用户名: 密码: 验证码:
KNN和BT高性能无铅压电陶瓷的制备技术及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了(K,Na)NbO3基无铅压电陶瓷材料烧结温度区间窄的机理,通过两段式烧结和采用纳米粉体低温烧结成功解决这一难题。以纳米粉体为原料,成功制备出(K,Na)NbO3基细晶无铅压电陶瓷,解决了该类陶瓷的细晶化难题。此外,本文还探讨了BaTiO3陶瓷压电性能大幅提高的机理,成功制备出高性能BaTiO3无铅压电陶瓷。
     KNbO3-NaNbO3相图的分析表明,(K, Na)NbO3基陶瓷在烧结过程中易发生分凝现象,从而产生液相并出现成分的分凝。液相的出现会导致(K,Na)NbO3基陶瓷显微结构的不均匀,而成分分凝的发生使烧结后的(K,Na)NbO3基陶瓷的成分与原始配方偏离,从而导致性能劣化。不同温度烧结的(K, Na)NbO3基陶瓷的结构与性能变化以及相应典型陶瓷的TEM结构和能谱分析验证了上述机理。
     实验表明,两段式烧结既能有效抑制碱金属元素的挥发,又能有效抑制分凝现象的发生,从而能在较宽的温度区间内获得高性能的(K, Na)NbO3基无铅压电陶瓷。纳米粉体的低温烧结也能达到两段式烧结的效果。(K,Na)Nb03基纳米粉体既能在较低温度烧结高致密度陶瓷,又能通过抑制碱金属元素的挥发及避免分凝现象的发生来保持相结构稳定性,并且没有引入任何杂相,因而能在较宽的低温区间内获得高性能的(K, Na)NbO3基无铅压电陶瓷。
     以水基溶胶-凝胶法制备的K0.5Na0.5NbO3(?)内米粉体为原料,利用普通烧结法成功制备出晶粒为200-600nm的K0.5Na0.5NbO3细晶陶瓷,压电常数d33和机电耦合系数kp分别达148pC/N和38.9%。以水基溶胶-凝胶法制备的(Na0.52K0.44Li0.04)(Nb0.86Ta0.06Sb0.08)O3纳米粉体为原料,利用SPS成功制备出晶粒为200-400nm的(Na0.52K0.44Li0.04)(Nb0.86Ta0.06Sb0.08)O3细晶陶瓷,d33和kp分别达296pC/N和49.7%。
     BaTiO3陶瓷的压电性能存在晶粒尺寸效应。在0.6-12.8μm的晶粒尺寸范围内,2.4μm BaTiO3陶瓷具有最优性能,室温d33高达519pC/N。
In this thesis, thesegregation phenomenonas an important factor causing the narrowsintering temperature window for (K, Na)NbO_3-based ceramics was reported. It wasfound that two-step sintering and low temperature sintering could successfullyovercame the problem. Moreover, ultrafine-grained (K, Na)NbO_3-based ceramicswereprepared by using of nano-powders from water-based sol-gel method. In addition, thepiezoelectric properties ofBaTiO_3ceramics were grain size effect. Based on themechanism, high performance BaTiO_3ceramics could be obtained by controlling thegrain size properly.
     According to the analysis of KNbO_3-NaNbO_3phase diagram, the segregationphenomenon was easy to occur in the sintering process of (K, Na)NbO_3-based ceramics.It leaded to the appearance of liquid phase and compositionalinhomogeneity, resultingin nonuniform microstructuresand degraded electrical properties accordingly.Thecorresponding experimental results verified the above mechanism.
     Mechanism analysis and experimental results showed thattwo-stepsintering could effectively suppress the volatilization of alkali metal elements,and couldalso effectively inhibit the occurrence of segregation phenomenon. As aresult, two-step sintering was aneffective way to broaden the sinteringtemperature range of (K, Na)NbO_3-based ceramic, and high-performance (K,Na)NbO_3-based ceramicscould be prepared over a wide sinteringtemperaturerange. Low temperature sintering by using of nano-powder couldalso achieve the effect oftwo-step sintering. By using nano-powder, dense (K,Na)NbO_3-based ceramics could be obtained over a low and wide temperature range.Besides, low temperature sintering using nano-powder could also effectivelysuppress the volatilization of alkali metal elements, inhibit the occurrence ofsegregation phenomenon and hardly bring any impurity phases. Therefore,high-performance (K, Na)NbO_3-based ceramicscould be prepared over a wide andlow sintering temperaturerange.
     By using the nano-powder prepared from a water-based sol-gel method, theK_(0.5)Na_(0.5)NbO_3ultrafine-grained ceramic with the grain size of200-600nmweresuccessfully prepared by the conventional sintering. Its d33was148pC/N and k_pwas38.9%. Furthermore, by using the nano-powder prepared from awater-based sol-gel method, the(Na_(0.52)K_(0.44)Li_(0.04))(Nb_(0.86)Ta_(0.06)Sb_(0.08))O_3ultrafine-grained ceramic with the grainsize of200-400nmwere successfully prepared by the spark plasma sintering.Itsd33was296pC/N and kpwas49.7%.
     The results showed that thepiezoelectric properties of BaTiO_3ceramicswere highly grain sizedependent. In the grain size range of0.6-12.8μm, the2.4μmBaTiO_3ceramic exhibited the best performancewithd33of519pC/N.
引文
[1]许煜寰主编.铁电与压电材料.北京:科学出版社,1978.
    [2]陈纲,廖理几,郝伟.晶体物理学基础.北京:科学出版社,2007.
    [3]张福学主编.现代压电学(上册).北京:科学出版社,2002.
    [4]钟维烈.铁电体物理学.北京:科学出版社,1996.
    [5]王永龄.功能陶瓷性能与应用.北京:科学出版社,2003.
    [6]张福学主编.现代压电学(中册).北京:科学出版社,2002.
    [7]殷之文.电介质物理学(第二版).北京:科学出版社,2003.
    [8] Jaffe B, Cook W, Jaffe H. Piezoelectric ceramics. New York: Academic Press,1971.
    [9]曲远方.功能陶瓷材料.北京:化学工业出版社,2003.
    [10]金格瑞,鲍恩,乌尔曼.陶瓷导论.清华大学新型陶艺与精细工艺国家重点实验室,译.北京:高等教育出版社,2010.
    [11]王轲.铌酸钾钠基无铅压电陶瓷材料[博士学位论文].北京:清华大学材料科学与工程系,2010.
    [12] Li J Y, Rogan R C, Ustundag E, et al. Domain switching in polycrystallineferroelectric ceramics. Nat. Mater.,2005,4(10):776-781.
    [13] http://wenku.baidu.com/view/26678313f18583d049645957.html.
    [14]李远,秦自楷,周志刚.压电铁电材料的测量.北京:科学出版社,1984.
    [15]张沛霖,张仲渊.压电测量.国防工业出版社,1983.
    [16]田中哲郎主编.压电陶瓷材料.陈俊彦,王余军,译.北京:科学出版社,1982:
    [17]张福学主编.压电铁电应用285例.北京:国防工业出版社,1987.
    [18] Randeraat J V, SetteringtonRE. Piezoelectric Ceramics. California: Mullard Limited,1974.
    [19] Shrout T R, Zhang S J. Lead-free piezoelectric ceramics: Alternatives for PZT? J.Electroceram.,2007,19(1):113-126.
    [20] Haertling G H. Piezoelectric and Electrooptic Ceramics. New York: CeramicMaterials for Electronics,1986.
    [21] Saito Y, Takao H, Tani T, et al. Lead-free piezoceramics. Nature,2004,432(7013):84-87.
    [22] Jaffe H. Piezoelectric Ceramics. J. Am. Ceram. Soc.,1958,41(11):494-498.
    [23] Berlincourt D. Piezoelectric Crystals and Ceramics. California: Ultrasonic TransducerMaterials,1971.
    [24] Ravez J, Simon A. Non-stoichiometric perovskites derived from BaTiO3with aferroelectric relaxor behaviour. Phys. Status Solidi A,2000,178(2):793-797.
    [25] Farhi R, El Marssi M, Simon A, et al. A Raman and dielectric study of ferroelectricBa(Ti1-xZrx)O3ceramics. Eur. Phys. J. B.,1999,9(4):599-604.
    [26] Liu W F, Ren X B. Large Piezoelectric Effect in Pb-Free Ceramics. Phys. Rev. Lett.,2009,103(25):257602.
    [27] Takenaka T, Nagata H. Current status and prospects of lead-free piezoelectricceramics. J. Eur. Ceram. Soc.,2005,25(12):2693-2700.
    [28] Panda P K. Review: environmental friendly lead-free piezoelectric materials. J. Mater.Sci.,2009,44(19):5049-5062.
    [29] Roedel J, Jo W, Seifert K T P, et al. Perspective on the Development of Lead-freePiezoceramics. J. Am. Ceram. Soc.,2009,92(6):1153-1177.
    [30] Wada S, Takeda K, Muraishi T, et al. Preparation of [110] grain oriented bariumtitanate ceramics by templated grain growth method and their piezoelectric properties.Jpn. J. Appl. Phys. Part1-Regul. Pap. Bri. Commu.&Rev. Pap.,2007,46(10B):7039-7043.
    [31] Karaki T, Yan K, Adachi M. Barium titanate piezoelectric ceramics manufactured bytwo-step sintering. Jpn. J. Appl. Phys. Part1-Regul. Pap. Bri. Commu.&Rev. Pap.,2007,46(10B):7035-7038.
    [32] Takahashi H, Numamoto Y, Tani J, et al. Considerations for BaTiO3Ceramics withHigh Piezoelectric Properties Fabricated by Microwave Sintering Method. Jpn. J.Appl. Phys.,2008,47(11):8468-8471.
    [33] Shao S F, Zhang J L, Zhang Z, et al. High piezoelectric properties and domainconfiguration in BaTiO3ceramics obtained through the solid-state reaction route. J.Phys. D: Appl. Phys.,2008,41(12):125408.
    [34] Smolenskii G A, Isupov V A, Agranovskaya A I, et al. New ferroelectrics withcomplex composition. IV. Sov. Phys.-Solid StateSov. Phys.Solid State,1960,2(11):2982-2985.
    [35] Wang X X, Chan H L W, Choy C L. Piezoelectric and dielectric properties ofCeO2-added (Bi0.5Na0.5)0.94Ba0.06TiO3lead-free ceramics. Solid State Commun.,2003,125(7-8):395-399.
    [36] Li Y M, Chen W, Xu Q, et al. Piezoelectric and ferroelectric properties ofNa0.5Bi0.5TiO3-K0.5Bi0.5TiO3-BaTiO3piezoelectric ceramics. Mater. Lett.,2005,59(11):1361-1364.
    [37] Dai Y J, Pan J S, Zhang X W. Composition range of morphotropic phase boundary andelectrical properties of NBT-BT system. High-Performance Ceram. IV, Pts1-3,2007,336-338:206-209.
    [38] Li H D, Feng C D, Yao W L. Some effects of different additives on dielectric andpiezoelectric properties of (Bi1/2Na1/2)TiO3-BaTiO3morphotropic phase boundarycomposition. Mater. Lett.,2004,58(7-8):1194-1198.
    [39] Sasaki A, Chiba T, Mamiya Y, et al. Dielectric and piezoelectric properties of(Bi0.5Na0.5)TiO3-(Bi0.5K0.5)TiO3systems. Jpn. J. Appl. Phys. Part1-Regul. Pap. ShortNotes Rev. Pap.,1999,38(9B):5564-5567.
    [40] Nagata H, Yoshida M, Makiuchi Y, et al. Large piezoelectric constant and high Curietemperature of lead-free piezoelectric ceramic ternary system based on bismuthsodium titanate-bismuth potassium titanate-barium titanate near the morphotropicphase boundary. Jpn. J. Appl. Phys. Part1-Regul. Pap. Short Notes Rev. Pap.,2003,42(12):7401-7403.
    [41] Matthias B T, Remeika J P. Dielectric Properties of Sodium and Potassium Niobates.Phys. Rev.,1951,82(5):727-729.
    [42] Shirane G, Newnham R, Pepinsky R. Dielectric Properties and Phase Transitions ofNaNbO3and (Na,K)NbO3. Phys. Rev.,1954,96(3):581-588.
    [43] Shirane G, Danner H, Pavlovic A, et al. Phase Transitions in ferroelectric KNbO3.Phys. Rev.,1954,93(4):672-673.
    [44] Dai Y, Zhang X, Zhou G. Phase transitional behavior in K0.5Na0.5NbO3-LiTaO3ceramics. Appl. Phys. Lett.,2007,90(26):262903.
    [45] Akdogan E K, Kerman K, Abazari M, et al. Origin of high piezoelectric activity inferroelectric (K0.44Na0.52Li0.04)-(Nb0.84Ta0.1Sb0.06)O3ceramics. Appl. Phys. Lett.,2008,92(11):112908.
    [46] Egerton L, Dillon D M. Piezoelectric and Dielectric Properties of Ceramics in theSystem Potassium Sodium Niobate. J. Am. Ceram. Soc.,1959,42(9):438-442.
    [47] Guo Y P, Kakimoto K, Ohsato H. Phase transitional behavior and piezoelectricproperties of (Na0.5K0.5)NbO3-LiNbO3ceramics. Appl. Phys. Lett.,2004,85(18):4121-4123.
    [48] Kakimoto K, Akao K, Guo Y P, et al. Raman scattering study of piezoelectric(Na0.5K0.5)NbO3-LiNbO3ceramics. Jpn. J. Appl. Phys. Part1-Regul. Pap. Bri.Commu.&Rev. Pap.,2005,44(9B):7064-7067.
    [49] Klein N, Hollenstein E, Damjanovic D, et al. A study of the phase diagram of(K,Na,Li)NbO3determined by dielectric and piezoelectric measurements, and Ramanspectroscopy. J. Appl. Phys.,2007,102(1):014112.
    [50] Wang K, Li J F. Low-Temperature Sintering of Li-Modified (K, Na)NbO3Lead-FreeCeramics: Sintering Behavior, Microstructure, and Electrical Properties. J. Am. Ceram.Soc.,2010,93(4):1101-1107.
    [51] Hyun-Cheol S, Kyung-Hoon C, Hwi-Yeol P, et al. Microstructure and piezoelectricproperties of (1-x)(Na0.5K0.5)NbO3-xLiNbO3ceramics. J. Am. Ceram. Soc.,2007,90(6):1812-1816.
    [52] Matsubara M, Yamaguchi T, Kikuta K, et al. Effect of Li substitution on thepiezoelectric properties of potassium sodium niobate ceramics. Jpn. J. Appl. Phys.Part1-Regul. Pap. Bri. Commu.&Rev. Pap.,2005,44(8):6136-6142.
    [53] Higashide K, Kakimoto K I, Ohsato H. Temperature dependence on the piezoelectricproperty of (1-x)(Na0.5K0.5)NbO3-xLiNbO3ceramics. J. Eur. Ceram. Soc.,2007,27(13-15):4107-4110.
    [54] Matsubara M, Yamaguchi T, Sakamoto W, et al. Processing and piezoelectricproperties of lead-free (K,Na)(Nb,Ta) O3ceramics. J. Am. Ceram. Soc.,2005,88(5):1190-1196.
    [55] Matsubara M, Kikuta K, Hirano S. Piezoelectric properties of(K0.5Na0.5)(Nb1-xTax)O3-K5.4CuTa10O29ceramics. J. Appl. Phys.,2005,97(11):114105.
    [56] Guo Y P, Kakimoto K, Ohsato H.(Na0.5K0.5)NbO3-LiTaO3lead-free piezoelectricceramics. Mater. Lett.,2005,59(2-3):241-244.
    [57] Hollenstein E, Davis M, Damjanovic D, et al. Piezoelectric properties of Li-andTa-modified (K0.5Na0.5)NbO3ceramics. Appl. Phys. Lett.,2005,87(18):182905.
    [58] Saito Y, Takao H. High performance lead-free piezoelectric ceramics in the(K,Na)NbO3-LiTaO3solid solution system. Ferroelectr.,2006,338:1433-1448.
    [59] Kim M-S, Jeong S-J, Song J-S. Microstructures and piezoelectric properties in theLi2O-Excess0.95(Na0.5K0.5)NbO3-0.05LiTaO3ceramics. J. Am. Ceram. Soc.,2007,90(10):3338-3340.
    [60] Zhen Y H, Li J F, Wang K, et al. Spark plasma sintering of Li/Ta-modified(K,Na)NbO3lead-free piezoelectric ceramics: Post-annealing temperature effect onphase structure, electrical properties and grain growth behavior. Mater. Sci. Eng.B-Adv.,2011,176(14):1110-1114.
    [61] Zhang S, Xia R, Shrout T R, et al. Piezoelectric properties in perovskite0.948(K0.5Na0.5)NbO3-0.052LiSbO3lead-free ceramics. J. Appl. Phys.,2006,100(10):104108.
    [62] Du H, Tang F, Liu D, et al. The microstructure and ferroelectric properties of(K0.5Na0.5)NbO3-LiNbO3lead-free piezoelectric ceramics. Mat. Sci. Eng. B-Solid.,2007,136(2-3):165-169.
    [63] Du H, Tang F, Luo F, et al. Effect of poling condition on piezoelectric properties of(K0.5Na0.5)NbO3-LiNbO3lead-free piezoelectric ceramics. Mat. Sci. Eng. B-Solid.,2007,137(1-3):175-179.
    [64] Du H, Tang F, Luo F, et al. Influence of sintering temperature on piezoelectricproperties of (K0.5Na0.5)NbO3-LiNbO3lead-free piezoelectric ceramics. Mater. Res.Bull.,2007,42(9):1594-1601.
    [65] Higashide K, Kakimoto K-i, Ohsato H. Temperature dependence on the piezoelectricproperty of (1-x)(Na0.5K0.5)NbO3-xLiNbO3ceramics. J. Eur. Ceram. Soc.,2007,27(13-15):4107-4110.
    [66] Tang F-S, Du H-L, Liu D-J, et al. Sintering characteristic and piezoelectric propertiesof lead-free (K0.5Na0.5)NbO3-LiNbO3ceramics. J. Inorg. Mater.,2007,22(2):323-327.
    [67] Liu D, Du H, Tang F, et al. Effect of heating rate on the structure evolution of(K0.5Na0.5)NbO3-LiNbO3lead-free piezoelectric ceramics. J. of Electroceram.,2008,20(2):107-111.
    [68] Trodahl H J, Klein N, Damjanovic D, et al. Raman spectroscopy of (K,Na)NbO3and(K,Na)1-xLixNbO3. Appl. Phys. Lett.,2008,93(26):262901.
    [69] Li J, Sun Q. Characterization of (Na0.47K0.47Li0.06)(SbxNb1-x)O3ceramics prepared bymolten salt synthesis method. Solid State Commun.,2009,149(15-16):581-584.
    [70] Wang C, Hou Y-D, Ge H-Y, et al. Crystal structure and orthorhombic-tetragonal phasetransition of nanoscale (Li0.06Na0.47K0.47)NbO3. J. Eur. Ceram. Soc.,2009,29(12):2589-2594.
    [71] Tan C K I, Yao K, Ma J. Effects of Ultrasonic Irradiation on the Structural andElectrical Properties of Lead-Free0.94(K0.5Na0.5)NbO3-0.06LiNbO3Ceramics. J. Am.Ceram. Soc.,2011,94(3):776-781.
    [72] Zhu W L, Zhu J L, Meng Y, et al. Structural characteristics of Mg-doped(1-x)(K0.5Na0.5)NbO3-xLiSbO3lead-free ceramics as revealed by Raman spectroscopy.J. Phys. D: Appl. Phys.,2011,44(50):505303.
    [73] Bao-Quan M, Jin-Feng W, Peng Q, et al. Piezoelectric properties of (Li, Sb, Ta)modified (Na,K)NbO3lead-free ceramics. J. Appl. Phys.,2007,101(5):054103.
    [74] Chang Y, Yang Z, Wei L. Microstructure, density, and dielectric properties oflead-free (K0.44Na0.52Li0.04)(Nb0.96-xTaxSb0.04)O3piezoelectric ceramics. J. Am. Ceram.Soc.,2007,90(5):1656-1658.
    [75] Fu J, Zuo R, Lv D, et al. Structure and piezoelectric properties of lead-free(Na0.52K0.44-x)(Nb0.95-xSb0.05)O3-xLiTaO3ceramics. J. Mater. Sci.-Mater. El.,2010,21(3):241-245.
    [76] Fu J, Zuo R, Wu Y, et al. Phase Transition and Electrical Properties of Li-andTa-Substituted (Na0.52K0.48)(Nb0.96Sb0.04)O3Piezoelectric Ceramics. J. Am. Ceram.Soc.,2008,91(11):3771-3773.
    [77] Fukada M, Yamazoe S, Wada T. Fabrication of Lead-Free(Na0.52K0.44Li0.04)(Nb0.84Ta0.10Sb0.06)O3Piezoelectric Ceramics by a ModifiedSolid-State Reaction Method. Jpn. J. Appl. Phys.,2009,48(9):091402.
    [78] Gao Y, Zhang J, Qing Y, et al. Remarkably Strong Piezoelectricity of Lead-Free(K0.45Na0.55)0.98Li0.02(Nb0.77Ta0.18Sb0.05)O3Ceramic. J. Am. Ceram. Soc.,2011,94(9):2968-2973.
    [79] Huang X, Xiao D, Wu J, et al. Preparation and Piezoelectric Properties of(Na0.52-xK0.48)Nb0.95-xTa0.05O3-xLiSbO3Ceramics. Ferroelectr.,2009,385:108-113.
    [80] Leacutevecircque G, Marchet P, Levassort F, et al. Lead free (Li,Na,K)(Nb,Ta,Sb)O3piezoelectric ceramics: Influence of sintering atmosphere and ZrO2doping ondensification, microstructure and piezoelectric properties. J. Eur. Ceram. Soc.,2011,31(4):577-588.
    [81] Lee S-H, Lee Y-H. Piezoelectric and Dielectric Properties of(Na0.44K0.52)Nb0.84O3-Li0.04(Sb0.06Ta0.1)O3Ceramics with Sintering Temperature.Electron. Mater. Lett.,2011,7(3):205-208.
    [82] Lee S-H, Nam S-P, Lee S-C, et al. Piezoelectric and dielectric properties of lead-free(Na0.44K0.52)Nb0.84O3-Li0.04(Sb0.06Ta0.1)O3ceramics with a CuO content. J. Ceram.Process Res.,2011,12(2):195-198.
    [83] Lee S-H, Nam S-P, Lee S-G, et al. Piezoelectric properties of lead-free(1-x)(Na0.5K0.5)NbO3-xLi(Sb0.17Ta0.83)O3ceramics. J. Ceram. Process Res.,2011,12(3):332-335.
    [84] Li E, Kakemoto H, Wada S, et al. Effects of manganese addition on piezoelectricproperties of the (K, Na, Li)(Nb, Ta, Sb)O3lead-free ceramics. J. Ceram. Soc. Jpn.,2007,115(1340):250-253.
    [85] Lin D, Kwok K W, Chan H L-w. Effect of Alkali Elements Content on the Structureand Electrical Properties of (K0.48Na0.48Li0.04)(Nb0.90Ta0.04Sb0.06)O3Lead-FreePiezoelectric Ceramics. J. Am. Ceram. Soc.,2009,92(11):2765-2767.
    [86] Lin D, Kwok K W, Chan H L W. Phase structures and electrical properties ofK0.5Na0.5(Nb0.925Ta0.075)O3-LiSbO3lead-free piezoelectric ceramics. J. Phys. D: Appl.Phys.,2007,40(19):6060-6065.
    [87] Ming B-Q, Wang J-F, Qi P, et al. Piezoelectric properties of (Li, Sb, Ta) modified(Na,K)NbO3lead-free ceramics. J. Appl. Phys.,2007,101(5):054103.
    [88] Ok Y-P, Ji H-N, Kim K-S, et al. Sintering and piezoelectric properties of lead-free(K0.38Na0.58Li0.04)(Nb0.86Ta0.10Sb0.04)O3ceramics doped with Fe2O3. IOP ConferenceSeries-Mater. Sci. Eng.,2011,18:092053.
    [89] Pang X, Qiu J, Zhu K, et al. Study on the sintering mechanism of KNN-basedlead-free piezoelectric ceramics. J. Mater. Sci.,2011,46(7):2345-2349.
    [90] Pang X, Qiu J, Zhu K, et al. Influence of sintering temperature on piezoelectricproperties of (K0.4425Na0.52Li0.0375)(Nb0.8925Sb0.07Ta0.0375)O3lead-free piezoelectricceramics. J. Mater. Sci.-Mater. El.,2011,22(12):1783-1787.
    [91] Pei Z, Bo-Ping Z, Rong T, et al. High piezoelectric d33coefficient inLi/Ta/Sb-codoped lead-free (Na,K)NbO3ceramics sintered at optimal temperature. J.Am. Ceram. Soc.,2008,91(9):3078-3081.
    [92] Rubio-Marcos F, Jose Romero J, Francisco Fernandez J, et al. Control of theCrystalline Structure and Piezoelectric Properties of (K,Na,Li)(Nb,Ta,Sb)O3Ceramicsthrough Transition Metal Oxide Doping. Appl. Phys. Express,2011,4(10):101501.
    [93] Rubio-Marcos F, Marchet P, Duclere J R, et al. Evolution of structural and electricalproperties of (K, Na, Li)(Nb, Ta, Sb)O3lead-free piezoceramics through CoO doping.Solid State Commun.,2011,151(20):1463-1466.
    [94] Rubio-Marcos F, Marchet P, Jose Romero J, et al. Correlation Between the Structureand the Piezoelectric Properties of Lead-Free (K,Na,Li)(Nb,Ta,Sb)O3CeramicsStudied by XRD and Raman Spectroscopy. IEEE T. Ultrason. Ferr.,2011,58(9):1826-1834.
    [95] Rubio-Marcos F, Marchet P, Romero J J, et al. Structural, microstructural andelectrical properties evolution of (K,Na,Li)(Nb,Ta,Sb)O3lead-free piezoceramicsthrough NiO doping. J. Eur. Ceram. Soc.,2011,31(13):2309-2317.
    [96] Wu J, Xiao D, Wang Y, et al. Effects of K/Na ratio on the phase structure andelectrical properties of (KxNa0.96-xLi0.04)(Nb0.91Ta0.05Sb0.04)O3lead-free ceramics.Appl. Phys. Lett.,2007,91(25):252907.
    [97] Yang Z, Chang Y, Wei L. Phase transitional behavior and electrical properties oflead-free (K0.44Na0.52Li0.04)(Nb0.96-xTaxSb0.04)O3piezoelectric ceramics. Appl. Phys.Lett.,2007,90(4):042911.
    [98] Zhao P, Zhang B-P, Tu R, et al. High piezoelectric d33coefficient inLi/Ta/Sb-Codoped lead-free (Na,K)NbO3ceramics sintered at optimal temperature. J.Am. Ceram. Soc.,2008,91(9):3078-3081.
    [99] Zheng L, Wang J, Ming B, et al. Phase structure and electrical properties of strontiummodified (Na0.48-xK0.48-xLi0.04Srx)Nb0.89Ta0.05Sb0.06O3ceramics. Phys. Status SolidiA-Appl. Mater. Sci.,2009,206(7):1602-1605.
    [100] Zheng L-M, Wang J-F, Ming B-Q, et al. Phase transition and high piezoactivity of Srdoped lead-free (Na0.53K0.422Li0.048)(Nb0.89Sb0.06Ta0.05)O3ceramics. Chin. Phys. Lett.,2008,25(7):2573-2576.
    [101] Zuo R, Fu J, Lv D. Phase Transformation and Tunable Piezoelectric Properties ofLead-Free (Na0.52K0.48-xLix)(Nb1-x-ySbyTax)O3System. J. Am. Ceram. Soc.,2009,92(1):283-285.
    [102] Jian F, Ruzhong Z, Zhengkui X. High piezoelectric activity in (Na,K)NbO3basedlead-free piezoelectric ceramics: Contribution of nanodomains. Appl. Phys. Lett.,2011,99(6):062901.
    [103] Hagh N M, Jadidian B, Safari A. Property-processing relationship in lead-free (K, Na,Li) NbO3-solid solution system. J. Electroceram.,2007,18(3-4):339-346.
    [104] Jian F, Ruzhong Z, Xiaohui W, et al. Polymorphic phase transition and enhancedpiezoelectric properties of LiTaO3-modified (Na0.52K0.48)(Nb0.93Sb0.07)O3lead-freeceramics. J. Phys. D: Appl. Phys.,2009,42(1):012006.
    [105] Jiang M, Liu X, Liu C. Effect of BiFeO3additions on the dielectric and piezoelectricproperties of (K0.44Na0.52Li0.04)(Nb0.84Ta0.1Sb0.06)O3ceramics. Mater. Res. Bull.,2010,45(2):220-223.
    [106] Lee T, Kwok K W, Chan H L W. Preparation and piezoelectric properties ofCeO2-added (Na0.475K0.475Li0.05)(Nb0.92Ta0.05Sb0.03)O3lead-free ceramics. J. Phys. D:Appl. Phys.,2008,41(15):155402.
    [107] Leveque G, Marchet P, Levassort F, et al. Lead free (Li,Na,K)(Nb,Ta,Sb)O3piezoelectric ceramics: Influence of sintering atmosphere and ZrO2doping ondensification, microstructure and piezoelectric properties. J. Eur. Ceram. Soc.,2011,31(4):577-588.
    [108] Mgbemere H E, Herber R-P, Schneider G A. Effect of MnO2on the dielectric andpiezoelectric properties of alkaline niobate based lead free piezoelectric ceramics. J.Eur. Ceram. Soc.,2009,29(9):1729-1733.
    [109] Rubio-Marcos F, Marchet P, Vendrell X, et al. Effect of MnO doping on the structure,microstructure and electrical properties of the (K,Na,Li)(Nb,Ta,Sb)O3lead-freepiezoceramics. J. Alloy. Compd.,2011,509(35):8804-8811.
    [110] Rubio-Marcos F, Romero J J, Navarro-Rojero M G, et al. Effect of ZnO on thestructure, microstructure and electrical properties of KNN-modified piezoceramics. J.Eur. Ceram. Soc.,2009,29(14):3045-3052.
    [111] Seung-Hwan L, Sung-Pill N, Dong-Hyun L, et al. Electrical Properties of lead free(Na,K,Li)(Nb,Sb,Ta)O3Ceramics with MnO2Addition. Trans. Korean Inst. Electr.Eng.,2011,60(4):801-804
    [112] Wang Y, Damjanovic D, Klein N, et al. Compositional inhomogeneity in Li-andTa-modified (K, Na)NbO3ceramics. J. Am. Ceram. Soc.,2007,90(11):3485-3489.
    [113] Wang Y, Damjanovic D, Klein N, et al. High-temperature instability of Li-andTa-modified (K,Na)NbO3piezoceramics. J. Am. Ceram. Soc.,2008,91(6):1962-1970.
    [114] Zuo R, Xu Z, Li L. Dielectric and piezoelectric properties of Fe2O3-doped(Na0.5K0.5)0.96Li0.04Nb0.86Ta0.1Sb0.04O3lead-free ceramics. J. Phys. Chem. Solids,2008,69(7):1728-1732.
    [115] Cho K-H, Park H-Y, Ahn C-W, et al. Microstructure and piezoelectric properties of0.95(Na0.5K0.5)NbO3-0.05SrTiO3ceramics. J. Am. Ceram. Soc.,2007,90(6):1946-1949.
    [116] Hwi-Yeol P, In-Tae S, Min-Kyu C, et al. Microstructure and piezoelectric propertiesof the CuO-added (Na0.5K0.5)(Nb0.97Sb0.03)O3lead-free piezoelectric ceramics. J. Appl.Phys.,2008,104(3):034103.
    [117] Hwi-Yeol P, Kyung-Hoon C, Dong-Soo P, et al. Microstructure and piezoelectricproperties of lead-free (1-x)(Na0.5K0.5)NbO3-xCaTiO3ceramics. J. Appl. Phys.,2007,102(12):124101.
    [118] Kyung-Hoon C, Hwi-Yeol P, Cheol-Woo A, et al. Microstructure and piezoelectricproperties of0.95(Na0.5K0.5)NbO3-0.05SrTiO3ceramics. J. Am. Ceram. Soc.,2007,90(6):1946-1949.
    [119] Lee S H, Yoon C B, Lee S M, et al. Piezoelectric properties of lead-free(Na0.5Bi0.5)TiO3-(Na0.5K0.5)NbO3-BaTiO3ceramics. J. Mater. Res.,2008,23(1):115-120.
    [120] Park S H, Ahn C W, Nahm S, et al. Microstructure and piezoelectric properties ofZnO-added (Na0.5K0.5)NbO3ceramics. Jpn. J. Appl. Phys. Part2-Lett.&Express Lett.,2004,43(8B): L1072-L1074.
    [121] Seung-Ho P, Cheol-Woo A, Sahn N, et al. Microstructure and piezoelectric propertiesof ZnO-added (Na0.5K0.5)NbO3ceramics. Jpn. J. Appl. Phys., Part2(Lett.),2004,43(8B): L1072-L1074.
    [122] Jaeger R E, Egerton L. Hot Pressing of Potassium-Sodium Niobates. J. Am. Ceram.Soc.,1962,45(5):209-213.
    [123] Ruiping W, Rongjun X, Sekiya T, et al. Fabrication and characterization ofpotassium-sodium niobate piezoelectric ceramics by spark-plasma-sintering method.Mater. Res. Bull.,2004,39(11):1709-1715.
    [124] Li J F, Wang K, Zhang B P, et al. Ferroelectric and piezoelectric properties offine-grained Na0.5K0.5NbO3lead-free piezoelectric ceramics prepared by spark plasmasintering. J. Am. Ceram. Soc.,2006,89(2):706-709.
    [125] Yong-hyun L, Jeong-ho C, Byung-ik K, et al. Piezoelectric properties anddensification based on control of volatile mass of potassium and sodium in(K0.5Na0.5)NbO3ceramics. Jpn. J. Appl. Phys.,2008,47(6):4620-4622.
    [126] Bernard J, Bencan A, Rojac T, et al. Low-temperature sintering of K0.5Na0.5NbO3ceramics. J. Am. Ceram. Soc.,2008,91(7):2409-2411.
    [127] Wang H-Q, Zhang X-W, Dai Y-J. Sintering behavior and electrical properties of the(Li, Ta, Sb) modified (K, Na)NbO3lead-free ceramics with KNbO3as sintering aid.Mater. Lett.,2012,67(1):145-147.
    [128] Li E, Kakemoto H, Wada S, et al. Influence of CuO on the structure and piezoelectricproperties of the alkaline niobate-based lead-free ceramics. J. Am. Ceram. Soc.,2007,90(6):1787-1791.
    [129] Hagh N M, Kerman K, Jadidian B, et al. Dielectric and piezoelectric properties ofCu2+-doped alkali Niobates. J. Eur. Ceram. Soc.,2009,29(11):2325-2332.
    [130] Zhao Y J, Zhao Y Z, Huang R X, et al. Microstructure and piezoelectric properties ofCuO-doped0.95(K0.5Na0.5)NbO3-0.05Li(Nb0.5Sb0.5)O3lead-free ceramics. J. Eur.Ceram. Soc.,2011,31(11):1939-1944.
    [131] Sasaki R, Suzuki R, Uraki S, et al. Low-temperature sintering of alkaline niobatebased piezoelectric ceramics using sintering aids. J. Ceram. Soc. Jpn.,2008,116(1359):1182-1186.
    [132] Matsubara M, Yamaguchi T, Kikuta K, et al. Sintering and piezoelectric properties ofpotassium sodium niobate ceramics with newly developed sintering aid. Jpn. J. Appl.Phys. Part1-Regul. Pap. Bri. Commu.&Rev. Pap.,2005,44(1A):258-263.
    [133] Kakimoto K, Hayakawa Y, Kagomiya I. Low-Temperature Sintering of Dense(Na,K)NbO3Piezoelectric Ceramics Using the Citrate Precursor Technique. J. Am.Ceram. Soc.,2010,93(9):2423-2426.
    [134] Shujun Z, Ru X, Shrout T R. Modified (K0.5Na0.5)NbO3based lead-free piezoelectricswith broad temperature usage range. Appl. Phys. Lett.,2007,91(13):132913.
    [135] Du J, Wang J-F, Zang G-Z, et al. Ca0.5Sr0.5TiO3-Modified KNN-Based Lead-FreePiezoceramics with a Wide Temperature Usage Span. Chin. Phys. Lett.,2011,28(6):067701.
    [136] Du J, Wang J-F, Zheng L-M, et al. KNN Based Lead-Free Piezoceramics withImproved Thermal Stability. Chin. Phys. Lett.,2009,26(2):027701.
    [137] Gao Y, Zhang J L, Zong X J, et al. Extremely temperature-stable piezoelectricproperties of orthorhombic phase in (K, Na)NbO3-based ceramics. J. Appl. Phys.,2010,107(7):074101.
    [138] Hao J G, Xu Z J, Chu R Q, et al. Enhanced Temperature Stability of(1-x)(K0.5Na0.5)0.94Li0.06NbO3-x(Bi0.5Na0.5)TiO3Lead-Free Piezoelectric Ceramics. J.Electron. Mater.,2010,39(3):347-354.
    [139] Wu J, Xiao D, Wang Y, et al. CaTiO3-modified (K0.5Na0.5)0.94Li0.06(Nb0.94Sb0.06)O3lead-free piezoelectric ceramics with improved temperature stability. Scripta Mater.,2008,59(7):750-752.
    [140] Wu J, Xiao D, Wang Y, et al. Improved temperature stability of CaTiO3-modified(K0.5Na0.5)0.96Li0.04(Nb0.91Sb0.05Ta0.04)O3lead-free piezoelectric ceramics. J. Appl.Phys.,2008,104(2):024102.
    [141] Wu L, Xiao D, Wu J, et al. Good temperature stability of K0.5Na0.5NbO3basedlead-free ceramics and their applications in buzzers. J. Eur. Ceram. Soc.,2008,28(15):2963-2968.
    [142] Zhang L, Wang X, Liu H, et al. Structural and Dielectric Properties ofBaTiO3-CaTiO3-SrTiO3Ternary System Ceramics. J. Am. Ceram. Soc.,2010,93(4):1049-1055.
    [143] Zhang S, Lim J B, Lee H J, et al.(K0.5Na0.5)NbO3Based Lead Free Piezoelectrics withExpanded Temperature Usage Range. IEEE Int. Symp. Appl. Ferroelectr.,2008:391-392.
    [144] Zhao J, Du H, Qu S, et al. Improvement in the piezoelectric temperature stability of(K0.5Na0.5)NbO3ceramics. Chin. Sci. Bull.,2011,56(22):2389-2393.
    [145] Zheng L, Wang J, Wang C, et al. MgTiO3Modified (Na0.53K0.41Li0.06)Nb0.91Sb0.09O3Piezoelectric Ceramics with Improved Thermal Stability. Ferroelectr.,2010,404:134-140.
    [146] Zheng L, Wang J, Wu Q, et al. Piezoelectric properties and thermal stability of(Na0.53K0.47-xAgx)Nb1-xSbxO3ceramics. Physica Status Solidi A-Appl. Mater. Sci.,2011,208(4):915-918.
    [147] Jenko D, Bencan A, Malic B, et al. Electron microscopy studies of potassium sodiumniobate ceramics. Microsc. microanal.,2005,11(6):572-580.
    [148] Chowdhury A, Bould J, G.S.Londesborough M, et al. The effect of refluxing on thealkoxide-based sodium potassium niobate sol-gel system: Thermal and spectroscopicstudies. J. Solid State Chem.,2011,184:317-324.
    [149] Chowdhury A, Bould J, Zhang Y, et al. Nano-powders of Na0.5K0.5NbO3made by asol-gel method. J. Nanopart. Res.,2010,12(1):209-215.
    [150] Chowdhury A, O'Callaghan S, Skidmore T A, et al. Nanopowders of Na0.5K0.5NbO3Prepared by the Pechini Method. J. Am. Ceram. Soc.,2009,92(3):758-761.
    [151] Cheng Z X, Ozawa K, Osada M, et al. Low-temperature synthesis of NaNbO3nanopowders and their thin films from a novel carbon-free precursor. J. Am. Ceram.Soc.,2006,89(4):1188-1192.
    [152] Franco R C R, Camargo E R, Nobre M A L, et al. Dielectric properties ofNa1-xLixNbO3ceramics from powders obtained by chemical synthesis. Ceram. Int.,1999,25(5):455-460.
    [153] Wang C, Hou Y D, Ge H Y, et al. Sol-gel synthesis and characterization of lead-freeLNKN nanocrystalline powder. J. Cryst. Growth,2008,310(22):4635-4639.
    [154] Gomah-Pettry J R, Said E, Marchet P, et al. Sodium-bismuth titanate based lead-freeferroelectric materials. J. Eur. Ceram. Soc.,2004,24(6):1165-1169.
    [155] Guo Y P, Kakimoto K, Ohsato H. Dielectric and piezoelectric properties of lead-free(Na0.5K0.5)NbO3-SrTiO3ceramics. Solid State Commun.,2004,129(5):279-284.
    [156] Shen Z Y, Zhen Y H, Wang K, et al. Influence of Sintering Temperature on GrainGrowth and Phase Structure of Compositionally Optimized High-PerformanceLi/Ta-Modified (Na,K)NbO3Ceramics. J. Am. Ceram. Soc.,2009,92(8):1748-1752.
    [157] Zhao P, Zhang B P, Li J F. Enhanced dielectric and piezoelectric properties inLiTaO3-doped lead-free (K,Na)NbO3ceramics by optimizing sintering temperature.Scripta Mater.,2008,58(6):429-432.
    [158] Wang Y L, Damjanovic D, Klein N, et al. High-temperature instability of Li-andTa-modified (K,Na)NbO3piezoceramics. J. Am. Ceram. Soc.,2008,91(6):1962-1970.
    [159] Park H Y, Choi J Y, Choi M K, et al. Effect of CuO on the sintering temperature andpiezoelectric properties of (Na0.5K0.5)NbO3lead-free piezoelectric ceramics. J. Am.Ceram. Soc.,2008,91(7):2374-2377.
    [160] Jo W, Kim D-Y, Hwang N-M. Effect of interface structure on the microstructuralevolution of ceramics. J. Am. Ceram. Soc.,2006,89(8):2369-2380.
    [161]彭祖矜,李智玲.分凝现象.物理,1964,03:97-100.
    [162] Chen I W, Wang X H. Sintering dense nanocrystalline ceramics without final-stagegrain growth. Nature,2000,404(6774):168-171.
    [163]黄剑锋.溶胶-凝胶原理与技术.北京:化学工业出版社,2005.
    [164] Lakeman C D E, Payne D A. Sol-gel Processing of Electrical and Magnetic ceramics.Mater. Chem. Phys.,1994,38(4):305-324.
    [165] Corriu R J P, Leclercq D. Recent developments of molecular chemistry for sol-gelprocesses. Angewandte Chemie-International Edition in English,1996,35(13-14):1420-1436.
    [166]Jih-Mirn J, Israel E W. Niobium Oxide Solution Chemistry. J. Raman Spectrosc.,1991,22:83-89.
    [167] Arlt G, Hennings D, Dewith G. Dielectric-Properties of Fine-Grained Barium-TitanateCeramics. J. Appl. Phys.,1985,58(4):1619-1625.
    [168] Hoshina T, Kakemoto H, Tsurumi T, et al. Size and temperature induced phasetransition behaviors of barium titanate nanoparticles. J. Appl. Phys.,2006,99(5):054311.
    [169] Safari A, Abazari M. Lead-Free Piezoelectric Ceramics and Thin Films. IEEE T.Ultrason. Ferr.,2010,57(10):2165-2176.
    [170] Frey M H, Payne D A. Grain-size effect on structure and phase transformations forbarium titanate. Phys. Rev. B.,1996,54(5):3158-3168.
    [171] Hoshina T, Takizawa K, Li J Y, et al. Domain size effect on dielectric properties ofbarium titanate ceramics. Jpn. J. Appl. Phys.,2008,47(9):7607-7611.
    [172] Kinoshita K, Yamaji A. Grain-Size Effects on Dielectric Properties inBarium-Titanate Ceramics. J. Appl. Phys.,1976,47(1):371-373.
    [173] Luan W L, Gao L, Guo J K. Size effect on dielectric properties of fine-grained BaTiO3ceramics. Ceram. Int.,1999,25(8):727-729.
    [174] Petzelt J. Dielectric Grain-Size Effect in High-Permittivity Ceramics. Ferroelectr.,2010,400:117-134.
    [175] Wang X H, Chen R Z, Gui Z L, et al. The grain size effect on dielectric properties ofBaTiO3based ceramics. Mat. Sci. Eng. B-Solid.,2003,99(1-3):199-202.
    [176] Arlt G. Twinning in Ferroelectric and Ferroelastic Ceramics-Stress Relief. J. Mater.Sci.,1990,25(6):2655-2666.
    [177] Chou J F, Lin M H, Lu H Y. Ferroelectric domains in pressureless-sintered bariumtitanate. Acta Mater.,2000,48(13):3569-3579.
    [178] Takahashi H, Numamoto Y, Tani J, et al. Domain properties of high-performancebarium titanate ceramics. Jpn. J. Appl. Phys. Part1-Regul. Pap. Bri. Commu.&Rev.Pap.,2007,46(10B):7044-7047.
    [179]曲远方.功能陶瓷的物理性能.北京:化学工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700