用户名: 密码: 验证码:
实现宽频响应的微小型压电式振动能量采集技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线传感器网络节点通常采用电池供电,而有限的电池能量制约了无线传感器网络生命周期。随着低功耗集成电路技术与电源管理技术的进步,可通过采集环境能量为传感器节点或其他便携式电子装置补给能量,从而延长它们的工作或生命周期,避免电池的频繁更换。利用压电效应原理采集环境中的振动能是环境能量采集技术中的一种主要方式,但振动能量采集、电能转移和存储的效率偏低以及谐振响应带宽较窄是影响压电式振动能量采集技术实用化的关键因素。
     面向无线传感器网络应用,本文针对微小型压电式振动能量采集技术展开研究。以悬臂梁结构的压电式振动能量采集装置为研究对象,根据压电效应原理,建立了压电振子振动能量转换的理论模型,以最大输出功率为目标,采用遗传算法,对不同外部环境振动激励下压电振子的材料选择与结构参数进行了优化分析;建立了悬臂梁压电振子的有限元模型,进行了有限元仿真分析;针对悬臂梁结构的单自由度压电振子谐振响应带宽过窄的问题,设计了一种由两个梯形悬臂梁结构压电振子和连接弹簧构成的二自由度压电振子,并对其结构参数进行了优化设计;最后根据压电振子工作时的输出电能特点,设计了一种具有同步电荷转移功能、输出电压阈值可调且自身功率消耗低的功率调理电路,并利用Pspice电路仿真软件对该电路进行了仿真与优化分析。
     仿真结果表明本文设计的压电式振动能量采集装置具有较宽的谐振响应带宽,易于与环境振源频率匹配,同时能高效地实现振动能采集、转移和存储。
Wireless sensor network (WSN) nodes are generally powered by batteries, and limited energy of battery is the key factor to influence the lifetime of WSN nodes. With the development of low-power integration circuit technology and power management technology, it is possible for using the energy scavenged directly from the ambient energy source to power this kind of device. Power supply by scavenging energy from environment can avoid changing batteries frequently and lengthen the lifetime of WSN. Harvesting vibration energy from environment is one of the fundamental modes for ambient energy harvesting technology. Increasing the bandwidth of resonance frequency and the efficiency of energy conversion and storage is very important for harvesting vibration energy from environment based on piezoelectric principle.
     In order to apply the energy harvesting to WSN, the mathematical expression of power output is deduced in this thesis, based on analyze of the static and dynamic model and the electrical equivalent model of the miniature-piezoelectric vibration energy generator. The selection of materials under different vibration condition and the effects of the structure parameters on performance are investigated based on the limitation of geometrical dimensions and admissible stress, the structural optimization design is developed with power output as the optimization objectives based on genetic algorithm. the finite element analysis tool is used to simulate the piezoelectric vibrator. In order to widen the frequency bandwidth of piezoelectric vibrator of generator, a two-degrees-of-freedom piezoelectric vibrator is designed, which can effectively increase the band of resonance frequency comparing with a single piezoelectric vibrator, and the parameters optimal method of the two-degrees-of-freedom piezoelectric vibrator is presented. Finally, according to the characteristic of the high output voltage of piezoelectric generator and the small eclectic current, the power conditioning circuit of piezoelectric transducer with low power consumption is designed which the output voltage can be regulated, and Pspiceis tool is used to simulate the power conditiong circuit, and the applicability of circuit is analyzed on basis of the simulation results.
     The simulation results demonstrate that the two-degrees-of-freedom piezoelectric vibrator can effectively increase the bandwidth of resonance frequency, and the higher conversion efficiency is obtained by the power conditioning circuit of piezoelectric transducer.
引文
[1]Wen J.Li,Zhiyu Wen,et al. A micromachined vibration-induced power generator for low power sensors of robotic systems[J]. World Automation Congress:8th International symposium on robotics.June 16-21.2000.Hawii.USA
    [2]P.Glynne-Jones,M.J.Tudor,S.P.Beeby and N.M.White,An electromagnetic vibration powered generator for intelligent sensor systems[J]. Sens. Actuators A 110.2004, pp. 344-349
    [3]Williams, C.B, and Yates, R.B. Analysis of a micro-electric generator for Microsystems[J]. Transducers 95/Eurosensors Ⅸ,1995
    [4]T. Sterken, K. Baert, R. Puers and S. Borghs, Power extraction from ambient vibration, Proceedings of SeSens (Workshop on Semiconductor Sensors) Veldhoven[J]. The Netherlands,2002, pp.680-683.
    [5]S. Roundy et al. Micro-electrostatic vibration-to electricity converters[J]. Proc. of IMECE,2002.4. M. Marzencki et al
    [6]G. Poulin, E. Sarraute, F. Costa. Generation of electrical energy for portable devices comparative study of an electromagnetic and a piezoelectric system[J]. Sens. Actuators A 116,2004, pp.461-471.
    [7]D.L. Churchill, M.J. Hamel, C.P. Townsend, S.W. Arms. Strain energy harvesting for wireless sensor networks[J]. Proceedings of SPIE Smart Structures and Materials Conference, vol.5005,2003, pp.319-327
    [8]S. Roundy and P.K. Wright. A piezoelectric vibration based generator for wireless electronics[J]. Proceedings of Smart Mater. Struct., vol.13,2004, pp.1131-1142
    [9]Roundy S, Wright P K and Rabaey,J. A study of low level vibrations as a power source for wireless sensor nodes[J]. Comput Commun, vol.26,2003 1131-44
    [10]Niu P, Chapman P, Riemer R and Zhang X. Evaluation of motions and actuation methods for biomechanical energy harvesting[C]. Proc. IEEE 35th Annual Power Electronics Specialists Conf. (Aachen),2004, pp 2100-6
    [11]Thad Starner. Human Powered Wearable Computing[J]. IBM SYSTEMS JOURNAL,1996,35(3&4):618-629
    [12]Umeda M,Nakamura K,Ueha S.Analysis of the transformation of mechanical impact energy to electric energy using piezoelectric vibrator[J].JPN J Appl Phys Part 1, Regul Rap Short Note Rev Rap.1996,35(5):3267-3273
    [13]Shenck N.A Demonstration of Useful Electric Energy Generation from Piezoceramics in a Shoe,a MS Thesis[D].1999
    [14]Roundy S,P W,Rabaey J.A study of low lever vibrations as a power source for wireless sensor nodes[J].Computer Communications.2003,26:1131-1144
    [15]Y.B.Jeon,R.Sood,J.H.Jeong and S.G.Kim. MEMS power generator with transverse mode thin film pzt[J]. Sensors Actuators A 2005,122 16-22
    [16]Lal A,Duggirala R,Li H.Pervasive power:A radioisotope-powered piezoelectric generator[J].IEEE Pervasive Computing.2005,4:53-61
    [17]Elvin.N.G, Elvin.A.A, Spector.M. A self-powered mechanical strain energy sensor[J]. Smart Materials & Structures.2001,10:293-299
    [18]Wenli Zhou, Wei-Hsin Liao, Wen J Li. Analysis and design of a self-powered piezoelectric micro-accelerometer[C]. Proceedings of SPIE on Smart Structures and Materials,2005,5763:233-240
    [19]程光明,庞建志,唐可洪,杨志刚,曾平,阚君武.压电陶瓷发电能力测试系统的研制[J].吉林大学学报(工学版),2007,37(2):367-371
    [20]阚君武,唐可洪,王淑云,杨志刚,贾杰,曾平.压电悬臂梁发电装置的建模与仿真分析[J].光学精密工程,2008,Vol,16 No.1
    [21]廖海洋,温志渝,温中泉,贺学锋,刘海涛.压电式双振子微型发电机得应用研究[J].仪器仪表学报,2008,29(4)
    [22]伍晓明,方华军,林建辉,任天令,刘理天.用于振动能量收集的MEMS压电悬臂梁[J].功能材料与器件学报,2008,14(2):1007-4252
    [23]Ng T.H and Liao W.H. Feasibility study of a self-powered piezoelectric sensor[J]. Proc. Smart Structures and Materials Conf.; Proc. SPIE 2004,5389377-88
    [24]Richards C D, Anderson M J, Bahr D F and Richards R F. Efficiency of energy conversion for devices containing a piezoelectric component[J]. Micromech and Microeng,2004, Vol,14:717-721
    [25]Cho J, Anderson M, Richards R, Bahr D and Richards C. Optimization of electromechanical coupling for a thin-film PZT membrane[J]. Micromech and Microeng,2005, Vol,16:215-219
    [26]Roundy, S. Improving Power Output for Vibration-Based Energy Scavengers[J]. IEEE Pervasive Computing,2005, Vol,4, pp.28-36
    [27]Wu W J, Chen Y Y, Lee B S, He J J and Peng Y T. Tunable resonant frequency power harvesting devices[J]. Proc. Smart Structures and Materials Conf, Proc. SPIE 2006, 6169 61690A
    [28]G. Ottman, H. Hofmann, and G. Lesieutre. Optimized piezoelectric energy harvesting circuit using stepdown converter in discontinuous conduction mode[J]. IEEE Trans. on Power Electronics.2003
    [29]Lefeuvre E, Badel A, Richard C and Guyomar D. Piezoelectric energy harvesting device optimization by synchronous electric charge extraction[J]. Intell. Mater. Syst. Struct. 2005,Vol, 6:43-47
    [30]Lal A,Duggirala R,Li H.Pervasive power:A radioisotope-powered piezoelectric generator[J].IEEE Pervasive Computing.2005,4:53-61
    [31]Lefeuvre E, Adrien B, Claude R. A comparison between several vibration-powered piezoelectricgenerators for standalone systems[J]. Sensorsand Actuators A,2006 Vol,15:65-76
    [32]Y.C.Shu, I.C.Lien, W.J.Wu. An improved analysis of the SSHI interface in piezoelectric energy harvesting[J]. Smart. Mater. Struct.2007
    [33]JEON Y B,SOOD R,JEONG J H,er al. MEMS power generator with transverse mode thin film PZT [J]. Sensors and Actuators,2005,A(122):16-22
    [34]Novel MEMS power generator with integrated thermoelectric and vibrational devices. Sato, N. Ishii, H. Urano, M. Sakata, T. Terada, J. Morimura, et al.Tokyo,Japan,2005
    [35]Robert B. MacCurdy, R. B., Reissman, T. and Garcia, E. Energy Management of Multi-component Power Harvesting Systems [J]. Smart Structures and Materials 2008
    [36]Qing-Ming Wang, L Eric Cross. Constitutive equations of symmetrical triple layer piezoelectric benders[J]. IEEE Transactions on ultrasonics ferroelegtrics and frequency contol,1999,46(6):1343-1351
    [37]Steven R.Anton and Henry A.Sodano. A review of power harvesting using piezoelectric materials(2003-2006) [J]. Smart Materials and structures,2007,Vol,16
    [38]张子明,杜成斌.结构动力学[M].北京:清华大学出版社,2008.60-75
    [39]袁江波,谢涛,陈维山,肖娜.悬臂梁压电发电装置的实验研究[J].振动与冲击,Vol.28 No.7 2009
    [40]邓冠前,陶利民.基于压电陶瓷的振动能量捕获关键技术研究:[硕士学位论]. 长沙:国防科技大学,2008
    [41]M. Ericka, D. Vasic, F. Costa and G. Poulain. Predictive energy harvesting from mechanical vibration using a circular piezoelectric membrane[J]. Proc. IEEE Ultrason. Symp.2005:946-949.
    [42]Shad Boundy, Paul K Wright, Jan Rabaey. A Study of Low Level Vibrations as Power Source for Wireless Sensor Nedes[J]. Computer Communications. 2003(26):1131-1144
    [43]Glynne-Jones P, Tudor MJ, Beeby SP, White NM.An electromagnetic, vibration-powered generator for intelligent sensor systems[J]. Sensors and Actuators A,2004,110:334-349
    [44]MITCHESON P D,MIAO P,STARK B H,et al..MEMS electrostatic micropower generator for low frequency operation[J]. Sensors and Actuators A,2004, 115:523-529
    [45]张福学,王丽坤.现代压电学[M].北京:科学出版社,2002
    [46]G. W. Taylor, J. R. Bums and S. M. Kammann. The energy harvesting eel: a small subsurface ocean/river power generator[J]. IEEE Journal of Oceanic Engineering,2001, VOl.26
    [47]秦世伦.材料力学[M].成都:四川大学出版社,2008
    [48]Jing Quanliu. A MEMS-based piezoelectric power generator array for vibration energy harvesting[J]. Microelectronics Journal,2008, vOl.29:802-806
    [49]H. W. Kim, A. Batra, S. Priya,1(. Uchino, D. Markley,R. E. Newnham and H. Hofmann. Energy harvesting using a piezoelectric cymbal transducer in dynamic environment[J]. Jim. J. Appl. Phys.,2004, VOl.43:6178-6183
    [50]M. Ericka, D. Vasic, F. Costa and G. Poulain. Predictive energy harvesting from mechanical vibration using a circular piezoelectric membrane[J]. Proc. IEEE Ultrason. Symp.,2005:946-949

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700