用户名: 密码: 验证码:
基于MEMS的压电超声技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究基于MEMS的压电超声技术,包括超声检测、超声微流体驱动技术和ZnO压电薄膜材料及器件的研究,研究课题属于当前微机电系统中较为前沿和创新的学科领域,如下所述:
     1、超声共振谱技术(Resonant Ultrasound Spectrum,简称RUS)是上个世纪九十年代发展起来的一种表征材料特性的方法,该方法成为现代超声检测的较为常用的技术手段,其测量的范围广泛,在MEMS领域内,可用于微型器件的检测。在RUS测量过程中,试件样品通常被夹在两片压电换能器之间,压电换能器可以采用PZT或其他的压电陶瓷或晶体。但是,因为压电片表面是光滑的,试件难以准确地夹在两片压电片中间并且保证每次测量装夹的位置都一致,从而降低测量准确性,尤其当试件很小时,这种影响更为显著。针对此问题,本文提出并设计了一种新型的超声检测换能器结构,并对它进行分析。
     通过与单独PZT-4换能器结构进行分析比较,PZT/Si复合结构的静力位移偏差很小,约为2%,其各阶共振频率与单独PZT-4相差不大,这些分析表明本文所设计的PZT/Si复合压电换能器的工作灵敏度受影响微小,可以用于超声共振谱的测量当中。最后利用MEMS技术制造出了该复合换能器件的初步结构。
     2、微流体技术是MEMS领域内发展迅速的一门学科,其应用广泛,如DNA及一些生物分子的测试应用、环境监测、喷墨打印以及LED、“芯片实验台”和一些IC芯片等的散热系统。在微流体学科领域内,利用超声技术驱动与操控微流体近几年成为研究热点,相比其他微流体技术具有很大的研究价值和潜力。声流是超声应用中较为常见的现象,是声波在流体介质中传播由于流体黏性而衰减产生的非定向流动,超声流作为高频声波在流体中的传播,可以驱动流体运动。超声技术应用领域的不断拓展使得超声流的应用研究也越来越广泛,随着MEMS技术的不断发展,所制造的微装置尺寸越来越小,声流在微管道内的运动不同于传统的管道,当前有大量的关于声流应用的实验研究,却缺乏对于微尺寸管道内声流的系统理论分析,因此很有必要进行微管道内声流的研究。
     本文对设计的MEMS微流体装置中微管道内声流进行系统的研究,即利用PZT压电片激励MEMS微流体装置,使得声波在管道内传播,产生的驱动力引起微管道内部声流的运动。应用流体动力学的基本理论,对声波在管道内部传播时产生的声场驱动力和声流运动进行分析。通过分析可以得到振幅为10nm,声波频率为200KHz~1MHz时,流速可达到1~9mm/s。根据这些分析,我们可以利用超声方法对MEMS微流体装置进行驱动控制以便应用在粒子输送和微管道冷却等方面。
     3、ZnO作为压电薄膜具有较低介电常数和较高的机电耦合系数,可用于MEMS麦克风、微加速度传感器以及体声波共振器件等微传感和执行器件中,在MEMS领域有着广泛的应用。因此,为了满足压电超声技术中超声波的激励需求,本文研究在不同材料衬底上利用磁控溅射法生长高质量ZnO作为压电薄膜,同时,为了实现ZnO薄膜器件微制造与IC工艺的兼容,本文还在实验的基础上考虑利用Al材料作下电极的压电器件的加工工艺。
     实验中采用了磁控溅射法在不同衬底上生长厚约1~2μm的ZnO薄膜,通过实验对样品进行XRD和SEM测试,来研究磁控溅射过程中工艺参数、衬底及退火工艺对ZnO薄膜质量的影响,从而获得制备高质量薄膜的工艺技术以满足压电性能的要求。结果表明,表面沉积Si_xN_y薄膜的硅片上生长的ZnO薄膜比表面溅射铝膜的硅片上的C轴择优取向生长特性好,选择合适的退火处理工艺可使晶体质量有所改善。在此基础上,为了能够与CMOS工艺兼容,开发了仍然采用Al作为底电极但用一层Si_xN_y薄膜与ZnO层隔离的MEMS压电器件的微制造工艺。
In this thesis,we present the investigation of piezoelectric ultrasonic technology that is used into the microfluidic and MEMS ultrasonic testing device.New ultrasonic transducer,microfluidic device and ZnO piezoelectric thin films based on MEMS technology will be studied as follows:
     1、Resonant ultrasound spectrum(RUS) has been developed since 1990s,which is a dynamic method to test the mechanical properties of the solid materials and is currently considered by the scientists in the condensed matter physics as the most accurate method to determine the elastic constants of materials.This ultrasonic testing method can be applied into many fields,such as the testing of minimized device in MEMS.In RUS,a solid sample is clamped between two piezoelectric transducers, which are generally PZT or other bulk piezoelectric ceramics or crystals.However,a sample,especially a very small one,is hard to be clamped due to the smooth surface of transducers,and if the sample is clamped at different locations of the piezoelectric transducers,the measured spectra will be fluctuant,lowering the accuracy of RUS measurement.To solve this problem,we propose a new type of PZT/Si composite transducer for RUS.
     The new type PZT/Si composite transducer is analyzed by comparing with traditional single PZT transducer.The results show that the error of displacement caused by voltage and static displacement is very small,about 2%.The error will decrease by reducing the size of silicon die.The resonant frequency of PZT/Si transducer is almost equal to that of single PZT plate.It is concluded that the proposed device can be used in ultrasonic testing.In the end,the PZT/Si composite traducer is fabricated by using MEMS technology primarily.
     2、With the rapid development of MEMS technology during the past 20 years, many microfluidic devices have been proposed and developed for biomedical applications,especially in biomedical engineering,such as bimolecular detection, human tissue environmental monitoring,drug delivery and cooling of "LAB ON CHIP" and IC chips so on.Among various types of technologies for manipulating liquids,acoustic/ultrasonic technique is proved to own higher efficiency than the other methods on driving and controlling fluid motion.Ultrasound wave propagating in a viscous fluid will induce acoustic streaming owing to the absorption of the fluid, which can cause unidirectional fluid motion in microchannel.Due to the size of the microdevices that is greatly reduced by using MEMS technology,fluid motion induced by acoustic streaming are quite different from that in the conventional scale device.Many experimental researches on acoustic streaming have been studied. However,very few are studied on acoustic streaming in the microscale.Therefore,it is a challengeable and important task to investigate acoustic streaming flow in microchannel.
     In this thesis,acoustic radiation force,acoustic streaming in microchannel actuated by ultrasonic vibration are studied in the proposed device which is composed of a PZT plate,microcavity and microchannel.Basing on the fundamental of fluid dynamics,an analytical study of fluid motion acoustically induced in microchannel is investigated.We have analytically studied the fluid motion driven by acoustic field and forced heat transfer by acoustic streaming in a microchannel in this paper.The maximum velocity of fluid motion in the microchannel can reach up to 1-9mm/s when the frequency of vibration is between 200 KHz and 1 MHz.The results show that acoustic streaming induced by ultrasonic vibration in the microscale is feasible and has potential for developing acoustic MEMS devices for driving fluid motion, drug delivery and micro cooling applications.
     3、ZnO piezoelectric thin film has many applications in the MEMS field such as MEMS microphone,micro accelerometer and bulk acoustic wave resonator.For these applications,high-quality ZnO piezoelectric thin film,which has a tendency to grow with strong preferential orientation,is need.In this thesis,we present the growth and characterization of ZnO piezoelectric thin films to obtain the high quality piezoelectric thin films used in piezoelectric ultrasonic application.Meanwhile, aluminum is also used as the bottom electrode to acquire the compatibility of fabrication of ZnO piezoelectric thin films device and IC technology.
     Magnetron RF sputtering technology is used to grow ZnO thin film for piezoelectric applications.We study the influence of annealing process and different substrates,including silicon,aluminum layer and silicon nitride thin film on silicon, on the piezoelectric performance of ZnO thin film by using XRD and SEM to analyze C-axis orientation and crystalline quality of ZnO thin film.The experimental results show that the crystal quality of ZnO thin films deposited on aluminum is worse than that on silicon substrate and silicon nitride layer.It is concluded that the crystal quality of ZnO grains will be influenced by the bottom electrode in the fabrication of ZnO piezoelectric device.To solve this problem,we primarily develop a fabrication process for which the aluminum is still used as the bottom electrode but isolated from the ZnO thin film by a layer of silicon nitride thin film,to meet the requirements of the high quality of the ZnO thin film and compatibility with CMOS technology.
引文
[1]金铃.MEMS技术研究及应用[J].现代雷达,2004,26(12):26-29.
    [2]刘成刚.MEMS技术的发展与应用[J].济南职业学院学报,2007,59(1):75-77.
    [3]朱键.MEMS技术的发展与应用[J].半导体技术.2003,28(1):29-4.
    [4]牛君,刘云桥.MEMS技术的发展与应用[J].科技资讯,2007,(23):1.
    [5]张杨林.MEMS技术的发展现状及应用[J].机械工人-冷加工,2005,(4):66-68.
    [6]李德胜.MEMS技术及其应用[M].哈尔滨:哈尔滨工业人学出版社,2002.
    [7]Kreith F.The MEMS Handbook[M].Boca Raton:CRC Press,2002.
    [8]Bustillo,James M.and Howe,et al.Surface Micromachining for Microelectromechanical Systems[J].Proc.of IEEE,1989,86:1552-1573.
    [9]王新柱,徐秋霞,钱鹤等.深亚微米隔离技术——浅沟槽隔离工艺[J].半导体学报,2002,23(3):323-329.
    [10]杨楚威.硅微压电传声器的研究[M].中科院声学研究所硕士学位论文,2003.
    [11]GREGORY T.A.KOVACS,NADIM I.MALUF,and KURT E.PETERSEN.Bulk Micromachining of Silicon[J].PROCEEDINGS OF THE IEEE,1998,86,(8):1536-1551.
    [12]张为,姚素英,张生才等.压力传感器中的各向异性腐蚀技术[J].哈尔滨工业大学学报,2005,37(6):848-850.
    [13]司俊杰,马斌.10%TMAH硅湿法腐蚀技术的研究[J].微细加工技术,2004,(3):39-44.
    [14]陈瑜,吴俊徐,郭平生等.一种用于硅基MEMS加工的深刻蚀技术[J].微细加工技术,2005(2):37-41.
    [15]徐惠宇,朱荻.国外高深宽比微细结构制造技术的发展[J].传感器技术,2004,23(12):4-7.
    [16]M.Puech,J.M.Thevenoud and J.M.Gruffat,et al.ACHIEVEMENTS AND PERSPECTIVES OF THE DRIE TECHNOLOGY FOR THE MICROSYSTEMS MARKET[J].Alcatel Micro Machining Systems,2007,p.1-4.
    [17]M.Puech,J.M.Thevenoud and J.M.Gruffat,et al.Cost Effective DRIE for Mass Production of MEMS and 3D Interconnections[J].Equipment for Electronic Products Manufacturing,2007,(144):37-44.
    [18]郝一龙,张立宪,李婷等.硅基MEMS技术[J].机械强度,2001,23(4):523-526.
    [19]李永海,丁桂甫,毛海平等.LIGA/准LIGA技术微电铸工艺研究进展[J].电子工艺技术,2005,26(1):1-6.
    [20]王渭源,王跃林.用于微电子机械系统封装的体硅键合技术和薄膜密封技术[J].中国工程科学,2002,4(6):56-62.
    [21]ISTIS.微机电产业概述[EB].http://www.istis.sh.cn/list/list.aspx?id=4028,2006.
    [22]林秉承,秦建华.微流控芯片实验室[M].北京:科学出版社,2006.
    [23]方肇伦.微流控分析芯片[M].北京:科学出版社,2003.
    [24]马立人,蒋中华.生物芯片[M].北京:化学工业出版社,2000.
    [25]Duanflying.MEMS技术与生物医学[EB].http://www.eeworld.com.cn/MEMS/2008/0409/article _10.htm,2008-04-09.
    [26]Hang Guo,Hui Yang and Liming Zou.DESIGN AND FABRICATION OF A MICRO-KNIFE FOR MINIMALLY INVASIVE SURGERY[J].Proceedings of 2nd International Conference on Integration and Commercialization of Micro and Nanosystems,2008,JUN03-05:169-171.
    [27]电子工程世界.TI DLP技术推出新一代可携式微型投影机[EB].http://www.eeworld.com.cn/gykz/2009/0115/article_1531.html,2009-01-05.
    [28]张玮,崔鸿波,刘刚.射频MEMS技术及其应用[J].电子科学技术评论,2005,(3):27-31.
    [29]张正元,肖坤光.射频微机械共面波导开关测试技术研究[J].微电子学,2003,33(1):12-18.
    [30]电子工程专辑.楼氏声学公司推出新款超声波传感器[EB].http://www.esmchina.com /ART_8800076359_1500_0_3604_0_7a31d91d.HTM,2007.
    [31]王淑莲.超声检测技术的发展与应用[J].机械工人-冷加工,1999,(12):3-4.
    [32]Hang Guo and Amit Lal.Die-level characterization of silicon-nitride membrane/silicon structures using resonant ultrasonic spectroscopy[J].Journal of Microelectromechanical Systems,2003,Vol.12,No.1:53-63.
    [33]來大偉.採用MEMS技術的噴墨印表機可顯著提升列印解析度[EB].http://www.ee ttaiwan.com/ART_8800444424_480502_NT_c1142f90.HTM,2006-12-01.
    [34]李太宝.计算声学:声场的方程和计算方法[M].北京:科学出版社,2004.
    [35]Qun Wan,Tao Wu and John Chastain,et al.Forced Convective Cooling via Acoustic Streaming in A Narrow Channel Established by A Vibrating Piezoelectric Bimorph[J].Flow,Turbulence and Combustion,2005,74:195-206.
    [36]钱盛友,王鸿樟,孙福成.声流现象的研究及其应用[J].应用声学,1996,16(6):38-42.
    [37]Loh B.G.,Hyun S.,and Ro P.I.et al.Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer[J].J.Acoust.Soc.Am.2002,111:875-883.
    [38](U|¨).(O|¨)zg(U|¨)r,et al.A Comprehensive Review of ZnO Materials and Devices[J].Journal of Applied Physics,2005,98:041-301.
    [39]陈运祥,周勇,汪渝.多层结构氧化锌薄膜制备[J].压电与声光,1997,19(3):187-191.
    [40]汪雷.ZnO薄膜生长技术研究最新进展[J].材料导报,2002,16(9):33-36.
    [1]Hang Guo and Amit Lal.Die-level characterization of silicon-nitride membrane/silicon structures using resonant ultrasonic spectroscopy[J].Journal of Microelectromechanical Systems,2003,Vol.12,No.1:53-63.
    [2]Q.F.Zhou,D.Wu,F.T.Djuth,et al.High-frequency piezoelectric PZT film micromachined ultrasonic transducers.2007,Proceedings-IEEE Ultrasonics Symposium:1057-1060.
    [3]Hong Zhu,Jianmin Miao,Zhihong Wang,et al.Fabrication of ultrasonic arrays with 7μm PZT thick films as ultrasonic emitter for object detection in air.Sensors and Actuators,2005,123-124:614-619.
    [4]程院莲,鲍鸿,李军等.压电陶瓷应用研究进展[J].中国测试技术,2005,31(2):11-14.
    [5]张福学.现代压电学[M].北京:科学出版社,2001.
    [6]新材料科技网.压电材料原理、应用及现状[EB].http://www.chinamaterials.net/news _show.asp?NewsID=1569,2005-10-28.
    [7]许煜寰等.铁电与压电材料[M].北京:科学出版社,1978.
    [8]秦自楷等.压电石英晶体[M].北京:国防工业出版社,1980.
    [9]林声和,叶至碧,王裕斌.压电陶瓷[M].北京:国防工业出版社,1979.
    [10]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵[M].北京大学出版社,2004.
    [11]魏守水.压电材料与压电驱动新趋向[J].国际学术动态,2006,(1):7-8.
    [12]盖学周.压电材料的研究发展方向和现状[J].中国陶瓷,2008,44(5):9-13.
    [13]段志杰,李千,吴华德等.超声电机用压电材料的研究进展[J].材料导报,2008,22(6):24-27.
    [14]田海民,缑新科.压电材料与智能结构在振动控制中的研究与前景展望[J].仪表技术与传感器,2007(8):7-9.
    [15]王淑莲.超声检测技术的发展与应用[J].机械工人-冷加工,1999,(12):3-4.
    [16]赵长瑞,吴伏家,常兴.超声检测技术在深孔加工中的应用[J].新技术新工艺,2008,(9):50-52.
    [17]李晓娜.一种无损检测方法:超声波探伤[J].现代焊接,2008,(11):26-28.
    [18]车丕堂.用于检测大型飞机蜂窝构件的超声波穿透法[J].材料工程,1988,(4):04-10.
    [19]余厚全,屈万里,黄载禄.利用超声脉冲回波检测套管腐蚀和缺陷[J].测井技术,1997,21(2):129-132.
    [20]高英,牛凤岐.超声脉冲回波法用于硅橡胶内部缺陷无损检测的研究[J].绝缘材料通讯,1997,(4):27-30.
    [21]邓明晰.三次谐波超声脉冲回波法对厚板的无损检测[J].应用声学,2004,23(1):44-47.
    [22]熊永红,陈义群,余才盛等.脉冲回波法在三峡工程混凝土检测中的应用[J].工程地球物理学报,2005,2(2):97-100.
    [23]徐芝纶.弹性力学[M].高等教育出版社,1990.
    [24]段进,倪栋,王国业.ANSYS 10.0结构分析从入门到精通[M].兵器工业出版社,2006.
    [25]盛宏玉,王慧.压电层合板的三维有限元分析[J].合肥工业大学学报(自然科学版),2004,27(7):756-760.
    [26]叶开沅,郑晓静.集中载荷下圆板大挠度问题的精确解[J].兰州大学学报(自然科学版),1987,23(4):17-27.
    [27]涂远,杜建江,王涛.压电类智能层合结构的ANSYS仿真分析[J].广西大学学报(自然科学版),2005,30(4):288-292.
    [28]赵增辉,王育平,赵向东.超声波电动机压电振子机电藕合振动分析[J].微特电机,2005,(9):17-18.
    [29]王锋,唐国金,李道奎.含压电片复合材料层合板的高阶计算模型[J].复合材料学报,2005,22(1):164-170.
    [1]钱晓蓉,沈宏继.微流体动力学研究发展与现状[J].航空精密制造技术,2005,41(6):11-14.
    [2]George Maltezos,Aditya Rajagopal,and Axel Scherer.Evaporative cooling in microfluidic channels[J].Appl.Phys.Lett.,2006,89:074-107.
    [3]鞠挥,吴一辉.MEMS和微流体分析系统的发展[J].微纳科学与技术,2003,(09):27-31.
    [4]彭杰纲,周兆英,叶雄英.基于MEMS技术的微型流量传感器的研究进展[J].力学进展,2005,35(3):361-376.
    [5]Mingjun Zhang,Tzyh-Jong Tarn,Ning Xi.Micro-/Nano-devices for Controlled Drug Delivery[J].Proceedings of IEEE 2004 International Conference on Robotics and Automation,2004:2068-2073.
    [6]尹执中,胡栀林,过增元.微流动系统发展概况[J].流体机械,2000,28(4):33-36.
    [7]A.Manz,N.Graber and H.M.Widmer.Miniaturized total chemical analysis systems:a novel concept for chemical sensing[J].Sens.Actuators,1990,Chem.1:244-248.
    [8]Jackman.R.J,Brittain.S.T.,and Whitesides.G..M.Fabrication of Three-Dimensional Microstructures by Electrochemically Welding Structures Formed by Microcontact Printing on Planar and Curved Substrates[J].J.MEMS 1998,7:261-266.
    [9]Yu-Chuan Su and Liwei Lin.A Water-Powered Micro Drug Delivery System[J].JOURNAL OF MICROELECTROMECHANICAL SYSTEMS,2004,13(1):75-82.
    [10]郑兆凯,何勇国.微流体的喷墨控制方法(专利)[P],财团法人工业技术研究院,2005.
    [11]骆广生,徐建鸿,陈桂光等.现代化工(Modern Chemical Industry)[M],2005,25(11):17-21.
    [12]陈光文,袁泉.化工学报(Chinese Journal of Chemical Industry and Engineering)[M],2003,54(4):427-439.
    [13]林秉承,秦建华.微流控芯片实验室[M].北京:科学出版社,2006.
    [14]方肇伦.微流控分析芯片[M].北京:科学出版社,2003.
    [15]Jiang.X.N,Zhou.Z.Y,Yang,Y.Experiments and analysis for micro-nozzle/diffuser flow and microvalveless pumps[J].Solid State Sensors and Actuators,1997,1:369-372.
    [16]朱俊华,周兆英,杜桂彬等.压电驱动阵列微喷的加工及实验研究[J].压电与声光,2006,28(3):360-366.
    [17]孙长敬,褚家如.新型压电驱动微流体混合器实验[J].纳米技术与精密工程,2006,4(2):132-135.
    [18]李清岭,陈令新.微流体驱动与控制技术[J].化学进展,2008,20(9):1406-1415.
    [19]冯焱颖,周兆英,叶雄英.微流体驱动与控制技术研究进展[J].力学进展,2002,32(1):1-16.
    [20]沙菁(?),侯丽雅,章维一.微流体系统驱动技术的研究进展[J].MEMS器件与技术,2006,(12):586-591.
    [21]Zengerle R.,Ulrich J.,Kluge S.,et al.A bidirectional silicon micropump[J].Sensors&Actuators,1995,A50:81-86.
    [22]邹楠.超声行波微流体驱动的基础研究和有限元分析[D].山东大学硕士学位论文,2008.
    [23]陈超,赵湛.线阵电极电泳芯片与单片机控制系统[J].传感器技术,2004,23(1):77-80.
    [24]Bart S.F,Tawrow L.S.,Mehregay M.,et al.Microfabricated electrohydrodynamic pumps[J].Sensors and Actuators,1990,A21-23:193-197.
    [25]Richter A.,Sandmaier H.An electro-hydrodynamic micropump[J].Proceedings MEMS 90,1990:99-104.
    [26]CHAUDHURY M.K.,WHITESIDES G..M.How to make water run uphill[J].Science,1992,256:1539-1541.
    [27]江兴娥,魏守水.行波微流体驱动技术研究[J].微电机,2005,38(6):89-91.
    [28]章安良,费景臣.声表面波驱动微流体研究[J].传感技术学报,2008,21(10):1808-1811.
    [29]杨慧,郭航.应用超声分离微纳米颗粒的微型装置的设计与微制造[J].功能材料与器件学报,2008,14(1):251-257.
    [30]MANDOU M.J.,KELLOGG G.J.The labCD:A contrifugebased microfluidic platform for diagnostics[J].SPIE,1998,3259:80-93.
    [31]KaHLER J.M.,KIRNER T.Nanoliter segment formation in micro fluid devices for chemical and biological micro serial flow processes in dependence on flow rate and viscosity[J].Sensors and Actuators A:Physical,2005,119(1):19-27.
    [32]ALLEN R.R.,MEYER J.D.,KNIGHT W.R.Thermodynamics and hydrodynamics of thermal ink jets[J].Hewlett-Packard Journal,1985,36:26-27.
    [33]ZHANG L,TSUNEMOTO K,TSUYOSHI K,et al.Investigation into electrorheological fluid-assisted polishing[J].International Journal of Machine Tools and Manufacture,2005,45(12-13):1461-1467.
    [34]GYU K.E.,O.GEUN J.,BUMKYOO C.A study on the development of a continuous peristaltic micropump using magnetic fluids[J].Sensors & Actuators,A Physical,2006,128(1):43-51.
    [35]Z.M.Wang,K.Bao,L.P.Xu,et al.Microfluidic Cooling of Semiconductor Light Emission Diodes[J].Microelectron,2007,Eng 84:1223-1226.
    [36]Bing Dang,Paul Joseph,Muhannad Bakir,etc.Wafer-Level Microfluidic Cooling Interconnects for GSI[J].Proceedings of International Interconnect Technology Conference,2005,p:180-182.
    [37]麥利.利用.微流體技術實現高效率散熱[EB].http://www.eettaiwan.com/ART_8800444423_480602_9c13d739.HTM,2006-12-05.
    [38]M.Giersig and P.Mulvaney.Microfluidic reactor[J].Nanotechnology/Materials Science,1993,Langmuir 9:3408.
    [39]QUN WAN and KUZNETSOVA.V.Investigation of the acoustic streaming in a rectangular cavity induced by the vibration of its lid[J].Heat Mass Transfer,2004,31(4):467-476.
    [40]Walker J.P.and Allen C.E.Sonic Wind and Static Pressure in Intense Sound Fields[J].J.Acoust.Soc.Am.,1950,22:680-681.
    [41]Rayleigh J.W.S.The Theory of Sound,Ⅱ,chap.19(352),(Dover,New York,1945,reprint of Macmillan,London,1877)[M],pp.333-347.
    [42]Schuster K.and Matz W.Ueber station(a|¨)re Str(o|¨)mungen im Kundtschen Rohr[J].Akust.Z.,1940,5:349-35
    [43]Eckart C.Vortices and streams caused by sound waves[J].Phys.Rev.,1948,74:68-76.
    [44]钱祖文.非线性声学[M].北京:科学出版社,1992.
    [45]Nyborg W.L.Acoustic streaming,Physical Acoustics[M],2B,(ed.Mason,W.P., Academic,New York,1965),pp.265-331.
    [46]Bradley C.E.Acoustic streaming field structure:The influence of radiator[M].J.Acoust.Soc.Am.1996,100:1399-1408.
    [47]Schlichting H.Oscillating cylinder in fluid at rest[M],chap.15(e.1),Boundary-Layer Theory,(trans.Kestin J.,McCraw-Hill,New York,1979),pp.428-432.
    [48]李太宝.计算声学:声场的方程和计算方法[M].北京:科学出版社,2004.
    [49]钱盛友,王鸿樟,孙福成.声流现象的研究及其应用[J].应用声学,1996,16(6):38-42.
    [50]Wu Junru,Winkler A.J.and O'Neill T.P.Effect of acoustic streaming on ultrasonic heating[J].Ultrasound Med.Biol.1994,20(2):195-201.
    [51]Wan,Q.and Kuznetsov A.V.Heat transfer enhancement by utilizing standing and traveling waves to generate acoustic streaming in a rectangular gap[J].Proceedings of the 8th Joint AIAA/ASME Thermophysics and Heat Transfer Conference,2002,AIAA paper 2002-3007,pp.1-11.
    [52]Q.Wan and A.V.Kuznetsov.Effect of Nonuniformity of Source Vibration Amplitude on The Sound Field Wave Number,Attenuation Coefficient and Reynolds Stress for The Acoustic Streaming[J].Int.Commun.Heat Mass Transf.,2003,30(1):27-36.
    [53]Qun Wan,Tao Wu and John Chastain,et al.Forced Convective Cooling via Acoustic Streaming in A Narrow Channel Established by A Vibrating Piezoelectric Bimorph[J].Flow,Turbulence and Combustion,2005,74:195-206.
    [54]Hongming Sun and Hang Guo.Fluid Motion Induced by Acoustic Field in Microchannel[J].Proceedings of 2007 IEEE International Symposium on Ultrasonics,pp.1866-1869.
    [55]J.Bennes,S.Alzuaga,P.Chabe,et al.Action of low frequency vibration on liquid droplets and particles[J].Proceedings of Ultrasonics International(UI'05) and World Congress on Ultrasonics(WCU).2006,p.497-502.
    [56]Loh,B.G.,Hyun,S.,and Ro,P.I.et al.Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer[J].J.Acoust.Soc.Am.2002,111:875-883.
    [57]P.Vainshtein,M.Fichman,and C.Cutfinger.Acoustic Enhancement of Heat Transfer between Two Parallel Plates[J].Int.J.Heat Mass Transf.1995,38(10):1893-1899.
    [1](U|¨).(O|¨)zg(u|¨)r,et al.A Comprehensive Review of ZnO Materials and Devices[J].Journal of Applied Physics,2005,98:041-301.
    [2]Pu Xian Gao,Zhong L Wang.Nanoarchitectures of semiconducting and piezoelectric zinc oxide[J].Journal of Applied Physics,2005,97:044304.
    [3]Day-Shan Liu,et al.The Preparation of Piezoelectric ZnO Films by RF Magnetron Sputtering for Layered Surface Acoustic Wave Device Applications[J].Japanese Journal of Applied Physics,2006,Vol.45,No.4B:3531-3536.
    [4]邹桐.压电薄膜ZnO、SBN的溅射法制备及其性能的研究[D].浙江大学硕士学位论文,2005.
    [5]陈汉鸿.ZnO薄膜和ZnO紫外探测器[D].浙江大学硕士学位论文,2002.
    [6]S.J.Jiao,Z.Z.Zhang,and Y.C.Liu,et al.ZnO p-n junction light-emitting diodes fabricated on sapphire substrates[J].Appl.Phys.Lett.2006,88:1911.
    [7]H.Fabricius,T.Skettrup,and E Bisgaard.Ultraviolet detectors in thin sputtered ZnO films[J].Appl.Optics,1986,25:2764-2767.
    [8]杨楚威.硅微压电传声器的研究[D].中国科学院声学研究所硕士学位论文,2003.
    [9]Qing-Xin Su,Paul Kirby and Eiju Komuro,et al.Thin-film bulk acoustic resonators andfilters using ZnO and Lead-Zirconium-Titanate thin films[J].IEEE transactions on microwave theory and techniques,2001,49(4):769-778.
    [10]贺洪波.ZnO功能薄膜的制备、性能与应用[D].中国科学院上海光学精密机械研究所硕士学位论文,1999.
    [11]BAGNALL D.M.,CHEN Y.F.,ZHU Z.,et al.Optically pumped lasing of ZnO at room temperature[J].Applied Physics Letters,1997,70(17):2230-2332.
    [12]傅竹西,林碧霞.氧化锌薄膜光电功能材料研究的关键问题[J].发光学报,2004,25(2):117-122.
    [13]Y.Takahiko,K.Masato and M.Mami,et al.Characteristics of pure-shear mode BAW resonators consisting of(1120) textured ZnO films[J].IEEE Transactions on Ultrasonics,Ferroelectrics,and Frequency Control,2007,54(n 8):1680-1685.
    [14]陈运祥,周勇,汪渝.多层结构氧化锌薄膜制备[J].压电与声光,1997,19(3):187-191.
    [15]丁飞,李华.ZnO及其含锌混合氧化物薄膜的充放电性能研究[J].化学物理学报,2000,13(2):207-211.
    [16]徐步衡,薛俊明,赵颖等.MOCVD制备用于太阳能电池的ZnO薄膜研究[J].光电子-激光,2005,16(5):515-518.
    [17]Liang S,Sheng H,Zuck A,et al.ZnO Schottky ultraviolet photodetectors[J].Journal of Crystal Growth,2001,225:110-113.
    [18]Ohta H,Kawamura K,Hirano M,et al.Current injection emission from a transparent p-n junction composed of p-Sr2Cu202/n-ZnO[J].Applied Physics Letters,2000,77(4):475-477.
    [19]Kim H,Gilmore C M,Horwitz J S,et al.Transparent conductingaluminum-doped zinc oxide thin films for organic light-emitting devices[J].Applied Physics Letters,2000,76(3):259-261.
    [20]T.Detchprohm,K.Hitamatsu.Hydrides vapor phases epitaxial growth of high quality GaN film using ZnO buffer layer[J].Appl.Phys.Lett.,1992,61:2688.
    [21]汪雷.ZnO薄膜生长技术研究最新进展[J].材料导报,2002,16(9):33-36.
    [22]汪冬梅,吕珺,陈长奇等.RF磁控溅射法制备ZnO薄膜的XRD分析[J].理化检验-物理分册,2006年42卷1期:19-22.
    [23]袁国栋,叶志镇,曾昱嘉等.直流反应磁控溅射Al、N共掺方法生长p型ZnO薄膜及其特性[J].半导体学报,2006,25(6):668-673.
    [24]沈自才,邵建达,王英剑等.磁控反应溅射法制备渐变折射率薄膜的模型分析fJ].物理学报,2005,54(10):4842-4845.
    [25]J.M.Bian,X.M.Li,X.D.Gao,et al.Enhancement of ZnO nucleation in ZnO epiyaxy by layer epitaxy[J].Thin Solid Films,2005,475:251-253.
    [26]刘彦松,王连卫.用PLD法制备声表面波器件用ZnO薄膜[J].功能材料,2001,32(1):78-90.
    [27]M.R.Wang,J.W,W.Chen,et al.Effect of preheating and annealing temperatures on quality characteristics of ZnO thin film prepared by sol-gel method[J].Mater.Chem.and Phys.,2006,97:219-225.
    [28]D.C.Look,D.C.Reynolds,C.W.Litton,et al.Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy[J].Appl.Phys.Lett.,2002,81(10):1830-1832.
    [29]吕建国,叶志镇,黄靖云等.退火处理对ZnO薄膜结晶性能的影响[J].半导体学报,2003,24(7):729-736.
    [30]程和,李燕,邓宏.C轴择优取向ZnO薄膜的微区压电特性分析[J].四川大学学报(自然科学版),2005,42:371-374.
    [31]李燕,陈希明,熊英.溅射法生长高度取向ZnO的实验研究[J].液晶与显示,2004,19(3):174-177.
    [32]陈汉鸿,吕建国,叶志镇等.反应磁控溅射ZnO薄膜的高温退火研究[J].真空科学与技术,2002,22(6):467-469.
    [33]医学教育网.电镜样品制备-扫描电子显微镜[EB].http://www.med66.com/html/2008/11/qil8512301721180021935.html,2008-11-27.
    [34]丛秋滋.多晶二维X射线衍射[M].科学出版社,1997
    [35]周元俊,谢自力,张荣等.薄膜材料研究中的XRD技术[J].显微、测量、微细加工技术与设备,2009,46(2):108-114.
    [36]贺洪波,范正修.C轴择优取向ZnO薄膜的溅射工艺与结构研究[J].功能材料,2000,31(增刊):77-78.
    [37]徐芸芸.射频磁控溅射制备掺杂ZnO薄膜及其光吸收性能的研究[D].南京航空航天大学硕士学位论文.2005.
    [38]Pu Xian Gao,Zhong L Wang.Nanoarchitectures of semiconducting and piezoelectric zinc oxide[J].J.Appl.Phys,2005,97:044304.
    [39]赵玉岭.ZnO薄膜的制备和研究进展[J].信阳师范学院学报(自然科学版),2005,18(3):344-361.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700