用户名: 密码: 验证码:
变冲程发动机换气系统及其配气切换机构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变冲程发动机升功率和比质量功率大,经常工作的四冲程模式负荷率较高,排量小,具有良好的动力性、经济性和排放性。因此,开展变冲程发动机的研究具有理论意义和实际意义。在本文的前期研究工作中,对变冲程发动机的配气相位、热力性能等进行了初步的仿真分析。研究中发现,变冲程发动机在二冲程模式下,其换气方式、换气压力、配气定时和凸轮廓线等均对变冲程发动机的性能有重要影响。为分析这些影响因素及其确定方法,为变冲程发动机的实现奠定理论基础,开展主要研究工作如下:
     在充分论证国内外变冲程发动机研究现状的基础上,根据传统的内燃机结构及原理,分析了变冲程发动机的工作原理,明确了其两种工作模式——动力模式和经济模式,建立了变冲程发动机动力模式顶进顶排换气方式的配气定时原理图,阐述了四冲程和二冲程发动机主要换气理论,为变冲程发动机换气系统的研究奠定了理论基础。
     基于发动机热力学理论,运用AVL-BOOST的建模方法,建立了变冲程发动机顶进顶排模式热力学性能仿真数学模型和BOOST仿真模型,按照实验与经验相结合的方法,设置了仿真模型的边界条件和初始条件,经仿真得到了坎贝尔图,以动力性为目标,优化了变冲程发动机动力模式的配气定时,并对仿真结果进行了实验验证。
     基于流体力学理论,运用AVL-FIRE流场分析软件,分别建立了变冲程发动机动力模式顶进顶排和变冲程发动机动力模式顶进侧排两种换气方式的流场仿真模型,得到了两种换气方式的网格划分方法,对顶进侧排式仿真模型,建立了用固定网格与移动网格相结合划分其体网格的模型,研究了传统网格划分中交界面速度不连续的问题。根据发动机性能仿真分析和实验,设置了两种换气方式下缸内流场分析的边界条件、初始条件和合理的点火提前角,定义了观测缸内工质流动情况的截面。
     按照定性分析与定量分析相结合的方法,根据换气系统速度矢量场、燃烧温度场和湍动能场,定性分析了变冲程发动机动力模式顶进顶排和定进侧排两种换气方式的换气品质,根据仿真和实验,定量分析了两种换气方式的优缺点,比较研究了两种换气方式的缸内残余废气系数、气缸压缩压力、发动机功率、转矩、油耗率和排放物量等参量,定性分析和定量分析结果表明,顶进顶排换气是变冲程发动机动力模式的合理换气方式。
     对比分析了不同换气压力时各换气关键时刻的缸内流场纵向截面、不同位置横向截面的速度场和压力场,得出即无气流反喷又能减小换气短路损失的换气压力。在此基础上,基于ADAMS系统动力学和热机耦合理论,建立了曲柄连杆机构动力学模型,仿真得出热机耦合分析所需的压力、温度等边界条件,研究了变冲程发动机的活塞和活塞环等关键件的温度场和热应力场,得出其强度可以满足实验要求。
     基于ADAMS系统动力学理论,建立了变冲程发动机配气切换机构多柔体系统动力学仿真模型并对各种凸轮片体进行了模态处理;仿真得出该模型下的气门升程曲线并与TYCON刚性弹性体模型的气门升程曲线进行了对比,运用热力学仿真模型分析了这两种气门升程曲线对发动机动力性的影响;分析了多柔性体系统动力学的凸轮廓线的动力学特性,结果表明柔性体凸轮廓线能够更好地满足配气切换机构动力学要求。在此基础上,设计了变冲程发动机经济模式和动力模式的凸轮廓线。
     根据WH125-6原型机结构及参数,研制了变冲程发动机配气切换机构,确定了试验工况下的点火提前角、喷油脉宽和喷油时刻,搭建了变冲程发动机样机试验平台的,通过发动机台架试验,分析了WH125-6原型机、变冲程发动机经济模式、动力模式顶进侧排和动力模式顶进顶排等机型的性能,试验结果表明变冲程发动机经济模式具有较好的经济性,顶进顶排动力模式则具有较好的动力性。
Variable stroke engines possess large output per litre and high ratio of mass toproduced power, in which the four stroke mode can allow higher load ratio and smallerdisplacement as compared to two stroke mode, thus it is a main working mode in variablestroke engine and has excellent power, fuel economy and emission performances.Therefore, it is meaningful to carry on the theory study and corresponding tests forvariable stroke engine. On the basis of the preliminary study about timing phase andthermodynamic performance, it is concluded that gas exchange type and pressure andvalve timing at the two stroke mode are three most import factors to decide the variablestroke engine performances. In order to further study the related factors, this papercompleted the following research works.
     The working principle of variable stroke engine was first analyzed according topervious study results as well as structure and working principle of traditional engine. Ithas two working modes, i.e. power mode and economy mode. In power mode, valvetiming principle was established for gas exchange way of top-in and top-exhaust (TITE).Furthermore, the theories of gas exchange both for the four stroke and the two strokeengines were analyzed respectively to prepare for studying gas exchange theory ofvariable stroke engine.
     Both the thermodynamic mathematic model and simulation model for TITE way ofvariable stroke engine were then established by means of engine thermodynamic theoryand AVL-BOOST software platform. Through setting boundary conditions and initialconditions of simulation model based on test and empirical data in AVL-BOOST software,Campbell chart was achieved as well as valve timing of power mode was optimizedconsidering power performance as optimization goal. The simulation results were alsochecked with a set of experiments.
     In power mode of variable stroke engine, the simulation models of two gas exchangeways of TITE and TISE (top-in and side-exhaust) were founded separately according tohydromechanics theory and AVL-FIRE software platform, in which the corresponding meshing method was studied. The volume mesh in TISE mode was meshed by combiningfixed mesh and moving mesh. There is a problem in traditional meshing, i.e., thediscontinuous velocity at interface which was solved in the simulation model. Accordingto engine performance results simulated in AVL-BOOST and experimental data, theboundary conditions, initial conditions and ignition advance angle were confirmed foreach gas exchange way, and then the flowing process of working medium in cylinders canbe simulated and observed directly.
     Through observing velocity vector field, temperature of combustion field andturbulent kinetic energy field on lateral and longitudinal section of gas exchange system,the features of two gas exchange ways were analyzed qualitatively. In addition, test resultswere also used to quantitatively analyze advantages and disadvantages of every gasexchange way besides simulation results. The features were compared with residual burntgas ratio and compression pressure in cylinders, effective power, torque, specific fuelconsumption and the amount of emission. In conclusion, TISE way in power mode canmake the performances of variable stroke engine more excellent than TITE way.
     Both velocity field and pressure field on longitudinal section and lateral sectionwithin cylinder were analyzed at every critical moment of gas exchange process withdifferent pressure. To eliminate reverse jet and decrease the loss caused by short out in gasexchange, a best gas exchange pressure was gained. On the basis of ADAMS andthermo-mechanical coupling theory, dynamics model of piston-crank mechanism wasestablished, and then the boundary condition including the parameters of temperature andpressure was simulated. Successively, in the case of different gas exchange pressure forvariable stroke engine, both thermal stress field and temperature field were studied aimingat some important parts consisting of piston and rings. The results indicate that most partsof engine can meet the experiment demand.
     The flexible multibody dynamic model was built for switching mechanism of valvetiming in ADAMS software and model analysis was carried out to various cams. Next,valve lift curve was gained through simulating and was contrasted with the curve achievedby TYCON software. BOOST thermodynamic model was also used to analyze power andtorque difference in two kinds of valve lift curve. The dynamic features of cam profile were then studied with the flexible multibody dynamic simulation. Results show flexiblecam profile is better to meet the dynamic demand of switching mechanism of valve timing.Additionally, cam profiles both for power mode and economy mode were designed in thispaper.
     The switching mechanism of valve timing for variable stroke engine was developedby referring to the structure and parameters of WH125-6engine. Then, the engine testplatform was set up after determining the spark advance angle, plus width and certainmoments of fuel injection. With the help of engine rig test, the performances of economymode of variable stroke engine, as well as TITE way and TISE way of power mode wereanalyzed besides WH125-6engine. To sum up, the economy mode of variable strokeengine has excellent fuel economy, while TITE way has better power performance thanTISE way in power mode of variable stroke engine.
引文
[1] Aleklett K, H k M, Jakobsson K, et al. The Peak of the Oil Age-analyzing the World OilProduction Reference Scenario in World Energy Outlook2008[J]. Energy Policy,2010,38(3):1398-1414.
    [2] Moos R, Rettig F, Hürland A, et al. Temperature-independent Resistive Oxygen Exhaust GasSensor for Lean-burn Engines in Thick-Film Technology [J]. Sensors and Actuators B: Chemical,2003,93(1):43-50.
    [3] Burch R, Millington P J. Selective Reduction of Nitrogen Oxides by Hydrocarbons underLean-burn Conditions using Supported Platinum Group Metal Catalysts [J]. Catalysis today,1995,26(2):185-206.
    [4] Drake M C, Fansler T D, Lippert A M. Stratified-Charge Combustion: Modeling and Imaging ofa Spray-guided Direct-injection Spark-ignition Engine [J]. Proceedings of the CombustionInstitute,2005,30(2):2683-2691.
    [5]王立强,韩宗奇,杨树军.基于XC164CM的变排量发动机控制系统研究[J].汽车工程,2010,32(8):669-672.
    [6]韩宗奇.轿车发动机变工作排量技术与应用研究[D].秦皇岛:燕山大学,2009:36-52.
    [7]申小艳,苏铁熊,郭一平,等.发动机可变排量技术的研究进展[J].内燃机与配件,2011,(5):18-19.
    [8] Shaw S W, Nester T, Haddow A G, et al. Vibration Reduction in Variable Displacement EngineUsing Pendulum Absorbers [J].2003(2003-01):1484.
    [9] Yamin J A A, Dado M H. Performance Simulation of a Four-stroke Engine with VariableStroke-length and Compression Ratio [J]. Applied energy,2004,77(4):447-463.
    [10] Hatano K, Iida K, Higashi H, et al. Development of a New Multi-mode Variable Valve TimingEngine[C]//International Congress and Exposition, Detroit, MI, USA,03/01-05/93.1993:137-146.
    [11] Sher E, Bar-Kohany T. Optimization of Variable Valve Timing for Maximizing Performance ofan Unthrottled SI Engines-a Theoretical Study [J]. Energy,2002,27(8):757-775.
    [12]刘峥,王建昕.汽车发动机原理教程[M].清华大学出版社,2001:56-57.
    [13] Nelson C D. Variable Stroke Engine: U.S. Patent4,517,931[P].1985-5-21.
    [14]佐藤义一.可变冲程发动机[P].中国: CN2704692Y,2005-06-15.
    [15]河野昌平,渡边生.可变冲程发动机[P].中国: CN101408128,2009-04-15.
    [16] CLARKE J M. Method of Operating a Reciprocating Piston-type IC Engine Selectively inTwo-stroke, Four-stroke and Six-stroke Modes-involves Controlling the Timing of the ValveOperation and by Transferring Gases Between the Pistons by Way of Transfer Valves andTransfer Passage, Embers[P]. United States: US5699758-A.1997-12-23.
    [17] Ganser J, Letsche U. Operating Method for Multi-Cylinder IC Engine Provides Mixed OperatingMode With2Different Sets of Engine Cylinders Simultaneously Operated in2-stroke and4-stroke Modes[P]. America: DE19951093,2001-4-26.
    [18]李哲,郭允,帅石金.一种可变冲程发动机及其工作方法[P].中国: CN1737350,2006-02-22.
    [19]伍本银.双曲轴发动机[P].中国: CN02134029.3,2003-04-30.
    [20]邸立明.可变冲程与可变压缩比发动机[P].中国: CN1944993,2007-04-11.
    [21]邸立明,詹长书,夏怀成.往复活塞式发动机多行程工作模式的研究[J].工程设计学报,2007,14(2):126-129.
    [22]王思维.旋转阀式冲程数可变发动机[P].中国: CN101429880,2009-05-13.
    [23]刘永红.缸外压缩可变冲程发动机[P].中国: CN101608569,2009-12-23.
    [24] Kobayashi T, Kikori S, Katsumata M, et al. Variable Cycle Engine to Perform Four-CycleOperation and Two-Cycle Operation[P]. Japan: JP2004132304,2004-4-30.
    [25] Kobayashi T, Katsumata S. Variable Cycle Engine and Operation Mode Switching Method [P].Japan: EP1455063,2004-9-8.
    [26] Kikuchi K, Kubota M, Yamaura H, et al. Variable Cycle Engine[P]. Japan: JP2011074873,2011-04-14.
    [27] Ricardo. Different Strokes for Different Folks-the2/4Sight Concept [J]. Vehicle Technology.2006,(7):13-15.
    [28]张迪. Ricardo整合2冲程与4冲程发动机[N],京华时报,2008-04-03(113).
    [29] Baccile A, Ceccarini D, Cheng L, et al. An Innovative Control System for a2/4StrokeSwitchable Engine [J]. SAE Technical Paper,2007:01-1199
    [30] Ricardo.可实现冲程切换的2/4SIGHT发动机技术[J].汽车与配件,2009,(14):25-27.
    [31] Ricardo. Engine Uses Two and Four Stroke [J]. Professional Engineering,2008,(9):55.
    [32] Subbotin M, Park S, Ahmed J, et al. Control Architecture and Optimal Strategy for SwitchingBetween2-stroke and4-stroke Modes of HCCI Operation: U.S. Patent8,122,857[P].2012-2-28.
    [33] Surnilla G. Control strategy for Multi-stroke Engine System: U.S. Patent8,132,546[P].2012-3-13.
    [34]长谷川国生,伊藤茂良.内燃机关[P].日本: JP60-88810A.1985-05-18.
    [35] Yuichi S, Eitetsu A, Kenji A, et al. Variable Cycle Internal Combustion Enging and Controller.US6257176B1[P].2001-07-10
    [36] Burk R, Wakeman R J, Ryan R R. Two-stroke and Four-stroke Switching Mechanism: U.S.Patent7,036,465[P].2006-5-2.
    [37] MA J A, MA J, MA A. Camshaft Drive System for Selectable Two-stroke/Four-stroke InternalCombustion Engine with Exhaust and Intake Poppet Valves Opened and Closed by Camshafts[P].WO200206639-A.2002-01-24.
    [38] Eichenberg A, Gregor M, Meintschel J. Cam Shaft Adjusting Device Has Locking ElementRigidly Locking at Least Two of at Least Three Shafts Rotationally Secured with Each OtherIrrespective of Operating Conditions[P]. Patent No. WO2006005423-A1; DE102004033894-A1;US2007144476-A1; JP2008506072-W; US7451731-B2; DE102004033894-B4,2006-1-19.
    [39] Philippe S F, Laffiitte M, Peter B, et al. Varlable Cam Phaser Apparatus [P]. Patent No.US20070169731-A1,2007-7-26.
    [40]邸立明.可变负荷率往复式内燃机设计理论与关键技术研究[D].秦皇岛:燕山大学,2013:94-112.
    [41] ATAKA S. Two stroke-Four stroke Switchable Internal Combustion Engine e.g. for Vehicle, hasController that Controls Opening and Closing Timing of Exhaust Valve to Switch Running Cycle,based on Information from Throttle-opening Detector[P]. WO2007057965-A1.2007-05-24.
    [42] Milton B E, Behnia M, Ellerman D M. Fuel Deposition and Re-atomisation from Fuel/Air Flowsthrough Engine Inlet Valves[J]. Intl. Journal of Heat and Fluid Flow,2001,22:350-7.
    [43] Hannibal W, Flierl R, Stiegler L, et al. Overview of Current Continuously Variable Valve LiftSystems for Four-Stroke Spark-Ignition Engines and The Criteria for Their Design Ratings[C].SAE Technical Paper,2004:01-1263.
    [44] Costanzo V S. Mixture Preparation Mechanisms in a Port Fuel Injected Engine[C]. SAETechnical Paper,2005:02-2080.
    [45] Begg S M, Hindle M P, Cowell T, et al. Low Intake Valve Lift in A Port Fuel-injected Engine[J].Energy,2008,8(26):1-9.
    [46]高孝洪.内燃机工作过程数值计算[M].北京:国防工业出版社,1986,21-32.
    [47]王晓艳.柴油喷雾混合过程的模拟研究[D].广西大学.2005,3-15.
    [48]王志,黄荣华,王必.基于CAD/CAM/CFD的发动机气道研究[J].内燃机工程,2002,23(3):26-29.
    [49] Reitz R D, Bracco F V. Toward the Formultion of a Global Local Equilibrium Kinetics Modelfor Laminar Hydrocarbon Flames [J]. Notes on Numerical Fluid Mechanics,1982,06:130-151.
    [50] Diwakar R. Assessment of the Ability of a Multi-dimensional Computer Code to ModelCombustion in a Homogeneous Charge Engine[C]. SAE paper840230,1984:58-70.
    [51] Chun-fa W, Guo-hua C, Ma-ji L, et al. Three-dimensional Transient Numerical Simulation forGas Exchange Process in a Four-stroke Motorcycle Engine[J]. Joural of Zhejiang UniversitySCIENCE.2005,6A(10):1137-1145.
    [52]罗马吉,黄震,陈国华,等.发动机进气流动三维瞬态数值模拟研究[J].空气动力学学报,2005,23(1):74-78.
    [53]李芳,解茂昭.二阶矩封闭模型应用于内燃机缸内湍流的计算[J].大连理工大学学报,1999,39(4):542-546.
    [54]沈建平.内燃机缸内流场数值模拟研究现状及发展[J].车用发动机,1997,117(1):7-12.
    [55]沈颖刚,王宇琳.内燃机燃烧过程数值模拟技术发展概况[J].拖拉机与农用运输车.2004,(1):7-9.
    [56] Miyashita K, Iguchi Y, Tanaka S, et al. Superrior Charginig Technology by Screw Superchargerand High Technology Turbocharger for Automotive Use[C]. SAE Technical paper890455,1989.
    [57] Yao C, Han W, Xu G, et al. Research and Experimental Studies on the Influence on Turbochargerby Electric Supercharger[J]. Jixie Gongcheng Xuebao.2012,48(8):188-193.
    [58] Moulin P, Chauvin J. Modeling and Control of the Air System of a Turbocharged GasolineEngine [J]. Control Engineering Practice.2011,19(3):287-297.
    [59]忻文.涡轮增压+直喷大众TSI发动机的核心技术[J].汽车与配件:2011.45(11):22-23.
    [60]卢超.汽油机可控机械增压系统的研究[D].长春:吉林大学,2012.
    [61]周成尧,卢川,张爱明,等.车用汽油机的增压器方案设计[J].内燃机与配件,2011,9:5-8.
    [62]李加旺,朱航,陈伟国,等.一款机械增压汽油发动机设计优化[C].中国内燃机学会第八届学术年会论文集,2008:183-187.
    [63]赖凡,黄锦成,陈晖,等.小排量增压汽油机进气压力对性能的影响研究[J].内燃机,2011,2:43-46.
    [64] Maly R R, Zucker W. Evolution-Strategy Based, Fully Automatic, Numerical Optimization ofGas-Exchange Systems for Ic Engines[J].2001.
    [65] Leylek D J, Taylor W, Tran L T. Advanced Computational Methods for Predicting Flow Lossesin Intake Regions of Diesel Engines[J].1997:80-91.
    [66] Benajes J, Margot X, Pastor J V, et al. Three Dimensional Calculation of the Flow in a DI DieselEnine with Variable Swirl Intake Ports[C]. SAE Paper No.2001-01-3230,2001.
    [67]邓康耀,方适应,朱义伦.汽油机进气结构参数对换气过程的影响研究[J].内燃机工程,2000,4(3):1-5.
    [68]任立红,舒歌群,张宝欢,等.可变进气道发动机性能试验及分析研究[J].内燃机工程:2010,31(1):7-12.
    [69]王志,黄荣华.4BTAA柴油机螺旋进气道三维数值模拟[J].燃烧科学与技术,2004,10(2):176-180.
    [70]王志,帅石金,王建昕,等.汽车发动机进气道流场三维数值解析与优化.清华大学学报(自然科学版),2004,44(8):1146-1149.
    [71]王瑜芳.柴油机螺旋进气道三维流动的数值模拟研究[D].长春:吉林大学,2004:43-61.
    [72]司鹏昆,侯树梅,张惠明,等.螺旋进气道结构参数对气道流通特性的影响[J].内燃机工程,2008,29(3):25-28.
    [73]李玉明.进气系统的设计及实践[D].吉林大学,2012.9.
    [74]裴建权.可变进,排气系统对发动机动力性作用影响分析[D].长春:吉林大学,2012.
    [75] Inoue T. Metallo-Thermo-Mechanical Coupling. Application to the Analysis of Quenching,Welding and Continuous Casting Processes[J]. Berg Huttenmann. Monatsh.,1987,132(3):63-71.
    [76] Chen Z H, Tang C Y, Lee T C. Thermo-mechanical Coupling Finite Element Analysis of SheetMetal Extrusion Process[C]//Second Global Symposium on Innovations in Materials Processingand Manufacturing: Sheet Materials.2001:425-435.
    [77] Hwang P, Wu X. Investigation of Temperature and Thermal Stress in Ventilated Disc BrakeBased on3D Thermo-Mechanical Coupling Model[J]. Journal of Mechanical Science andTechnology.2010,24(1):81-84.
    [78] Baranowski P, Damziak K, Malachowski J, et al. Experimental and Numerical Tests ofThermo-mechanical Processes Occurring on Brake Pad Lining Surfaces[J]. Surface Effects andContact Mechanics X,2011,71:15-24.
    [79]瞿承玮.大型柴油机气缸系统流场/热-机耦合场非线性三维有限元分析[D].上海:同济大学,2007.
    [80]陶孟章,刘永祥,傅园松,等.汽油机活塞热机耦合强度分析[J].柴油机设计与制造.2007,4(15):35-28.
    [81]李智,黄荣华,王兆文,等.基于多场耦合的重载柴油机气缸盖优化设计[J].华中科技大学学报:自然科学版,2011,39(8):10-13.
    [82]谢琰.柴油机活塞热负荷与机械负荷的三维有限元耦合分析[D].呼和浩特:内蒙古工业大学,2010.
    [83]李坤,苏铁熊,赵静.顶置湿式汽缸套温度场及热机耦合分析[J].小型内燃机与摩托车.2010,39(1):45-48.
    [84]郑百林,潘琼瑶,王锋,等.柴油机活塞热机耦合三维有限元分析[J].同济大学学报.34(11):1534-1538.
    [85]谢宗法,程勇,张小印,等.用最大速度位置和最大加速度位置设计高次多项式配气凸轮[J].内燃机学报,2005,23(3):274-278.
    [86]廖祥兵,王军,张立军.顶置凸轮轴凸轮形线的优化设计[J].内燃机学报,2001,19(6):588-592.
    [87]龙连春,马照松,胡丽萍,等.避碰组合多项式凸轮形线及其优化设计[J].内燃机学报,2002,20(2):171-175.
    [88] Mclaughlin S, Haque I. Development of a Multi-body Simulation Model of a Winston CupValvetrain to Study Valve Bounce[J]. Proceedings of the Institution of Mechanical Engineers,Part K: Journal of Multi-body Dynamics,2002,216(3):237-248.
    [89] Qin W, Shen J. Multibody System Dynamics Modelling and Characteristic Prediction for OneDiesel's Valve Train[C]//Information and Computing Science,2009. ICIC'09. SecondInternational Conference on. IEEE,2009,3:45-48.
    [90]张力,吴俊刚.顶置凸轮轴配气机构多体动力学分析与应用[J].汽车工程,2007,29(7):630-633.
    [91] Deppen T O, Alleyne A G, Stelson K A, et al. Optimal Energy Use in a Light Weight HydraulicHybrid Passenger Vehicle[J]. Journal of dynamic systems, measurement, and control,2012,134(4).
    [92] Presti M, Pace L, Mueller W. Vehicle Mass Lighting by Design of Light-weight StructurelSubstrates for Catelytic Converters[J]. SAE Technical papers.2011to ZEV-Highlighting thelatest powertrain, Vehicle and informobility technologies.2011,9:1969-2013.
    [93]李飞龙,郭孔辉,杨沿平,等.基于GREET模型的汽车材料轻量化能耗评价研究[J].中国机械工程,2013,24(5):681-684.
    [94]吴明,任勇刚.汽车发动机原理[M].机械工业出版社,2013.
    [95]蒋德明.内燃机中的气体流动.北京:机械工业出版社,1985:42-60.
    [96]刘伍权,许洪军,刘书亮,等.四气门发动机可变进气结构的斜轴涡流特性.天津大学学报,2005,38(6):476-480.
    [97] Bauer W, Heywood J B, Avanessian O, et al. Flow Characteristics in Intake Port ofSpark-ignition Engine Investigated by CFD and Transient Gas Temperature Measurement[J].SAE transactions,1996,105(3):2110-2117.
    [98] Rakopoulos C D, Kosmadakis G M, Pariotis E G. Evaluation of a Combustion Model for theSimulation of Hydrogen Spark-ignition Engines using a CFD Code[J]. International Journal ofHydrogen Energy,2010,35(22):12545-12560.
    [99]冯喜平,董涛,李进贤,等.中心进气旋转射流冲压燃烧室湍流流动数值模拟[J].固体火箭技术,2007,30(3):196-200.
    [100]庄逢辰,赵文涛,刘卫东,等.液体火箭发动机燃烧稳定性CFD分析[J].燃烧科学与技术,2001,7(1):16-20.
    [101]许元默,帅石金,王燕军,等.发动机缸内数值模拟现状及发展方向[J].小型内燃机与摩托车,2002,31(5):36-41.
    [102]沈义涛,帅石金,王志.基于多组分蒸发模型的汽油机冷起动数值模拟[J].内燃机工程,2011,32(3):17-18.
    [103]叶剑.135柴油机燃烧过程数值模拟[D].大连:大连理工大学,2008.
    [104] AVL LIST Gmbh. AVL BOOST User’s Guide Version5.1[M]. Austria: AVL,2008:22-31.
    [105]李文跃.可变冲程发动机性能仿真研究[D].秦皇岛:燕山大学,2012.
    [106]刘长城. K157发动机进气过程CFD数值模拟计算[D].济南:山东大学,2008.
    [107]顾维东,杨延相,蔡晓林,等. FAI二冲程直喷汽油机缸内流场的多维数值模拟[J].内燃机学报,2007,25(2):150-156.
    [108]蒋炎坤,李仁旺,等.发动机瞬态数值模拟中气口网格生成技术研究[J].华中科技大学学报.2001,(5):14-16.
    [109]陈登.二冲程缸内直喷汽油机扫气和喷油过程的多维数值模拟[D].天津大学.2005.
    [110]王广基,郭晨海,姜树李,等.二冲程汽油机扫气过程的CFD模拟计算与试验[J].小型内燃机与摩托车.2008,4(2):29-32.
    [111]佟景伟,李林安.在温度和机械载荷作用下活塞应力与变形的三维有限元分析[J].内燃机学报.1995,13(2):123-131.
    [112]王枕霞.基于AutoCAD的凸轮外形轮廓曲线的设计方法[J].机械设计与制造,2007,3997(9):191-193.
    [113]王胜华.利用TYCON软件优化摩托车发动机配气凸轮型线[J].摩托车技术,2008,(1):28-32.
    [114]孙红霞,仪垂杰,邢普.基于ADAMS的配气凸轮轮廓曲线的设计[J].小型内燃机与摩托车,2007,36(5):15-17.
    [115]李增刚. ADAMS入门详解与实例[M].北京:国防工业出版社.2010.3
    [116]牛福军.变冲程发动机动力控制模块的开发[M].燕山大学硕士学位论文.2013.5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700