用户名: 密码: 验证码:
水下高速航行体超空泡减阻的大涡模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水下兵器发展过程中,提高水下射弹、鱼雷的航行速度一直是摆在设计研究人员面前的最大障碍。过去研究人员采用优化航行体结构、添加航行体表面涂层、增加和改进动力系统推进方式等常规方法来提高水下航行体速度,研究结果表明由于水下阻力极大,这些方法很难大幅度提高水下航行体的运动速度。随着俄罗斯超空泡高速鱼雷的问世,打破了以往常规方法的限制,成功实现了水下航行体速度的提升,并且获得了非常喜人的效果。目前随着世界各国对于海上军事主动权的争夺日趋紧张,超空泡技术极具军事应用发展前景的特点,深深地吸引了各大军事强国的关注,开展了大量相关研究,并且取得了一定的研究成果。但是空泡流动是一种考虑相变、粘性、湍流运动、界面可压缩性的极其复杂多相流动现象,使得空泡流动的研究发展在很大程度上受到制约,其相关实验研究、数值预测和空泡机理研究仍然是目前多相流领域内的研究难点与热点。
     针对这种情况,本文利用自行开发设计的大涡模拟算法程序,进行了水下高速航行体超空泡减阻问题的空泡流动数值模拟;利用空泡数值模拟理论结果设计航行体模型,研制水下测速仪器,开展水下超空泡航行体实验研究,具体研究工作内容如下:
     首先,基于国内外关于超空泡技术的研究现状和发展动态,结合本文主要研究工作的实际工程应用背景,提出本文研究所要解决问题和解决这些问题所采用的研究方法与技术途径。
     其次,通过对国内外关于空泡流动的数值模拟方法的分析研究,结合空泡流动特点,在均相流动理论的框架下,建立基于三维Navier-Stokes方程且考虑气液间相变的大涡模拟求解计算方法。详细分析了大涡模拟操作中常用滤波函数的特点和不同形式亚网格应力模型的优缺点,并且对本文采用的亚网格湍动能κ-△模型进行了推导。讨论了可以处理气液间相变问题的不同空化模型。在此基础上,详细介绍了本文采用的数值离散方法,其中包括大涡模拟控制方程离散、压力-速度-密度的耦合算法以及PISO算法中压力修正方程的推导过程。另外详细分析了计算域和数值计算边界条件,讨论了不同网格类型的优缺点,并且针对复杂多相流场计算中所需计算量很大的问题,设计了基于MPI方法的并行算法。
     第三,为验证本文计算方法的适用性和探究低速航行体空泡流动特性,开展了绕低速NACA0015水翼云空化流动的数值模拟研究。计算了空泡形成过程与周期性脱落频率,将计算结果与实验结果对比,两者吻合较好,证明了本文计算方法的适用性。在此基础上,分析了包括初始涡、回射涡、空泡分离以及空泡再生的非定常周期性脱落过程,研究了Kunz空化模型和Sauer空化模型对空泡形态的影响以及分析了不同空化数对水动力特性的影响。
     第四,为验证本文计算方法的正确性和探究高速航行体空泡流动特性,分别从空泡形态特性与阻力特性两方面,开展了绕不同外形结构三维航行体模型超空泡流动的数值模拟研究。通过计算得到超空泡由航行体头部初生至完全包裹航行体的非定常形成过程。将计算的超空泡无量纲特征长度、厚度与Logvinovich实验结果对比,两者吻合较好,证明了计算结果的正确性。在此基础上,详细分析了不同空化数、空化器直径、空化器形状、航行体攻角以及航行体尾翼形状对超空泡形态特性和阻力特性的影响。
     最后,为进一步验证本文数值方法的正确性,基于高速航行体空泡形态特性与阻力特性的数值分析结果,结合圆盘空化器具有较高减阻效率和良好空化能力的特点,设计了带尾翼结构的圆盘空化器多种外形结构航行体模型,开展了高速航行体从空中斜射入水中形成超空泡的实验研究。通过水下高速摄像获得了小空化数下自然超空泡形成图像。讨论了航行体空中运动稳定性与航行体能否形成超空泡之间的关系。利用水下测速靶上的航行体穿孔位置,分析超空泡航行体的水下弹道稳定性。获得了不同空化数和空化器直径下超空泡航行体的平均阻力系数,并且分析了空化数和空化器直径对平均阻力系数的影响。将实验结果与数值计算结果对比,两者吻合较好,验证了数值计算方法的正确性。在此基础上,计算了水下超空泡航行体的减阻率,分析了超空泡减阻效果。
     综合上述关于高速航行体超空泡减阻问题的数值模拟与实验研究可知,本文实现的数值计算方法能够较好地模拟水下高速航行体超空泡流动;在空化数σ-=5.9×104、空化器相对直径Dn=2.3×10-1条件下,水下超空泡航行体可获得最高约为94.67%的减阻率。
In the process of underwater weapon development, to improve the navigation speed of underwater projectile and torpedo is always the biggest obstacle in front of design researchers. In the past, researchers had adopted many conventional methods to improve the speed of underwater navigation body, such as optimization of the navigation body structure, adding coating on the navigation body surface, increasing and improving the power system of propulsion. The result was shown that due to the great resistance of water, these methods were difficult to significantly increase the movement speed of the submerged navigation body. With the appearance of high-speed supercavitation torpedo developed in Russia, breaking the limitations of the conventional methods, successfully enhancing the speed of a submerged navigation body, and a very gratifying effect is completed. Presently, the contention of maritime military initiative becomes a hot topic in the word, and characteristics of military applications development prospect deeply attract the attention of the major military powers. Those have carried out lots of researches and made some certain results. However, cavitation is a very complex multiphase flow including phase change, viscous effect, turbulence flow, and compressibility of interface. That gives a greatly restricted on the cavitating flow research and development. Furthermore, relevant test research, numerical prediction and cavitation mechanism research are still research difficulties and hot in the multiphase flow field.
     In view of this situation, the self-developed LES program is used to carry out numerical simulation of supercavity drag reduction of underwater high-speed navigation body with cavitating flow. The navigation body model is designed by the numerical simulation results of cavitating flow, and the underwater measurement device is also developed. Based on it, the experimental study of underwater supercavity navigation body is carried out. The specific research contents are shown as follows.
     Firstly, based on the domestic and international research present situation and development trend on supercavity technology, combining the actual engineering application background, the research methods and technical ways that the problems needs to be solved and the solution of these problems have been put forward.
     Secondly, through the analysis of the domestic and international numerical simulation method on cavitation flow, combined with the characteristics of cavitation flow, the LES calculation solution method based on the three dimensional Navier-Stokes equation and considering phase change between gas-liquid is established in the homogeneous flow theory framework. The filter function characteristics of the LES common operation has been analyzed in detail, and also the advantages and disadvantages of different forms of subgrid stress models. The turbulent kinetic energy k-△model is deduced. The different cavitation models handling phase change between gas-liquid are discussed. On this basis, the numerical discretization method adopted in present is introduced in detail, which including discretization of LES control equation, pressure-velocity-density coupling algorithm, and the derived pressure correction equation in PISO algorithm. In addition, a detailed analysis of calculation domain and numerical boundary condition is completed. The advantages and disadvantages of different grid types are discussed. According to the problem that the complex multiphase flow needs a high calculation, a parallel algorithm is designed based on MPI.
     Thirdly, in order to validate the applicability of calculation method in present and explore the cavity flow characteristics of low-speed navigation body, numerical simulation research of cloud cavitation flow around the low speed NACA0015hydrofoil is carried out. The periodic shedding frequency and process of cavity forming have been calculated. Comparison of the experimental results with calculated results has been made, there is a well agreement, and applicability of calculation methods is also proved. On this basis, the analysis of unsteady periodic shedding process including the initial vortex, re-entrant jet vortex, cavitation separation and cavity regeneration is completed. The influence of Kunz cavitation model and Sauer cavitation model on cavity form is analyzed. Furthermore, the influence of different cavitation number on hydrodynamic characteristics is analyzed.
     Fourthly, in order to validate the correctness of calculation method in this paper and explore the cavitating flow characteristics of high-speed navigation body, numerical simulation research of supercavitating flow around the three dimensional navigation body model with different construction appearance is carried out, respectively in the two aspects of the cavity shape and resistance characteristics. The unsteady process that supercavity produces from warhead to surrounded completely navigation body is achieved through the calculation. Comparison of supercavity dimensionless characteristic length, thickness of the calculated results with Logvinovich experimental results has been made, there is a well agreement, and correctness of calculation methods is also proved. On this basis, the influence of the different cavitation number, cavitator diameter, cavitator shape, attack angle of navigation body, and tail shape of navigation body on the supercavity shape and resistance characteristics is analyzed in detail.
     Finally, in order to further verify the correctness of the numerical method in this paper, based on the analysis results of high-speed navigation body of cavity shape and resistance characteristics, combined with the disc cavitator has a higher drag reduction efficiency and better cavitation capability characteristic, designing a variety of construction appearance navigation body model with disc cavitator and tail, the experimental research that high-speed navigation body is from the air oblique into the water for forming supercavity is carried out. The forming image of underwater natural supercavity is achieved by underwater high-speed camera. The relationship between navigation body movement stability in air and forming supercavity has been discussed. The trajectory stability of supercavity navigation body is analyzed by punching position of navigation body on the underwater velocity measurement target. On condition that the different cavitation number and cavitator diameter, the average drag coefficient of supercavity navigation body is achieved. The influence of the different cavitation number and cavitator diameter on the average drag coefficient is also analyzed. Comparison of the calculated results with experimental results has been made, there is a well agreement, and correctness of calculation methods is also verified. On this basis, the drag reduction rate of the underwater supercavity navigation body is calculated and the effect of supercavity drag reduction is analyzed.
     A combination of the supercavity drag reduce problems of high speed navigation body about the numerical simulation and experimental study shows that numerical calculation method adopted in this paper can better simulate the supercavity flow of underwater high speed navigation body. In conditions of the cavitation number σ=5.9×10-4and the cavitator relative diameter Dn=2.3×10-1, the drag reduction rate of underwater supercavity navigation body can approximately get up to94.67%.
引文
[1]Bozhi Gong, Bingjian Zhang, Hui Zhang. NEMD study for supercavitation mechanism with underwater object. Physics Letters A,2008,372:7063-7067.
    [2]Y. Lecoffre. Cavitation bubble trackers. A.A. Balkema, Brookfield, VT,1999.
    [3]Xiangbin Li, Guoyu Wang, Mindi Zhang, Wei Shyy. Structures of supercavitating multiphase flows. International Journal of Thermal Sciences,2008,10:1263-1275.
    [4]J. M. Michel. Introduction to cavitation and supercavitation. R.TO AVT Lecture,2001.
    [5]B. Stutz, J. L. Reboud. Two-phase flow structure of sheet cavitation. Physics of Fluids, 1997,12:3678-3686.
    [6]David R. Stinebring, Robert B. Cook, John E. Dzielski, et. al.. High speed supercavitating vehicles. AIAA,2006.
    [7]Martin Wosnik, Travis J. Schauer, Roger E.A. Arndt. Experimental study of a ventilated supercavitating vehicle.5th International Symposium on Cavitation,2003.
    [8]Y. Ventikos, G.Tzabiras. A numerical method for the simulation of steady and unsteady cavitating flows. Computers and Fluids,2000,1:63-88.
    [9]曹伟,魏英杰,王聪等.超空泡技术现状、问题与应用.力学进展,2006,4:571-579.
    [10]于开平,魄喜斌,蒋增辉.俄罗斯和乌克兰超空泡减阻技术研究进展.飞航导弹,2007,8:5-11.
    [11]A. K. Singhal, N. Vaidya, A. D. Leonard. Multi-dimensional simulation of cavitating flows using a PDF model for phase change. ASME Fluids Engineering Division Summer Meeting,1997.
    [12]G. V. Logvinovich. Hydrodynamics of flows with free boundaries. NASA TT F-658, 1972:1-201.
    [13]金大桥,王聪,余锋.水下超空泡射弹研究综述.飞航导弹,2010,7:19-23.
    [14]Yu. N. Savchenko. Experimental investigation of supercavitating motion of bodies. RTO, EN-10,2001.
    [15]Gorshkov A. S., Rusetsky A. A.. Cavitation tunnels. Leningrad, Sudostroenie,1972.
    [16]Yuriy D.Vlasenko. Experimental investigation of supercavitation flow regimes at subsonic and transonic speeds. Fifth International Symposium on Cavitation,2003.
    [17]Yu. N. Savchenko. On motion in water at supercavitation flow regimes. J. Hydro-mechanics, Kiev:Naukova dumka,1996.
    [18]Yu. N. Savchenko. Investigation of high-speed supercavitating underwater motion of bodies. AGARD Report, Ukraine,1998.
    [19]张世英,周海平.美国海军新概念武器机载快速灭雷系统.现代舰船杂志,2008,10:35-36.
    [20]John Castano, Thomas Gieseke. Supercavitation research programmes. Naval Forces, 2001,3:44-47.
    [21]E. Louise. Supercavitation speeds underwater weapons. Design News,2001,13:1-29.
    [22]Willke Henning, Blumenthal Norbert. Supercavitation-a challenge for future underwater weapon systems. Naval Forces,2001,3:1-50.
    [23]D. R. Stinebring, Billet, L. Michael, J. W. Lindau, et. al.. Developed cavitation-cavity dynamics. VKI Press, Brussels,2001.
    [24]颜开,褚学森,许晟,冯光.超空泡流体动力学研究进展.船舶力学,2006,4:148-155.
    [25]丛敏,魏国福.美国海军的超空泡研究计划.飞航导弹,2009,1:17-20.
    [26]V. V. Serebryakov, I. N. Kirschner, G. H. Schnerr. High speed motion in water with supercavitation for sub-, trans-, supersonic mach numbers. Proceedings of the 7th International Symposium on Cavitation,2009.
    [27]I. N. Kirschner. Supercavitating projectile experiments at supersonic speeds. In the Proceedings of the NATO/AGARD Fluid Dynamics Panel Workshop on High Speed Body Motion in Water, AGARD Report 827,1997.
    [28]Shobha Verma, R. K. Tewari. Supercavitation:a technology for the future underwater weapon systems. National Symposium on Ocean Electronics,2003.
    [29]Vladimir V. Serebryakov. Supercavitation for high speed motion in water:prediction and drag reduction problems. ASME European Fluids Engineering Division Conference, 2002.
    [30]孟庆昌,张志宏,刘巨斌,顾建农.水下高速航行体超空泡流动研究进展.船海工程,2006,6:26-29.
    [31]J. D. Hrubes, C. W. Henoch, I. N. Kirschner, et. al.. NUWC supercavitating high-speed bodies test range:description and test results. Proceedings of the ITTC Conference, 1998.
    [32]I. N. Kirschner, K. W. Roth, J. D. Hrubes, et. al.. Progress in supercavitating high speed projectiles research. Proceedings of the ASME & JSME Fluids Engineering Annual Conference & Exhibition, Cavitation and Multiphase Flow Forum,1996.
    [33]I. N. Kirschner. Results of selected experiments involving supercavitating flows. At the RTO AVT Lecture Series on Supercavitating Flows,2001.
    [34]J. D. Hrubes. High-speed imaging of supercavitating underwater projectiles. Experiments in Fluids,2001,30:57-64.
    [35]John Dzielski, Andrew Kurdila. A benchmark control problem for supercavitating vehicles and an initial investigation of solutions. Journal of Vibration and Control,2003, 7:791-804.
    [36]M. Ruzzene, R. Kamada, C. L. Bottasso, F. Scorcelletti. Trajectory optimization strategies for supercavitating underwater vehicles. Journal of Vibration and Control, 2008,5:611-644.
    [37]B. Vanek, J. Bokor, Gary J. Balas, Roger E.A. Arndt. Longitudinal motion control of a high-speed supercavitation vehicle. Journal of Vibration and Control,2007,2:159-184.
    [38]Ivan N. Kirschner, David C. Kring, Ann W. Stokes, et. al.. Control strategies for supercavitating vehicles. Journal of Vibration and Control,2002,2:219-242.
    [39]黄加强.超空泡技术及其在潜艇上应用前景分析.舰船电子工程,2009,11:23-25.
    [40]J. E. Dzielski. Longitudinal stability of a supercavitating vehicle. Oceanic Engineering, 2011,4:562-570.
    [41]李凝,杨飚.德国轻型超空泡鱼雷研发现状及展望.鱼雷技术,2008,2:1-5.
    [42]傅金祝.德国超空泡水中兵器的研究现状.水雷战与舰船防护,2005,4:12-17.
    [43]刘佳,刘乐华,侯晓艳.德国超空泡水下导弹技术的发展.飞航导弹,2009,10:31-33.
    [44]傅金祝.德国人的试验—超空泡水下武器.兵器知识,2005,6:39-41.
    [45]丛敏,刘乐华.德国BARRACUDA超空泡高速水下导弹的制导与控制.飞航导弹,2007,5:38-43.
    [46]Norbert Blumenthal. Weltweite spitzenposition erhalten und ausbauen technologie superkavitierender unterwasserraketen. Europaische Sicherheit,2001.
    [47]T. Wallner. Supercavitation-a german status report concept. Naval Forces,2003,5: 97-102.
    [48]J. Castano, D. Filicky, M. Kamholz, et. al.. Supercavitation anti-submarine warfare weapon concept for sea shield applications. Naval Forces,2005,3:90-95.
    [49]R. Willi, H. Wilhelm. Barracuda—guidance and control of a supercavitating high speed underwater missile. Naval Forces,2006,5:44-49.
    [50]H. Reichardt. The laws of cavitation bubbles at axially symmetrical bodies in a flow. Ministry of Aircraft Production Reports and Translations,1946.
    [51]I. N. Kirschner, T. A. Gieseke, R. Kuklinski. Supercavitation research and development. Undersea Defense Technologies,2001.
    [52]Chris Weiland, Pavlos Vlachos. Observation of a critical time scale for supercavitation development and the effect of gas leakage. ASME 43rd Forum on Cavitation and Multiphase Flows,2008.
    [53]Chris Weiland, Pavlos Vlachos. Spatio-temporal development of supercavitation over an impulsively launched projectile. ASME Forum on 2006 Cavitation and Multiphase Flow, 2006.
    [54]Martin Wosnik, Lucas Gomez Fontecha, Roger E A Arndt. Measurements in high void-fraction bubbly wakes created by ventilated supercavitation. ASME Fluids Engineering Division Summer Meeting,2005.
    [55]T. J. Schauer. An experimental study of a ventilated supercavitating vehicle. MS Thesis in Aerospace Engineering, University of Minnesota,2003.
    [56]Y. N. Savchenko. Modeling the supercavitation processes. International Journal of Fluid Mechanics research.2001,5:644-659.
    [57]R. Kuklinski, C. Henoch, J. Castano. Experimental study of ventilated cavities on dynamic test model. Fourth International Symposium on Cavitation,2001.
    [58]R. Kuklinski, A. Fredette, C. Henoch, et. al.. Experimental studies in the control of cavitating bodies. AIAA,2006.
    [59]R. E. A. Arndt, G. J. Balas, M. Wosnik. Control of cavitating flows:a perspective. JSME International Journal Series B Fluids and Thermal Engineering.2005,2:334-341.
    [60]R. Oba, T. Ikohagi, S. Yasu. Supercavitating cavity observations by means of laser velocimeter. Journal of Fluids Engineering,1980,102:433-439.
    [61]黄平涛,褚永泉.空泡水筒中螺旋桨模型试验的筒壁影响和修正.中国造船,1984,3:1-10.
    [62]刘桦.有攻角情况下带空泡轴对称体的水动力实验研究.上海交通大学博士学位论文,1990.
    [63]张学伟,张嘉钟,王聪等.通气超空泡形态及其稳定性实验研究.哈尔滨工程大学学报,2007,4:381-387.
    [64]张学伟,魏英杰,张嘉钟等.模型结构对通气超空泡影响的实验研究.工程力学,2008,9:203-208.
    [65]蒋增辉,于开平,张嘉钟等.超空泡航行体尾部流体动力特性试验研究.工程力学,2008,3:26-30.
    [66]蒋增辉,于开平,张嘉钟等.水下航行体通气超空泡形态及阻力特性试验研究.工程力学,2007,4:152-158.
    [67]蒋增辉,于开平,张嘉钟等.超空泡航行体尾部流体动力特性试验模型支撑方式的 选择研究.机械科学与技术,2007,12:1648-1651.
    [68]隗喜斌,魏英杰,黄庆新等.通气超空泡临界通气率的水洞试验分析.哈尔滨工业大学学报,2007,5:797-799.
    [69]贾力平,张嘉钟,魏英杰等.空化器几何参数对通气超空泡生成影响的实验研究.船舶力学,2007,2:171-178.
    [70]贾力平,王聪,于开平等.空化器参数对通气超空泡形态影响的实验研究.工程力学,2007,3:159-164.
    [71]裴譞,张宇文,孟生等.超空泡航行器尾喷管实验研究.应用力学学报,2010,3:584-588.
    [72]裴譞,张宇文,袁绪龙等.尾翼对超空泡航行器形态及力学特性影响实验研究.实验流体力学,2011,1:23-28.
    [73]裴譞,王育才,张宇文等.超空泡航行器舵效的水洞试验研究.西南交通大学学报,2011,6:1008-1012.
    [74]张宇文,王育才,党建军等.细长体空泡流型试验研究.水动力学研究与进展A辑,2004,3:394-400.
    [75]张纪华,张宇文,朱灼.通气量对超空泡生成与维持影响实验研究.实验流体力学,2012,2:56-59.
    [76]张纪华,张宇文,李雨田.水下航行器通气超空泡生成与维持实验研究.实验力学,2011.6:715-720.
    [77]张博,张宇文,张纪华.通气空泡生成和溃灭特性试验研究.应用力学学报,2011,1:55-58.
    [78]张博,张宇文,阚雷等.超空泡航行体前部线形对空泡生成临界通气量影响的实验研究.应用力学学报,2008,4:562-565.
    [79]张博,张宇文,李文哲等.超空泡航行体前部线型对空泡生成速度影响实验研究.西北工业大学学报,2008,5:540-544.
    [80]王晓娟,张纪华,张宇文.通气量突变对通气超空泡形态影响的试验研究.西北工业大学学报,2012,2:222-225.
    [81]李福新,邓飞,鲍鹏等.回转体头部空化噪声特性的实验研究.流体力学实验与测量,2002,2:42-46.
    [82]王海斌,张嘉钟,魏英杰等.水下航行体通气超空泡减阻特性实验研究.船舶工程,2006,3:14-17.
    [83]王海斌,王聪,魏英杰等.轴对称航行体通气超空泡的特性实验研究.工程力学,2007,2:166-171.
    [84]袁绪龙,张宇文,刘乐华.空泡外形测量与分析方法研究.实验力学,2006,2: 215-219.
    [85]袁绪龙,张宇文,刘乐华等.水下航行体通气超空泡形态实验研究.应用力学学报,2004,3:33-37.
    [86]黄海龙,王聪,黄文虎等.水下航行体通气超空泡内压强分布实验研究.哈尔滨商业大学学报,2007,2:188-221.
    [87]曹伟,王聪,魏英杰等.自然超空泡形态特性的射弹试验研究.工程力学,2006,12:208-212.
    [88]Feng Xuemei, Lu Chuanjing, Hu Tianqun. Experimental research on a supercaviting slender body of revolution with ventilation. J Hydrodynamics, Ser.B,2002,2:17-23.
    [89]顾建农,张志宏,王冲等.旋转弹头水平入水空泡及弹道的实验研究.兵工学报,2012,5:540-544.
    [90]顾建农,高永琪,张志宏等.系列头型空泡特征及其对细长体阻力特性影响的试验研究.海军工程大学学报,2003,4:5-9.
    [91]陈伟政,张宇文,袁绪龙等.重力场对轴对称体稳定空泡形态影响的实验研究.西北工业大学学报,2004,3:274-278.
    [92]陈伟政,张宇文,邓飞等.水洞实验中空泡图象的一种修正方法.水动力学研究与进展A辑,2004,5:682-686.
    [93]陈伟政,张宇文,邓飞.水洞实验图像的一种测量与处理方法.流体力学实验与测量,2004,1:67-70.
    [94]杨武刚,张宇文,阚雷等.通气法控制超空泡流动的实验研究.应用力学学报,2007,4:504-508.
    [95]杨武刚,张宇文,邓飞等.人工超空化通气流量系数的实验研究.机床与液压,2007,9:136-139.
    [96]杨武刚,张宇文,邓飞等.通气流量对超空泡外形特征影响实验研究.西北工业大学学报,2007,3:358-362.
    [97]邓飞,张宇文,陈伟政等.头形对细长体超空泡生成与外形影响的实验研究.西北工业大学学报,2004,3:269-273.
    [98]邓飞,张宇文,袁绪龙等.航行体通气超空泡起始与形成实验研究.弹箭与制导学报,2005,3:342-345.
    [99]张琦.超高速航行体尾部流场特性分析与试验研究.西北工业大学硕士论文,2006.
    [100]蒋洁明,鲁传敬,胡天群等.轴对称体通气空泡的水动力试验研究.力学季刊,2004,4:450-456.
    [101]Li Xiang-bin, Wang Guo-yu, Zhang Min-di, Shyy Wei. Structures of supercavitating multiphase flows. International Journal of Thermal Sciences,2008,10:1263-1275.
    [102]张嘉钟,赵静,魏英杰等.回注射流及其对通气超空泡形态影响的研究.船舶力学,2010,6:571-576.
    [103]Qitao Lee, Leiping Xue, Yousheng He. Experimental study of ventilated supercavities with a dynamic pitching model. Journal of Hydrodynamics. Series B,2008,4:456-460.
    [104]易淑群,张明辉,周建伟等.攻角对轴向约束模型加速过程超空泡影响的试验研究.水动力学研究与进展A辑,2010,3:292-298.
    [105]易淑群,惠昌年,周建伟等.通气量对轴向加速过程超空泡发展规律影响的试验研究.船舶力学,2009,4:522-526.
    [106]金大桥,王聪,魏英杰等.通气超空泡水下射弹实验研究.工程力学,2011,9:214-217.
    [107]金大桥,王聪,曹伟等.通气超空泡水下射弹数值模拟及试验研究.兵工学报,2011,10:1184-1188.
    [108]施红辉,周浩磊,吴岩等.伴随超空泡产生的高速细长体入水实验研究.力学学报,2012,1:49-55.
    [109]李凤臣,邹志林,蔡伟华等.减阻剂水溶液内弹体入射超空泡特性实验研究.工程热物理学报,2010,5:857-862.
    [110]冯光,褚学森,陶灿辉等.物体二自由度运动条件下超空泡流动试验研究.船舶力学,2010,6:633-640.
    [111]刘统军,罗凯,胥银.尾部喷流对超空泡流动影响试验技术研究.鱼雷技术,2009,5:63-71.
    [112]易文俊,熊天红,王中原等.小空化数下超空泡航行体的阻力特性试验研究.水动力学研究与进展,2009,1:1-6.
    [113]熊天红,易文俊.高速射弹超空泡减阻试验研究与数值模拟分析.工程力学,2009,8:174-178.
    [114]杨传武,王安稳,施连会等.超空泡流下壳结构模型动态特性实验研究.振动与冲击,2010,11:17-20.
    [115]李其弢,何友声,杨英强.超空泡实验中的数字图像检测.水动力学研究与进展,2007,3:208-214.
    [116]N. M. Nouri, A. Eslamdoost. An iterative scheme for two-dimensional supercavitating flow. Ocean Engineering,2009,36:708-715.
    [117]D. Riabouchinsky. On steady fluid motion with free surfaces. Proc. London Math. Soc, 1922,19:202-212.
    [118]M. P. Tulin. Steady two-dimensional cavity flows about slender bodies. David Taylor Model Basin,1953, Report 834.
    [119]M. P. Tulin. Supercavitating flow past foils and struts. Proceedings of the NPL Symposium on Cavitation in Hydrodynamics,1955.
    [120]J. A. Geurst. Linearized theory for partially cavitated hydrofoils. International Ship building Progress,1959,60:369-384.
    [121]H. Cohen, C. D. Sutherland, Y. O Tu. Wall effects in cavitating hydrofoil flow. Journal of Ship Research,1957,3:31-39.
    [122]C. A. Brennan. Numerical solution of axisymmetric cavity flows. Journal of Fluid Mechanics,1969,37:671-688.
    [123]J. S. Uhlman. The surface singularity method applied to partially cavitating hydrofoils. Journal of ship research,1987,2:107-124.
    [124]J. S. Uhlman. The surface singularity or boundary integral method applied to supercavitating hydrofoils. Journal of ship research,1989,1:16-20.
    [125]S. A. Kinnas, N. E. Fine. Nonlinear analysis of the flow around partially and supercavitating hydrofoils by a potential based panel method. Proceedings of the IABEM-90 Symposium International Association for Boundary Element Methods, 1990.
    [126]S. A. Kinnas, N. E. Fine. A numerical nonlinear analysis of the flow around two-and three-dimensional partially cavitating hydrofoils. Journal of Fluid Mechanics,1993,254: 151-181.
    [127]L. C. Wrobel. A simple and efficient BEM algorithm for planar cavity flows. International journal for numerical methods,1992,14:529-537.
    [128]L. C. Wrobel. Numerical solution of axisymmetric cavity flows using the boundary element method. International journal for numerical methods,1992,9:845-854.
    [129]A. G. Terentiev, N. A. Dmitrieva. Theoretical investigation of cavitating flows. Third International Symposium on Cavitation, Grenoble, France,1998.
    [130]J. M. Aitchison, The numerical solution of planar and axisymmetric cavitational flow problems. Computers & Fluids,1984,1:55-65.
    [131]V. V. Serebryakov. Some models of prediction of supercavitation flows based on slender body approximation. Cav2001:session B3.001:1-13.
    [132]W. S. Vorus. Ambient Supercavities of slender bodies of revolution. Journal of Ship Research,1986,3:215-219.
    [133]L. Dieval, C. Pellone, M. Arnaud. Advantages and disadvantages of different techniques of modeling of supercavitation. Proceedings of Meeting on High Speed Hydrodynamics and Supercavitation, Grenoble, France,2000.
    [134]J. L. Reboud, Delannoy, Y. Two-phase flow modeling of unsteady cavitation. Proceedings of 2nd International Symposium on Cavitation,1994.
    [135]C. Song, J. He. Numerical simulation of cavitating flows by single-phase flow approach. Proceedings of 3rd International Symposium on cavitation,1998.
    [136]D. R. Van der Heul, C. Vuik, P. Wesseling. Efficient computation of flow with cavitation by compressible pressure correction. Proceedings of AMIF-ESF Workshop on Computing Methods for Two-Phase Flow,2000.
    [137]C. L. Merkle, J. Feng, P. E. Buelow. Computational modeling of the dynamics of sheet cavitation. Proceedings of 3rd International Symposium on Cavitation,1998.
    [138]B. R. Shin, T. Ikohagi. A numerical study of unsteady cavitating flows. Proceedings of 3nd International Symposium on Cavitation,1998.
    [139]Eric Goncalves, Regiane Fortes Patella. Numerical simulation of cavitating flows with homogeneous models. Computers & Fluids,2009,9:1682-1696.
    [140]H. A. Grogger, A. Alajbegovic. Calculation of the cavitating flow in venturi geometries using two fluid model. ASME Paper FEDSM 98-5295.
    [141]M. Von Dirke, A. Krautter, J. Ostertag, et. al.. Simulation of cavitating flows in diesel injectors. Oil & Gas Science and Technology,1999,2:223-226.
    [142]M. Ishii, K. Mishima. Two-fluid model and hydrodynamic constitutive relations. Nuc Eng Design,1984,2:107-126.
    [143]A. Alajbegovic, H. A. Grogger, H. Philipp. Calculation of transient cavitation in nozzle using the two-fluid model. ILASS-99 Conference Proceedings,1999.
    [144]A. Alajbegvic, G. Meister, D. Greif, B. Basara. Three phase cavitating flows in high pressure swirl injectors. ETF Science,2002,26:677-681.
    [145]R. T. Lahey, J. r., D. A. Drew. An analysis of two-phase flow and heat transfer using a multidimensional, multi-field, two-fluid computational fluid dynamics model.US Seminar on Two-Phase Flow Dynamics,2000.
    [146]Y. Delannoy, J. L. Kueny. Cavity flow predictions based on the Euler equations. ASME Cavitation and Multi-Phase Flow Forum,1990.
    [147]M. M. Karim, M. S. Ahmmed. Numerical study of periodic cavitating flow around NACA0012 hydrofoil. Ocean Engineering,2012,1:81-87.
    [148]Y. Chen, S. D. Heister. Modeling hydrodynamic nonequilibrium in cavitating flows. Journal of fluids engineering,1996,1:172-178.
    [149]A. Ducoin, B. Huang, Y. L. Young. Numerical modeling of unsteady cavitating flows around a stationary hydrofoil. International Journal of Rotating Machinery,2012,1: 1-17.
    [150]V. Esfahanian, P. Akbarzadeh. Numerical investigation on a new local preconditioning method for solving the incompressible inviscid, non-cavitating and cavitating flows. Journal of the Franklin Institute,2011,7:1208-1230.
    [151]Hoeijmakers H. W. M., Jasssens M. E., Kwan W.. Numerical simulation of sheet cavitation. In 3rd International Symposium on Cavtiation, Grenoble, France,1998.
    [152]J. R. Edwards, R. K. Franklin, M. S. Liou. Low-diffusion flux-splitting methods for real fluid flows with phase transitions. AIAA Journal,2000,9:1624-1633.
    [153]H. Gough, A. L. Gaitonde, D. P. Jones. A dual-time central difference interface capturing finite volume scheme applied to cavitation modeling. International Journal for Numerical Methods in Fluids,2011,4:452-485.
    [154]E. Goncalvs. Numerical study of unsteady turbulent cavitating flows. European Journal of Mechanics B/Fluids,2011,1:26-40.
    [155]Y. Ventikos, G. Tzabiras. A numerical method for the simulation of steady and unsteady cavitating flows. Computers& Fluids,2000,29:63-88.
    [156]M. Benaouicha, J. A. Astolfi. Analysis of added mass in cavitating flow. Journal of Fluids and Structures,2012,31:30-48.
    [157]V. Esfahanian, P. Akbarzadeh, K. Hejranfar. An improved progressive preconditioning method for steady non-cavitating and sheet-cavitating flows. International Journal for Numerical Methods in Fluids,2011,2:210-232.
    [158]J. H. Seo, Y. J. Moon, B.R. Shin. Prediction of cavitating flow noise by direct numerical simulation. Journal of Computational Physics,2008,13:6511-6531.
    [159]V. Srinivasan, A. J.Salazar, K. Saito. Numerical simulation of cavitation dynamics using a cavitation induced momentum defect correction approach. Applied Mathematical Modelling,2009,3:1529-1559.
    [160]J. B. Leroux, C. D. Oliver, J. A. Astolfi. A joint experimental and numerical study of mechanisms associated to instability of partial cavitation on two-dimensional hydrofoil. Physics of Fluids,2005,5:1-20.
    [161]M. Dular, I. Khlifa, S. Fuzier. Scale effect on unsteady cloud cavitation. Experiments in Fluids,2012,5:1233-1250.
    [162]O. Coutier-Delgosha, F. Deniset, et al.. Numerical prediction of cavitating flow on a two-dimensional symmetrical hydrofoil and comparison to experiments. Journal of Fluids Engineering,2007,129:279-292.
    [163]K. Hejranfar, K. Fattah-Hesary. Assessment of a central difference finite volume scheme for modeling of cavitating flows using preconditioned multiphase Euler equations. Journal of Hydrodynamics, Ser. B,2011,3:302-313.
    [164]Jules W. Lindau, Robert F. Kunz, Venkateswaran Sankaran, et. al.. Homogeneous multiphase CFD modeling of large-scale cavities. European Congress on Computational Methods in Applied Sciences and Engineering,2004.
    [165]M. Kinzel, J. Lindau, J. Peltier, et. al.. Computational investigations of air entrainment, hysteresis, and loading for large-scale, buoyant cavities. High Performance Computing Modernization Program Users Group Conference,2007.
    [166]R. F. Kunz, D. A. Boger, D. R. Stinebring, et. al.. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction. Computers & Fluids,2000,8:850-872.
    [167]M. G.Rodio, M.G.De Giorgi, A. Ficarella. Influence of convective heat transfer modeling on the estimation of thermal effects in cryogenic cavitating flows. International Journal of Heat and Mass Transfer,2012,23:6538-6554.
    [168]B. R. Shin, Y. Iwata, T. Ikohagi. Numerical simulation of unsteady cavitating flows using a homogenous equilibrium model. Computational mechanics,2003,5:388-395.
    [169]S. H. Rhee, T. Kawamura, H. Li. Propeller cavitation study using an unstructured grid based Navier-Stokes solver. Journal of FluidsEngineering,2005,127:986-994.
    [170]Owis F. M, Nayfeh A. H. Numerical simulation of super-and partially-cavitating flows over an axisymmetric projectile. Reno, NV:2001.
    [171]V. Ahuja, P. A. Cavallo, A. Hosangadi. Multi-phase flow modeling on adaptive unstructured meshes. AIAA Fluids 2000 and Exhibit,2000.
    [172]Ahuja V, Hosangadi A, Arunajatesan S.. Simulations of cavitating flows using hybrid unstructured meshes. Journal of Fluids Engineering.2001,123:331-340.
    [173]R. F. Kunz, J. W. Lindau, T. A. Kaday, et. al.. Unsteady RANS and detached eddy simulations of cavitating flow over a hydrofoil. Fifth International Symposium on Cavitation,2003.
    [174]I. Senocak, W. Shyy. Evaluation of cavitation models for Navier-Stokes computations. ASME Fluids Engineering Division Summer Meeting Montreal,2002.
    [175]I. Senocak, W. Shyy. A pressure-based method for turbulent cavitating flow computations. J. of Compute Physics.2002,176:363-383.
    [176]Michael Dean Neaves, Jack R. Edwards. All-speed time-accurate underwater projectile calculations using a preconditioning algorithm. ASME,2006.
    [177]Z.M. Hua, H.S. Dou a, B.C. Khoo. Shape optimization of axisymmetric cavitators in supercavitating flows, using the NSGAⅡ algorithm. Applied Ocean Research,2011,33: 193-198.
    [178]傅慧萍,鲁传敬,吴磊.回转体空泡流特性研究.水动力学研究与进展A,2005,1:84-89.
    [179]袁绪龙,张宇文,杨武刚.高速超空化航行体典型空化器多相流CFD分析.弹箭与制导学报.2005,1:53-59.
    [180]王海斌,张嘉钟,魏英杰等.空泡形态与典型空化器参数关系的研究-小空泡数下的发展空泡形态.水动力学研究与进展A,2005,2:251-257.
    [181]褚学森,王志,颜开.自然空化流动数值模拟中参数取值影响的研究.船舶力学,2007,1:32-39.
    [182]张鹏,傅慧萍.跨超音速射弹的超空泡数值模拟.弹箭与制导学报,2009,5:166-169.
    [183]贾力平张嘉钟于开平等.空化器线形与超空泡减阻效果关系研究.船舶工程,2006,2:20-23.
    [184]Zhan-cheng Pan, Chuan-jing Lu, Ying Chen, Shi-liang Hu. Numerical study of periodically forced-pitching of a supercavitating vehicle.9th International Conference on Hydrodynamics Shanghai, China,2010:899-904
    [185]黄海龙,魏英杰,黄文虎等.重力场对通气超空泡影响的数值模拟研究.哈尔滨工业大学学报,2007,5:800-803.
    [186]胡勇,陈鑫,鲁传敬等.水下航行体尾喷燃气与通气超空泡相互作用的研究.水动力学研究与进展,2008,4:438-445.
    [187]党建军,陈伟华,刘建钊.超空泡水下航行器尾喷温度对空泡形态的影响.鱼雷技术,2010,4:299-302.
    [188]张博,张宇文,袁绪龙,张纪华.超空化流场中通气位置的CFD数值计算与研究.机床与液压,2009,10:225-228.
    [189]周景军,于开平,杨明.低弗鲁德数条件下通气超空泡泄气机理数值模拟.工程力学.2011,2:251-256.
    [190]Zhou J, Yu K, Min J, et al.. The comparative study of ventilated super cavity shape in water tunnel and infinite flow field. Journal of Hydrodynamics,2010,5:689-696.
    [191]Yu Kaiping, Zhou Jingjun, Min Jingxin, and Zhang Guang. A contribution to study on the lift of ventilated supercavitating vehicle with low Froude number. Journal of Fluids Engineering,2010,11:1-7.
    [192]张学伟,张亮,张嘉钟等.通气超空泡稳定性分析的一种数值算法.力学学报,2008,6:820-825.
    [193]张学伟,张亮,于开平等.通气超空泡形态控制方法的数值模拟.应用力学学报,2009,4:736-742.
    [194]Wang Zou, Kai-ping Yu, Xiao-hui Wan. Research on the gas-leakage rate of unsteady ventilated supercavity.9th International Conference on Hydrodynamics Shanghai, China,2010.
    [195]隗喜斌,王聪,荣吉利等.锥体空化器非定常超空泡形态分析.兵工学报,2007,7:863-866.
    [196]曹伟,魏英杰,韩万金等.超空泡航行体阻力系数的数值模拟研究.工程力学,2008,12:208-212.
    [197]李向宾,王国玉,张博,韩占忠.RNG k-ε模型在超空化流动计算中的应用评价.水动力学研究与进展,2008,2:181-188.
    [198]陈鑫.通气空泡流研究.上海交通大学博士学位论文,2006.
    [199]郭建红,鲁传敬,陈瑛,潘展程.基于输运方程类空化模型的通气空泡流数值模拟.力学季刊,2009,3:378-384.
    [200]R. F. Kunz, J. W. Lindau, M. L. Billet, et. al.. Multiphase CFD modeling of developed and supercavitating flows. RTO AVT/VKI special course:supercavitating flows, von Karman Institute for Fluid Dynamics,2001.
    [201]Qiao Qin, Charles C. S. Song, Roger E.A. Arndt. A virtual single-phase natural cavitation model and its application to cav2003 hydrofoil. Fifth international symposium on cavitation Japan,2003.
    [202]C. W. Hirt, B. D. Nichols. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics,1981,1:201-225.
    [203]J. P. Chollet, M. Lesieur. Parameterization of small scales of three dimensional isotropic turbulence utilizing spectral closures. Journal of the Atmospheric Sciences,1981,38: 2747-2757.
    [204]J. Smgaornsiky. General circulation experiments with the primitive equations. Monthly Weather Review,1963,3:99-164.
    [205]U. Schumann. Subgrid scale model for finite difference simulations of turbulent flows in plane channels and annuli. Journal of Computational Physics,1975,18:376-404.
    [206]P. Sagaut. Large eddy simulation for incompressible flows. Springer,2002.
    [207]S. Menon, P. K. Yeung, W. W. Kim. Effect of subgrid models on the computed interscale energy transfer in isotropic turbulence. Computers & Fluids,1996,2:165-180.
    [208]A. K. Singhal, M. M. Athavale, Huiying Li, et. al.. Mathematical basis and validation of the full cavitation model. Journal of Fluids Engineering,2002,3:617-624.
    [209]J. Sauer, G. H. Schnerr. Physical and numerical modeling of unsteady cavitation dynamics.4th International Conference on Multiphase Flow,2001.
    [210]S. V. Patankar, D. B. Spalding. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal for Heat and Mass Transfer,1972,15:1787-1806.
    [211]R. I. Issa. Solution of the implicitly discretised fluid flow equations by operator splitting. Journal of Computational Physics,1986,62:40-65.
    [212]B. Sirok, M. Dular, M. Novak, et.al.. The influence of cavitation structures on the erosion of a symmetrical hydrofoil in a cavitation tunnel. Journal of Mechanical Engineering,2002,7:112-120.
    [213]B. Stutz, J. L. Reboud. Measurements within unsteady cavitation. Experiments in Fluids, 2000,6:545-552.
    [214]K. R. Laberteaux, S. L. Ceccio. Cavities forming on models without spanwise variation. Journal of Fluid Mechanics,2001,1:1-41.
    [215]J. Friedrichs, G. Kosyna. Unsteady PIV flow field analysis of a centrifugal pump impeller under rotating cavitation. Proceedings of the Fifth International Symposium on Cavitation,2003.
    [216]R. Bachert, B. Stoffel, R. Schilling, et. al.. Three-dimensional unsteady cavitation effects on a single hydrofoil and in a radial pump measurements and numerical simulations. Proceedings of the Fifth International Symposium on Cavitation, Osaka, 2003.
    [217]张敏第,王国玉,董子桥等.绕水翼云状空化流动特性的研究.工程热物理学报,2008,1:71-74.
    [218]李向宾,刘淑艳,王国玉等.绕水翼空化流动速度分布的DPIV测量与分析.兵工学报,2009,3:315-322.
    [219]张博,王国玉,李向宾等.绕水翼片状空化流动结构的数值与实验研究.工程热物理学报,2008,11:1848-1851.
    [220]王国玉,顾玲燕,张博等.绕水翼初生游离型空化流动结构.工程热物理学报,2007,6:954-956.
    [221]G. Wang, M. Ostoja-Starzewski. Large eddy simulation of a sheet/cloud cavitation on a NACA0015 hydrofoil. Applied Mathematical Modelling,2007,31:417-447.
    [222]A. Kubota, H. Kato, H. Yamaguchi. A new modelling of cavitating flows:a numerical study of unsteady cavitation on a hydrofoil section. Journal of Fluid Mechanics,1992, 240:59-96.
    [223]S. P. Hutton. Studies of cavitation erosion and its relation to cavitating flow patterns. 11th International. Symposium on Cavitation,1986.
    [224]G. E. Reisman, Y. C. Wang, C. E. Observations of shock waves in cloud cavitation. Brennen. Journal of Fluid Mechanics,1998,355:255-283.
    [225]Yakushiji R., Yamaguchi H., Kawamura T., et al.. Investigation for unsteady cavitation and re-entrant jet on a foil section. Journal of the society of naval architects of Japan, 2001,2:61-74.
    [226]Kjeldsen M., Roger E. A., Effertz M.. Spectral characteristics of sheet/cloud cavitation. Journal of Fluids Engineering,2000,3,481-487.
    [227]Berntsen S., Kjeldsen M., Roger E. A.. Numerical modeling of sheet and tip vortex cavitation with fluent 5. Fourth International Symposium on Cavitation,2001.
    [228]Huuva T., Cure A., Bark G, et al.. Computations of unsteady cavitation flow on wing profiles using a volume fraction method and mass transfer models. Romania:National Authority for Science Research,2007.
    [229]Amromin E., Kopriva J., Roger E. A., et. al.. Hydrofoil drag reduction by partial cavitation. Journal of Fluids Engineering,2006,10:931-936.
    [230]A. D. Vasin. The principle of independence of the cavity sections expansion (Logvinovich's principle) as the basis for investigation on cavitation flows. RTO AVT/VKI special course:supercavitating flows, von Karman Institute for Fluid Dynamics,2001.
    [231]Savchenko Y. N., Semenenko V. N., Serebryakov V. V.. Experimental study of the supercavitation flows at subsonic flow velocityes. Doklady AN Ukrainy,1992,2:64-69.
    [232]Savchenko Yu. N., Vlasenko Yu. D., Semenenko V. N.. Experimental study of high-speed cavitation flow. Hydromechanics,1998,3:103-111
    [233]Yu. N. Savchenko. Control of supercavitation flow and stability of supercavitating motion of bodies. RTO AVT Lecture Series on "Supercavitating Flows",2001.
    [234]Logvinovich G. V.. Some problems of supercavitating flows. Proceedings of NATO-AGARD,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700