(6):31-34.
    [131]吴立群,梁雪松,梅毅,等.湿法磷酸副产物氟硅酸制白炭黑连续工艺研究[J].无机盐工业,2012,44(1):55-56.
    [132]王晶,农桂银,杜冬云,等.锰浸出渣制备白炭黑和锰肥[J].矿产综合利用,2012,6:57-60.
    [133]孙志勇,李洁,马晶.钒尾矿制备高附加值产品白炭黑工艺研究[J].现代矿业,2012,9:96-98.
    [134]苏毅.黄磷炉渣提取白炭黑和磷酸氢钙的研究[D].昆明理工大学,2008.
    [135]沈青峰.铜尾矿制备白炭黑技术研究[J].矿产保护与利用,2012,5:45-48.
    [136]李勇,薛向欣,冯宗玉,等.用油页岩渣制备白炭黑的工艺[J].过程工程学报, 2007,7(4):751-754.
    [137]李歌,马鸿文,刘浩,等.粉煤灰碱溶脱硅液碳化法制备白炭黑的实验与硅酸聚合机理研究[J].化工学报,2011,62(12):3580-3587.
    [138]荆富,伊茂森,张忠温,等.粉煤灰提取白炭黑和氧化铝的研究[J].中国工程科学,2012,2:96-105.
    [139]曾丽,孙红娟,彭同江.石棉尾矿盐浸渣制备超细白炭黑的工艺条件研究[J].非金属矿,2013,36(1):38-41.
    [140]ZHANG J L, GUO Z C, ZHI X, et al. Surface modification of ultrafine precipitated silica with 3-methacryloxypropyltrimethoxysilane in carbonization process[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2013,418:174-179
    [141]王启国,董文武,杨益文.高分散沉淀白炭黑的粒径分布研究[J].世界橡胶工业,2012,39(11):36-39.
    [142]刘建路,张启林,梁金龙,等.基于微观结构的白炭黑性能分析[J].中国粉体技术,2012,18(4):39-44.
    [143]QUANG D V, KIM JK, PARK JK, et al. Effect of the gelation on the properties of precipitated silica powder produced by acidizing sodium silicate solution at the pilot scale[J]. Chemical Engineering Journal,2012,209:531-536.
    [144]NUNES R, PEREIRA R, FONSECA J, et al. X-ray studies on compositions of polyurethane and silica [J]. Polymer testing,2001,20(6):707-712.
    [145]HALASZ I, KIERYS A, GOWOREK J, et al.29Si NMR and Raman glimpses into the molecular structures of acid and base set silica gels obtained from TEOS and Na-silicate[J]. The Journal of Physical Chemistry,2011,115(50): 24788-24799.
    [146]CAI X, HONG R Y, WANG L S, et al. Synthesis of silica powders by pressured carbonation[J]. Chemical Engineering Journal,2009,151(1):380-386.
    [147]王学文,王明玉.石煤提钒工艺现状及发展趋势[J].钢铁钒钛,2012,33(1):8-14.
    [148]陈云.碱性体系中铝钒钼的溶液化学性质及分离技术研究[D].中南大学,2006.
    [149]LONG SS, ZHANG GF, FENG QM, et al. Desiliconisation of alkaline leaching solution of roasted stone coal with carbonation method [J]. Transactions of Nonferrous Metals Society of China,2010,20:sl32-s135.
    [150]北京矿冶研究总院分析室.矿石及有色金属分析手册[M].北京:冶金工业出 版社.1990.
    [151]马宝利,蒋惠亮,施立勇.滴定法硅含量的检测[J].分析试验室,2008,27(B12):188-190.
    [152].孙淑媛,孙龄高,殷齐西,等.矿石及有色金属分析手册[M].北京:冶金工业出版社.1990.
    [153]许国镇.石煤中还原性矿物对钒的价态影响[J].矿冶工程,1987,7(1):35-39.
    [154]CLARK R J H, BROWN D. The chemistry of vanadium, niobium and tantalum [M]. Oxford:Pergamon press,1975.
    [155]BAILOR J C, EMELEUS H J, NYHOLM S R, et al. Comprehensive inorganic chemistry [M]. Oxford:Pergamon Press,1973.
    [156]KEPERT D. The early transition elements [M]. London:Academic press,1972.
    [157]KANAMORI K, TSUGE K. Inorganic Chemistry of Vanadium [M]. Springer. 2012:3-31.
    [158]BUGLY P, CRANS D C, NAGY E M, et al. Aqueous chemistry of the vanadiumⅢ (Ⅷ) and the Ⅷ-dipicolinate systems and a comparison of the effect of three oxidation states of vanadium compounds on diabetic hyperglycemia in rats [J]. Inorganic chemistry,2005,44(15):5416-5427.
    [159]LEIGH G, DE SJ. New chemistry of vanadium(Ⅱ) [J]. Coordination chemistry reviews,1996,154:71-81.
    [160]MUYLAERT I, VAN DVP. Supported vanadium oxide in heterogeneous catalysis:elucidating the structure-activity relationship with spectroscopy[J]. Physical Chemistry Chemical Physics,2009,11(16):2826-2832.
    [161]WECKHUYSEN B M, KELLER D E. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis [J]. Catalysis Today, 2003,78(1):25-46.
    [162]POURBAIX M. Atlas of electrochemical equilibria in aqueous solutions [M]. Oxford; Pergamon press.1966:234-245.
    [163]FOURNIER R O, POTTER R W. An equation correlating the solubility of quartz in water from 25 to 900℃ at pressures up to 10,000 bars[J]. Geochimica et Cosmochimica Acta,1982,46(10):1969-1973.
    [164]MARSHALL W L. Amorphous silica solubilities—Ⅰ. Behavior in aqueous sodium nitrate solutions [J]. Geochimica et Cosmochimica Acta,1980,44(7): 907-913.
    [165]MARSHALL W L, WARAKOMSKI J M. Amorphous silica solubilities—Ⅱ. Effect of aqueous salt solutions at 25℃[J]. Geochimica et Cosmochimica Acta, 1980,44(7):915-924.
    [166]杨显万.高温水溶液热力学数据计算手册[M].冶金工业出版社,1983.
    [167]HER R K. The chemistry of silica [M]. New York et al:Wiley,1979.
    [168]BERGNAH E.American Chemical Society[M].Washington, DC (United States), 1994.
    [169]VANSANT E F, VAN DER VOORT P, VRANCKEN K C. Characterization and chemical modification of the silica surface [M]. Elsevier Science,1995.
    [170]KLEIN L. Sol-gel processing of silicates [J]. Annual Review of Materials Science,1985,15(1):227-248.
    [171]BERGNA H E, ROBERTS W O. Colloidal silica:fundamentals and applications [M]. CRC Press,2005.
    [172]AEGERTER M A, LEVENTIS N. Aerogels handbook [M]. Springer Science+ Business Media,2011.
    [173]戴安邦,江龙.硅酸及其盐的研究Ⅰ—硅酸聚合的速度和机制[J].化学学报,1957,2:90-98.
    [174]戴安邦.硅酸聚合作用的一个理论[J].南京大学学报(自然科学版),1963,3:1-8.
    [175]戴安邦,陈荣三.硅酸及其盐的研究Ⅵ—硅酸的聚合和溶液酸度的变化[J].南京大学学报(自然科学版),1963,1:9-18.
    [176]戴安邦,陈荣三,季明德.硅酸聚合理论的研究[J].南京大学学报(自然科学版),1964,8(1):80.
    [177]陈荣三,张雪琴,王伯康,等.硅酸及其盐的研究Ⅺ一单硅酸胶凝作用的温度效应和活化能[J].高等学校化学学报,1980,1(2):31-38.
    [178]朱屯,钱保华,陈荣三,等.硅酸及其盐的研究X—单硅酸聚合反应动力学[J].化学学报,1981,39(1):1-11..
    [179]陈荣三,柳海澄,王金晞,等.硅酸及其盐的研究Ⅻ—氟离子与硅酸的反应及其平衡常数[J].高等学校化学学报,1982,3(1):19-28.
    [180]戴安邦,陈荣三,柳海澄,等.硅酸及其盐的研究ⅩⅢ—单硅酸胶凝作用中的离解常数[J].化学学报,1982,40(8):767-769.
    [181]陈荣三,陈月华,柳海澄,等.硅酸及其盐的研究ⅩⅥ—硅酸胶凝作用中的离解常数[J].高等学校化学学报,1984,6:769-774.
    [182]柳海澄,陈荣三,王金晞,等.高酸度电解质溶液中硅酸的形态及其聚合动力学研究[J].南京大学学报(自然科学版),1985,3:011.
    [183]王金唏,陈荣三,郭腊梅,等.硅酸及其盐的研究ⅩⅧ—硅溶胶胶粒的生长速度[J].无机化学学报,1985,1:67-73.
    [184]毛延,王国雄,陈荣三,等.硅酸及其盐的研究ⅩⅩ——聚硅酸溶液中的酸强度与分子结构的关系[J].无机化学学报,1987,3:14.
    [185]陈荣三,杨宇翔,郭腊梅,等.硅酸及其盐的研究ⅩⅪ—三甲基硅烷化-气相色谱法测定单硅酸的离解常数[J].无机化学学报,1990,7(1):93-97.
    [186]安永林,李守贵.研究硅酸聚合反应的新途径[J].高等学校化学学报,1993,14(11):1498-1501.
    [187]钟白茜,杨南如.29Si—NMR法和TMS—GC法研究水泥水化速度及[Si04]4-四面体聚合结构[J].南京化工学院学报,1994,16(3):26-32.
    [188]卢晨,季敦生,朱纯熙,等.水玻璃的基本组成及定量测定[J].上海交通大学学报,1997,31(9):86-89.
    [189]王海霞,蒲敏,周心艳,等.水合硅酸分子电子结构的从头算与基组效应研究[J].西安交通大学学报,2000,34(6):85-88.
    [190]王晓钧,霍明江,闫继娜,等.用硅烷化双聚体结构分析胶凝物质的聚合趋向[J].硅酸盐学报,2000,28(6):575-577.
    [191]曹德光,苏达根,宋国胜.低模数硅酸钠溶液的结构及其键合反应特性[J].硅酸盐学报,2004,32(8):1036-1039.
    [192]王雅静,翟玉春,田彦文,等.硅铝酸钠溶液性质的研究[J].矿冶工程,2004,24(2):53-56.
    [193]季明德,程琦,谢建鹰.多价离子对硅酸聚合速度的影响[J].江西大学学报(自然科学版),1985,4:71-76.
    [194]季明德.硅酸聚合中盐效应的机理[J].无机化学学报,1988,4(4):71-78.
    [195]季明德.硅酸聚合中的盐效应Ⅱ—1-1价盐对硅酸聚合速度的影响[J].南昌大学学报(理科版),1982,4:13-19.
    [196]天津大学化工原理教研室.化工原理(下)[M].天津科学技术出版社,1999.
    [197]DEAN J A. Lange's Handbook of Chemistry [M].The McGraw-Hill companies. 1999.
    [198]窦爱春,杨天足,吴江华,等.Zn2+-Ida2--CO32--H2O体系浸出液中锌的回收及浸出剂的再生[J].中国有色金属学报,2011,21(12):229-236.
    [199]杨天足,任晋,刘伟锋,等.Zn (Ⅱ)-Glu2--CO32--H2O体系热力学平衡分析[J].中国有色金属学报,2009,19(6):1155-1161.
    [200]涂华,周永华,余嘉耕,等.碳化法生产白炭黑工艺研究及反应动力学分析[J].无机盐工业,2001,33(6):8-11.
    [201]赵仁保.C02对硅酸钠-丙烯酰胺溶液聚合行为及产物性质的影响[J].高等学校化学学报,2009,30(3):596-600.
    [202]姚英.无机活性填料白炭墨的碳化法制备与表面改性研究[D].太原理工大学,2004.
    [203]申晓毅,翟玉春,吴艳.硅酸钠溶液分步碳分制备高纯沉淀氧化硅[J].化工学报,2010,61(4):1064-1168.
    [204]陈滨,李小斌,刘桂华,等.C02(气)-NaOH(液)气液反应速率[J].广东有色金属学报,2006,16(3):168-172.
    [205]朱仲良,陈荣妹.动力学分析法测定气相中的二氧化碳[J].分析化学,1994,22(12):1256-1258.
    [206]祝绥纲,陈建发,吴刚.圆盘塔水吸收二氧化碳动力学研究[J].辽宁化T,1983,2:9-15.
    [207]李伟斌,董立户,陈健.仲胺和叔胺水溶液吸收C02的动力学[J].过程工程学报,2011,11(3):422-428.
    [208]HIKITA H, ASAI S, TAKATSUKA T. Absorption of carbon dioxide into aqueous sodium hydroxide and sodium carbonate-bicarbonate solutions [J]. The Chemical Engineering Journal,1976,11(2):131-141.
    [209]曾庆.氨法吸收二氧化碳的实验研究[D].北京:清华大学航天航空学院,2011.
    [210]杨莉,叶皓.化学吸收C02的初步研究[J].江西化工,2009,2:95-98.
    [211]彭红,张悦,张英,等.强化二氧化碳的吸收方法及机理研究[C].科学发展与社会责任(A卷)——第五届沈阳科学学术年会文集,2008,254-259.
    [212]骆培成,王志祥,焦真,等.填料塔中的NaOH水溶液脱除空气中微量CO2的传质动力学[J].化工时刊,2004,18(2):35-40.
    [213]乐清华,徐晋林,施亚钧.五氧化二钒催化钾碱液吸收二氧化碳的机理[J].物理化学学报,1992,8(6):753-759.
    [214]SADDEEK Y B, SHAABAN E R, ALY K A, et al. Characterization of some lead vanadate glasses [J]. Journal of Alloys and Compounds,2009,478(1): 447-452.
    [215]RADA S, NEUMANN M, CULEA E. Experimental and theoretical investigations on the structure of the lead-vanadate-tellurate unconventional glasses [J]. Solid State Ionics,2010,181(25):1164-1169.
    [216]HAYAKAWA S, YOKO T, SAKKA S. IR and NMR structural studies on lead vanadate glasses [J]. Journal of non-crystalline solids,1995,183(1):73-84.
    [217]FROST R L, ERICKSON K L, WEIER M L, et al. Raman and infrared spectroscopy of selected vanadates [J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2005,61(5):829-834.
    [218]SUBBA REDDY C V, YEO IH, MHO SI. Synthesis of sodium vanadate nanosized materials for electrochemical applications [J]. Journal of Physics and Chemistry of Solids,2008,69(5):1261-1264.
    [219]袁志庆,蔡晔,慎炼,等.钒硅中孔分子筛的合成、表征及其催化性能研究[J].高校化学工程学报,2002,16(2):145-148.
    [220]丁瑞锋.铬酸钠溶液中加石灰除钒的研究[D].中南大学,2011.
    [221]杜记民,张江山,刘会俏,等.偏硅酸钠负载五氧化二钒合成、表征和催化性能[J].盐湖研究,2010,18(4):26-30.
    [222]YANG X, ROONASI P, HOLMGREN A. A study of sodium silicate in aqueous solution and sorbed by synthetic magnetite using in situ ATR-FTIR spectroscopy [J]. Journal of colloid and interface science,2008,328(1):41-47.
    [223]梁成.硅在铝酸钠溶液快速分解过程中的行为[D].中南大学,2007.
    [224]王雅静.铝酸钠和硅铝酸钠溶液的结构和物理化学性质研究[D].东北大学,2004.
    [225]翟玉春,田彦文,王雅静,等.铝酸钠和含硅铝酸钠溶液结构和性质的研究[J].中国稀土学报,2004,22(z1):113-118.
    [226]SILVERSMIT G, DEPLA D, POELMAN H, et al. Determination of the V2p XPS binding energies for different vanadium oxidation states[J]. Journal of electron spectroscopy and related phenomena,2004,135(2):167-175.
    [227]PIEROTTI R, ROUQUEROL J. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity [J]. Pure Appl Chem,1985,57(4):603-619.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700