用户名: 密码: 验证码:
钛酸钡基无铅压电复合陶瓷性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛酸钡(BaTiO_3)是一种钙钛矿结构压电材料,其居里温度为120℃,具有较高的压电常数。针对无铅压电陶瓷的发展现状,本论文将对钛酸钡基无铅压电陶瓷进行研究。
     通过建立基体--颗粒物理模型讨论应力对居里温度和压电系数的影响。讨论了存在内应力的情况下,BaTiO_3--ZrO_2复合陶瓷材料的居里温度和压电系数随着ZrO_2体积百分比的变化。
     采用溶胶--凝胶法合成了粒径细小的ZnO-B_2O_3-SiO_2(ZBS)玻璃粉,通过添加ZBS玻璃,实现了陶瓷在1100℃低温下致密烧结。研究了玻璃添加量对陶瓷密度的影响。分析了液相烧结时,用不同颗粒尺寸的BaTiO_3初始粉末制备的陶瓷的密度、相结构、微观形貌和介电性能。通过掺杂MnCO_3,提高了陶瓷的密度,降低了介电损耗,得到较好压电性能的BaTiO_3陶瓷。
     利用Pechini法成功合成了1mol%Y_2O_3--ZrO_2纳米粉,并制备了BaTiO_3--ZrO_2复合陶瓷。研究了烧结温度对陶瓷密度、物相和介电性能的影响。通过在BaTiO_3陶瓷中添加ZrO_2,实现了BaTiO_3陶瓷居里温度的提高。烧结温度为1050℃时,BaTiO_3--10vol%ZrO_2复合陶瓷的介电常数最高,居里温度提高到143℃。通过Raman光谱证明内应力是使居里温度提高的原因,随着ZrO_2含量的增加,居里温度向高温方向移动。
     分别用固相法和液相法制备Bi、Cu共掺杂的BaTiO_3陶瓷。研究了Bi和Cu的掺杂量对固相法制备的(Ba_(1-2x)Bi_(2x))(CuxTi_(1-x))O_3陶瓷的微观结构、形貌、介电和压电性能的影响。研究分析了溶胶-凝胶自燃烧法制备(Ba_(1-2x)Bi_(2x))(CuxTi_(1-x))O_3粉体的具体工艺条件。研究了烧结工艺对液相法制备的(Ba_(1-2x)Bi_(2x))(CuxTi_(1-x))O_3陶瓷的微观形貌、物相和介电压电性能的影响。在T1=1300℃,T2=1150℃保温10h,x=0.005样品的居里温度为140℃,压电常数d_(33)=100pC/N,d_(31)=-18.44pC/N,K_p=17.62%;x=0.01样品的居里温度为150℃,压电常数d_(33)=80pC/N,d_(31)=-9.88pC/N,K_p=13.88%。并且压电系数d_(31)和机电耦合系数K_p的温度稳定性较好。最后,制备并研究了(Ba_(1-2x)Bi_(2x))(CuxTi_(1-x))O_3--ZrO_2复合陶瓷。
Barium titanate (BaTiO3) as a kind of perovskite type dielectric materials, has high dielectric constant. The Curie temperature of BaTiO3is120℃. According to the development station of lead-free piezoelectric ceramics, this paper will ascertain the study of the BaTiO3ceramics.
     We build up a matrix-particle theoretical model to analyze that the internal stress affects the Curie temperature and piezoelectric coefficient. The Curie temperature and piezoelectric coefficient of BaTiO3--ZrO2ceramic was investigated as a function of volume percentage of ZrO3.
     ZnO-B2O3-SiO2(ZBS) glass powder with small grain size was synthesized by a sol-gel method. Low temperature sintering at1100℃of high density ceramic was realized through ZBS glass powder adding. The influence of density with amount of glass powder was investigated. In liquid sintering, we study the density, crystal lattice, microstructure and dielectric properties of ceramic prepared using different particle size of raw powders. The ceramic with good piezoelectric property was obtained by adding MnCO3, which increase density and reduce the dielectric loss of ceramic.
     lmol%Y2O3--ZrO3nanopowder was synthesized by a Pechini method, and BaTiO3--ZrO2composite ceramic was prepared. The effects of density, phase and dielectric properties of ceramic with sintering temperature was researched. The Curie temperature of BaTiO3ceramic is increased by adding ZrO2. BaTiO3--10vol%ZrO2composite ceramic has the highest dielectric constant and a Curie temperature (Tc=143℃) at sintering temperature of1050℃. The internal stress is the reason for the increase of the Curie temperature by Raman spectroscopy. With the increase of ZrO2content, the Curie temperature moves to high temperature.
     Bi and Cu co-doped BaTiO3ceramics were prepared through solid-state reaction and liquid method respectively. The influence of microstructure, morphology, dielectric and piezoelectric properties of (Ba1-2xBi2X)(CuxTi1-x)O3ceramic with the amount of Bi and Cu doping was investigated. The process conditions has been analyzed to prepare (Ba1-2xBi2X)(CuxTi1-x)O3by self-combustion method. The effects of sintering condition on the microstructure, phase, dielectric and piezoelectric properties of (Ba1-2XBi2X)(CuxTi1-x)O3ceramics was investigated. The x=0.005sample has the Curie temperature (Tc=140℃), piezoelectric constant d33=100pC/N, d31=-18.44pC/N, and Kp=17.62%at temperature of Ti=1300℃, T2=1150℃. While the x=0.01sample has the Curie temperature (Tc=150℃), piezoelectric constant d33=80pC/N,d31=-9.88pC/N and Kp=13.88%at same condition. In addition, the piezoelectric constant d31and electromechanical coupling facor Kp have a good temperature stable property. Finally,(Ba1-2xBi2x)(CuxTi1-x)O3--ZrO2composite ceramics have prepared and investigated.
引文
[1]孟希敏,刘心宇,周昌荣,无铅压电陶瓷的研究现状与发展趋势,电工材料,2006,3:40-44
    [2]B. Jaffe, R. S. Roth, S. Marzullo, Piezoelectric Properties of Lead Zirconate Lead Titanate Solid Solution Ceramics, J. Appl. Phys.,1954,25(6):809-810
    [3]刘梅冬,许毓春,压电铁电材料与器件,武汉:华中理工大学出版社,1990
    [4]肖定全,万征,环境协调型铁电压电陶瓷,压电与声光,1999,21(5):363-366
    [5]肖定全,压电、热释电与铁电材料,天津:天津大学出版社,2000
    [6]电子信息材料咨询研究组,电子信息材料咨询报告,北京:电子工业出版社,2000
    [7]赁敦敏,郑荞估,伍晓春等,无铅压电陶瓷研究进展,四川师范大学学报(自然科学版),2010,33(1):117-131
    [8]G. A. Smolenskii, A. I. Agranovskaja, Dielectric polarization of complicated composites, Sov. Phys. Solid State,1960,1:1429-1432
    [9]T. Takenaka, K. Sakata, Dielectric, piezoelectric and ferroelectric properties of (BiNa)1/2TiO3-based ceramics, Ferroelectctr.,1989,95(1):153-156
    [10]T. Takenaka, K. Sakata, K. Takegahara, Ferroelectric and piezoelectric properties of (Bi1/2Na1/2)TiO3-based ceramics, Ferroelectr.,1990,106(1-4):375-380
    [11]T. Takenaka, Piezoelectric properties of some lead-free ferroelectric ceramics, Ferroelectr.,1999,230(1):87-98
    [12]王震平,李国祥,无铅压电陶瓷材料的研究现状,内蒙古石油化工,2008,22:8-9
    [13]黄平,徐廷献,孙清池,铋层状化合物Sr0.3Ba0.7Bi4-xLaxTi4O15陶瓷材料的介电性能,硅酸盐学报,2004,32(7):808-811
    [14]X. Duan, W. Luo, W. Wu, et al., Dielectric response of ferroelectric relaxors, Solid State Communication,2000,114(11):597-600
    [15]S. Kumar, V. S. Raju, T. R. N. Kutty, Investigations on the chemical states of sintered barium titanate by X-ray photoelectron spectroscopy, Applied Surface Science,2003,206(1-4):250-261
    [16]T. J. Bastow, H. J. Whitfield, Ba and Ti NMR:Electric Field Gradients in Non-cubic Phases of BaTiO3, Solid State Communications,2001,117(8):483-488
    [17]Y. Chuanren, Z. Dayu, H. Chunhua, et al., Effects of sintering condition on microstructure and microwave dielectric properties of Ba(Mg1/3Ta2/3)O3Ceramics, The First China International Conference on High—performance Ceramics, Beijing,1998,132-138
    [18]郑煌,电子陶瓷用钛酸盐,杭州化工,1993,3:3-8
    [19]W. J. Merz, The electric and optical behavior of BaTiO3single-domain crystals, Phys. Rev.,1949,76(8):1221-1225
    [20]K. Kishi, Y. Mizuno, H. Chazono, Base-metal electrode-multilayer ceramic capacitors:past, present and future perspectives, Jan. J. App. Phys.,2003,42:1-15
    [21]A. Halliyal, U. Kumar, R. E. Newnham, et al., Dielectric and Ferroelectric Properties of Ceramics in the Pb(Zn1/3Nb2/3)O3-BaTiO3-PbTiO3System, J. Am. Ceram. Soc.,1987,70(2):119-124
    [22]M. Zenkner, L. Jager, R. Koferstein, et al., Synthesis and characterization of nanoscaled Ba(Ti1-x-ySnxGey)O3powders and corresponding ceramics, Solid State Sci.,2008,10:1556-1562
    [23]R. Jean, B Cedric, S. Annie, Lead-free ferroelectric relaxor ceramics in the BaTiO3-BaZrO3-CaTiO3system, J. Mater. Chem,1999,9(7):1609-1613
    [24]W. J. Merz, The Effect of hydrostatic pressure on the Curie point of barium titanate single crystals, Phys. Rev.,1950,78(1):52-54
    [25]李标荣,王筱珍,张绪礼,无机电介质,武汉:华中理工大学出版社,1995,73-78
    [26]F. Baeten, B. Derks, W. Coppens, et al., Barium titanate characterization by differential scanning calorimetry, J. Euro. Ceram. Soc.,2006,26(4-5):589-592
    [27]S. Sato, Y. Fujikawa, T. Nomura, Rare earth doping on temperature-capacitance characteristics for MLCCs with Ni electrode, Am. Ceram. Soc. Bull.,2000,79:155-168
    [28]王升,钛酸钡基抗还原介质材料的组成、改性机理及应用研究:[博士学位论文],成都:电子科技大学,2005
    [29]G. Yao, X. Wang, Y. Yang, et al., Effects of Bi2O3and Yb2O3on the Curie temperature in BaTiO3-Based Ceramics, J. Am. Ceram. Soc.,2010,93(6):1697-1701
    [29]J. H. Hwang, S. K. Choi, Y. H. Han, Dielectric properties of BaTiO3codoped with Er2O3and MgO, Jpn. J. Appl. Phy.,2001,40(8):4952-4954
    [30]Y. H. Song, J. H. Hwang, Y. H. Han, Effects of Y2O3on temperature stability of acceptor-doped BaTiO3, Jpn. J. Appl. Phys.,2005,44(3):1310-1313
    [31]林振汉,林钢,吴亮等,氧化锆系的相结构和转变,稀有金属,2003,27(1):49-52
    [32]H. G. Scott, Phase relationships in the zirconia-yittriasystem, J. Mater. Sci.,1975,10(9):1527-1535
    [33]H. Looyenga, Dielectric constants of heterogeneous mixtures, Physics,1965,31(3):401-406
    [34]P. L. Wise, I. M. Reaney, W. E. Lee, et al., Tunability of if in perovskites and related compounds, J. Mater. Res.,2002,17(8):2033-2040
    [35]S. Y. Cho, I. T. Kim, K. S. Hong, Microwave dieleetric properties and applications of rare-earth aluminates, J. Mater. Res.,1999,14(1):114-119
    [36]M. N. Rahaman, J. R. Gross, R. E. Dutton, et al., Phase stability, sintering, and thermal conductivity of plasma-sprayed ZrO2-Gd2O3compositions for potential thermal barrier coating applications, Acta Materialia,2006,54:1615-1621
    [37]K. Hiraga, H.Yasuda, Y. Sakka, The tensile creep behavior of superplastic etragonal zirconia doped with small amount of SiO2, Mater. Sci. Eng.,1997, A234-236:1026-1029
    [38]E. Sato, H. Morioka, K. Kuribayashi, et al., Effect of small amount of alumina doping on superplastic behavior of tetragonal zirconia, J. Mater. Sci.,1999,34:4511-4518
    [39]H. Liu, H. R. Salimi Jazi, M. Bussmann, et al., Experiments and modeling of rapid solidification of plasma-sprayed yttria-stabilized zirconia, Acta Materialia,2009,57(20):6013-6021
    [40]黄水根,李麟,O. V. D. Biest等,ZrO2-YO1.5-CeO2体系的相图估算,上海大学报(自然科学版),2000,6(4):303-306
    [41]F. Capel, C. Moure, P. Durana, et al., Structure-electrical properties relationships in TiO2-doped stabilized tetragonal zirconia ceramics, Ceram. Inter.,1999,25(7):639-648
    [42]M. Valant, D. Suvorov, R. C. Pullar, et al., A mechanism for low-temperature sintering, J. Euro. Ceram. Soc.,2006,26(13):2777-2783
    [43]Y. Lee, W. Lu, S. Wang, et al., Effect of SiO2addition on the dielectric properties and microstructure of BaTiO3-based ceramics in reducing sintering, Journal of Minerals, Metallurgy and Materials,2009,16(1):124-127
    [44]C. Yang, Effect of CuO-BaO mixture content on the grain growth of BaTiO3, J. Mater. Sci.:Mater. Electron.,1998,9(2):167-172
    [45]H. I. Hsiang, C. S. Hsi, C. C. Huang, et al., Low temperature sintering and dielectric properties of BaTiO3with glass addition, Mater. Chem. Phy.,2009,113(2-3):658-663
    [46]唐斌,张树人,袁颖等,钛酸钡陶瓷中居里点移动规律与机理研究进展,真空科学与技术学报,2007,28(2):120-125
    [47]D. Hennings, G. Rosenstein, Temperature-stable dielectrics based on chemically inhomogeneous BaTiO3, J. Am. Ceram. Soc.,1984,67(4):249-254
    [48]卢旭晨,徐廷献,溶胶--凝胶法及其应用,陶瓷学报,1998,19(1):53-57
    [49]Y. Kim, R. Towler, A. Wren, et al., Fabrication of spherical CaO-SrO-ZnO-SiO2particles by sol-gel processing, J. Mater. Sci:Mater Med,2009,20(11):2267-2273
    [50]Davies, J. T. Rideal, K. Eric, Interfacial Phenomena, New York:Academic Press,1961
    [51]M. P. Pechini, Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor, US Patent,3330697,1967-7-11
    [52]J. Zhang, L. Gao, Synthesis and characterization of nanocrystalline tin oxide by sol-gel method, J. Solid. State. Chem.,2004,177(4-5):1425-1430
    [53]孙慷,张福学,压电学(上册),北京:国防工业出版社,1984,85-115
    [54]梁力平,赖永雄,李基森,片式叠层陶瓷电容器MLCC的制造与材料,广东:暨南大学出版社,2008,168-178
    [55]徐廷献,电子陶瓷材料,天津:天津大学出版社,1993
    [56]J. R. Ferra, K. Nakamoto, Intriductory Raman Spectroscopy, New York: Academic Press,1994
    [57]叶永权,匡同春,雷淑梅等,金刚石(膜)的拉曼光谱表征技术进展,金刚石与磨料磨具工程,2007,161(5):17-21
    [58]M. J. Haun, E. Furman, L. E. Cross, Thermodynamic theory of the lead zirconate-titanate solid solution system, part1:phenomenology, Ferroelectrics,1989,99(1):13-25
    [59]K. Oikawa, G. W. Qin, Effects of grain boundary on dielectric properties in fine-grained BaTiO3ceramics, Appl. Phys. Lett.,2001,79:644-646
    [60]A. J. Bell, Phenomenologically derived electric field-temperature phase diagrams and piezoelectric coefficient for single crystal barium titanate under fields along different axes, J. Appl. Phys.,2001,89(7):3907-3914
    [61]D. Matthew, S. Nava, Rotator and extender ferroelectrics:Importance of the shear coefficient to the piezoelectric properties of domain-engineered crystals and ceramics, J. Appl. Phys.,2007,101:054112-1-054112-10
    [62]M. Taya, S. Hayashi, A. S. Kobayashi et al., Toughening of a particulate-reinforced ceramic-matrix composite by thermal residual stress, J. Am. Ceram. Soc.,1990,73(5):1382-1391
    [63]J. W. Adams, H. H. Nakamura, Thermai expansion behavior of single crystal zirconia, J. Am. Ceram. Soc.,1985,68(9):C228-C231
    [64]D. Taylor, Thermal Expansion Data VIII:complex Oxides, ABO3, the perovskites, British Ceramic Transactions and Journal,1985,84(6):181-188
    [65]E. Hong, R. Smith, S. V. Krishnaswamy, et al., Residual stress development in Pb(Zr,Ti)O3/ZrO2/SiO2stacks for piezoelectric microactuators, Thin Solid Films,2006,510(1-2):213-221
    [66]J. Eichler, U. Eisele, J. Rodel, Mechnical properties of monoclinic zirconia, J. Am. Ceram. Soc.,2004,87(7):1401-1403
    [67]T. R. Armstrong, L. E. Morgens, A. K. Maurice, et al, Effects of Zirconia on Microstructure and Dielectric Properties of Barium Titanate Ceramics, J. Am. Ceram. Soc.,1989,72(4):605-611
    [68]雄兆贤,无机材料研究方法,厦门:厦门大学出版社,2000
    [69]C. Hu, An Analysis of The Capillary Force and Optimum Liquid Volume in Transient Liquid Phase Sintering Process, Mater. Sci. Eng. A,1995,190(1-2): 125-129
    [70]范景莲,黄伯云,曲选辉等,液相烧结高比重合金早期固相烧结阶段的致密化机理,粉末冶金材料科学与工程,1998,3(2):87-91
    [71]K. Tbeshfar, G. A. Chadwick, Dimensional Changes During Liquid Phase Sintering of Fe-Cu Compacts, Powder Metallurgy,1984,27(1):19-24
    [72]D. Saha, A. Sen, H. S. Maiti, Low temperature liquid phase sintering of lead magnesium niobate, Ceram. Inter.,1999,25(2):145-151
    [73]B. Balzer, M. Hagemeister, P. Kocher, et al., Mechanical strength and microstructure of Zinc oxide varistor ceramics, J. Am. Ceram. Soc.,2004,87(10):1932-1938
    [74]T. A. Jain, K. Z. Fung, S. Hsiao, et al., Effects of BaO-SiO2glass particle size on the microstructures and dielectric properties of Mn-doped Ba(Ti, Zr)O3ceramics, J. Eur. Ceram. Soc.,2010,30(6):1469-1476
    [75]X. Huarui, G. Lian, Hydrothermal synthesis of high-purity BaTiO3powders: control of powder phase and size, sintering density, and dielectric properties, Mater. Lett,2004,58(10):1582-1586
    [76]N. Wada, H. Tanaka, Y. Hamaji, et al., Microstructures and Dielectric Properties of Fine-Grained BaTiO3Ceramics, Jpn. J. Appl. Phys.,1996,35,5141-5144
    [77]曲远方,功能陶瓷的应用,北京:化学工业出版社,2003,184-186
    [78]T. R. Armstrong, R.C. Buchanan, Influence of core-shell grains of the internal stress state and permittivity response of zirconia-modified barium titanate, J. Am. Ceram. Soc.,1990,73(5):1268-1273
    [79]张林,沈毅,李锋锋等,高温熔融法制备ZnO-B2O3-SiO2玻璃,河北理工大学学报(自然科学版),2010,32(3):71-74
    [80]H. D. Kim, Y. J. Park, B. D. Han, et al., Fabrication of dense bulk nano-Si3N4ceramics without secondary crystalline phase, Scripta Materialia,2006,54(4):615-619
    [81]X. H. Wang, X. Y. Deng, H. L. Bai, et al., Two-Step Sintering of Ceramics with Constant Grain-Size, Ⅱ:BaTiO3and Ni-Cu-Zn Ferrite, J. Am. Ceram. Soc.,2006,89(2):438-443
    [82]B. A. James, Liquid Phase Sintering in Ferrous Powder Metallurgy, Powder Metallurgy,1985,28(3):121-130
    [83]Z. G. Gai, J. F. Wang, W. B. Sun, et al., Ultrahigh Temperature Bi3Ti0.96Sc0.02Ta0.02NbO9-based Piezoelectric Ceramics, Journal of Applied Physics,2008,104(2):4106-4109
    [84]X. Y. Huang, Z. G. Chen, X. L. Zhen, et al., Dielectric and Piezoelectric Properties of Cai-x(Li, Ce)x/2Bi4Ti4O15Ceramics, Journal of Rare Metals. Supple.,2007,25(1):158-162
    [85]F. Chen-Tsu, W. Jenn-Ming, L. Ai-Kang, Microstructure and mechanical properties of Cr3C2particulate reinforced Al2O3matrix composites, J. Mater. Sci.,1994,29(10):2671-2677
    [86]钟维烈,铁电体物理学,北京:北京科学出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700