用户名: 密码: 验证码:
羟基磷灰石的制备及羟基磷灰石/壳聚糖复合物性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羟基磷灰石(hydroxyapatite,简称HA)是自然骨无机成分的主要部分,具有良好的生物相容性和生物活性,以及骨传导性。但是纯HA力学性能较差,强度较低,难以承受负荷或冲击,因而限制了其在人体重骨组织修复的应用。为了解决这个问题,提高HA的力学性能来满足材料成型要求,使其在临床上有更广泛的应用,本论文把HA与壳聚糖(chitosan,CS)结合制备成复合材料并对其性能作了初步的探讨。
     (1)电沉积法制备HA的研究。首先在压电石英晶振(Piezoelectric quartz crystal,简称PQC)表面电沉积制备磷酸钙盐。同时采用电化学石英晶体微天平(EQCM)监测不同电流密度下电沉积过程,结果表明:晶体表面沉积的膜层质量和表面致密程度受电流密度的影响,并且确定了最适合的电流密度为0.6mA/cm2。随后采用压电石英阻抗技术(Piezoelectric quartz crystal impedance,PQCI)在线检测电沉积产物磷酸钙盐在0.1mol.l-1氢氧化钠溶液中的碱处理过程。分析表明,HA的最终形成包括3个过程,酸性磷酸钙盐的溶解,相转换过程,以及HA的最终形成。并运用非线性回归方法获得静态电容(Cs)曲线的拟合方程,求得相应的参数。最后,采用扫描电镜(SEM)、红外光谱(FTIR)和X-射线衍射(XRD)对碱处理3个阶段中晶体微观形貌、组成和结构的变化进行进一步分析。
     (2)羟基磷灰石/壳聚糖复合材料(HA/CS)在模拟体液中矿化行为的研究。采用PQCI在线监测不同质量配比复合材料的矿化过程,结果表明:HA/CS在模拟体液中的矿化过程导致石英晶体传感器频率显著降低,当复合材料中HA与CS的质量配比为6:4时,矿化能力最强。PQCI实时在线监测所得的频率(f)、动态电阻(Rm)、动态电感(Lm)、动态电容(Cm)和静态电容(Cs)等参数的变化可用于评价矿化过程中HA/CS复合材料的微观变化。根据矿化过程中频率与动态电阻的变化可将HA/CS在模拟体液中的矿化过程分成3个阶段,并获得各阶段的动力学方程。此研究方法为骨组织工程材料的制备提供一种新的实时监测技术。同时采用电化学阻抗法(EIS)和循环伏安法(CV)法研究膜层矿化前后的变化,应用FTIR以及SEM对矿化过程中膜层的组成和形貌进行表征。
     (3)人血清白蛋白(HSA)和卵清白蛋白(OVA)在HA/CS复合材料上吸附行为的研究。采用PQCI法对两种蛋白质吸附过程进行在线检测,分析参数Δf、ΔRm的变化趋势,并分别对其进行线性拟合。结果发现HSA吸附过程分两个阶段:首先是HSA在材料上的吸附,然后是吸附在材料表面的HSA进一步重排,并且吸附速度大于重排的速度。而OVA仅仅吸附在材料表面没有重排过程。同时拟合值分析表明:HSA在复合材料表面吸附的量比OVA吸附的量多;吸附了HSA的膜层比吸附了OVA膜层致密度更好。采用FTIR表征复合材料HA/CS吸附蛋白质前后的组成变化。通过EIS和CV研究人血清白蛋白吸附前后的膜层阻抗变化,证实材料表面蛋白质的吸附行为。
As a major inorganic component of natural bone, hydroxyapatite (HA, Ca10(PO4)6(OH)2) has been used for orthopedic/dental implants with good biocompatibility and bioactivity in bone tissue engineering. But, due to its low fracture toughness, hardness and brittleness, though, HA cannot serve as a bulk implant material under the high physiological loading conditions traditionally associated with orthopedic implants. In order to increase the mechanical property of HA, n-HA was made into a biocompatible composite with chitosan which could be made into any desirable form. Thus, significant interest has been generated in hydroxyapatite /chitosan(HA/CS) composite. Preparation of HA and the property of HA/CS composite were studied in this paper.
     1.Studies on preparation of HA by electrodeposition. The electrochemical quartz crystal microbalance (EQCM) was used to monitor the electrodeposition process. The result indicated the quantity of coating on the chip surface was influenced by the current density, and the optimal current density was confirmed as 0.6mA/cm2. Subsequently, the alkaline treatment process of calcium phosphate film in 0.1mol/l NaOH solution was monitored real-time by the piezoelectric quartz crystal impedance (PQCI) technique. The change of equivalent circuit parameters with immersion time could be used to characterize the dynamic variations of calcium phosphate, which showed that the structure forming process of HA was comprised of three stages: (1) Acid calcium phosphate dissolution; (2) Phase transformation; (3) HA formation. The correlative kinetic equations and parameters were obtained by fitting the static capacitance (Cs) versus time curves. Finally, the variation of morphology and composition for the corresponding stages were characterized by Scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) and X-ray diffraction (XRD), respectively.
     2.Studies on the biomineralization process of HA/CS. The biomineralization process of HA/CS in a simulated body fluid was studied by using PQCI. It can be found the frequency (f) decreased obviously due to the biomineralization process of hydroxyapatite/chitosan composite. The results indicate the optimal mass proportion of HA and CS is 6:4. Several parameters (f, Rm, Lm, Cm, Cs) were simultaneously obtained from the PQCI on-line measuring and applied to investigate the change of HA/CS during the biomineralization. It shows the mineralization process of HA/CS can be divided into three steps according to the slope ofΔf vs.ΔRm. The correlative kinetic equations and parameters are obtained from the frequency change. The proposed method may find wide applications in mineralization studies of materials for bone tissue engineering for its advantages in providing real - time multidimensional information.
     3. Studies on adsorption of human serum albumin (HSA) and ovalbumin (OVA) on HA/CS composite. In situ adsorption of HSA and OVA were real-time monitored by PQCI to fully understand the initial cellular response on HA/CS composite. The PQCI parameters, such as resonant frequency (f), static capacitance (Cs), and motional resistance (Rm) were measured for investigating the kinetic adsorption behaviors of both proteins. The change in frequency shifts (?f) depends on the amount of the adsorbed protein, and the change in motional resistance (?Rm) results from the microporosity variation of HA/CS coating. The results show that the amount of the absorbed HSA is much greater than that of OVA on HA/CS coating because of the unique construction of HSA as well as a flexible protein. Furthermore, ?f and ?Rm data were fitted according to the kinetic exponential decay equations. It can be seen that there is only one adsorption process for OVA, but the absorption process for HSA is followed by a rearrangement process, and the former process is faster than the rearrangement process. Subsequently, the composite binding with proteins were demonstrated by the Fourier transform infrared (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS).
引文
[1] Oretos J W, Eden M. Contemporary biomaterials: material and host response, clinical applications, new technology and legal aspects. USA: Noyes Publications, 1984: 232-233
    [2]叶青.羟基磷灰石与牛血清白蛋白相互作用的原位ATR-FTIR及EQCM研究: [厦门大学硕士论文].厦门:厦门大学物理化学, 2006, 1-2
    [3] Thomson R C, Wake M C, Yaszemski M J, et al. Biodegradable polymer scaffolds to regenerateo rgans.Advances in Polymers Science, 1995, 122(5): 245- 274
    [4] Ishaug S L, Crane G. M, Gurlek A, et al. ctopic bone formation by marrow stromal osteoblast transplantation using poly (DL-lactic-co-glycolic acid)foams implanted into the rat mesentery. Journal of Biomedial Materials Research, 1997, 36(1): 1-8
    [5] Duchetne P, Qiu Q. Bioactive ceramics: the effect of surface reactivity on bone for mation and bone cell function. Biomaterials, 1999, 20(23): 2287-2303
    [6] Hench L L, Wilson J. Surface-active biomaterials. Science, 1984, 226(4675): 630-636
    [7]郑学斌,刘宣勇,丁传贤.人体硬组织替代材料的研究进展.物理, 2003, 32(3): 159-164
    [8]于方丽,周永强,张卫珂等.羟基磷灰石生物材料的研究现状、制备及发展前景.陶瓷, 2006, 2: 7-12
    [9] Bhowmik R, Katti K S, Verma D. Probing molecular interactions in bone biomaterials: Through moleculardynamics and Fourier transform infrared spectroscopy. Materials Science and Engineering C, 2007, 27 (3): 352-371
    [10]顾汉卿,徐国风.生物医学材料学.天津:天津科技翻译出版公司, 1993, 83-90
    [11]殷庆瑞,祝炳和.功能陶瓷的显微结构、性能与制备技术.北京:工业出版社, 2005, 71-73
    [12]江捍平.羟基磷灰石的研究进展.中国医学工程, 2004, 12(6): 32-35
    [13] Wang X, Li Y, Wei J, et al. Development of biomimetic nano-hydroxyapatite/ poly(hexamethylene adipamide)composites. Biomaterials, 2002, 23(24): 4787- 4791
    [14] Li S P, Zhang S C, Chen W J. Effects of hydroxyapatiteultrafine powder oncolony formation and cytoskeletons of MGC- 803 cell. Bioceramics, 1996, 9(2): 225-227
    [15]丰强,闵思佳,张海萍.羟基磷灰石及其复合材料在骨组织工程中的研究进展.蚕桑通报, 2008, 39(1): 9-12
    [16]韩颖超,王欣宇,李世普.纳米级磷灰石粉末制备工艺进展.硅酸盐通报, 2006, 3: 27-29
    [17]南开辉,王迎军.水解时间对溶胶-凝胶法制备羟基磷灰石粉体的影响.材料科学与工程学报, 2004, 22(2): 175-178
    [18]王峰,李木森.快速溶胶-凝胶法制备纳米级羟基磷灰石.生物骨科材料与临床研究, 2004, 1(4): 17-20
    [19]张爱娟.溶胶-凝胶法制备纳米羟基磷灰石的研究进展.材料工程, 2006,增刊1: 463-465
    [20]施尔畏,夏长泰,王步国.水热法的应用与发展.无机材料学报, 1996, 11(2): 193-206
    [21] Kinoshita M, Itatani K, Nakamura S, et al. Preparation and morphology of carbonate containing hydroxyapatite by homogeneous and hydrothermal methods. Gypsum & Lime, 1990, 227: 19-27
    [22] Vord P J V, Matthew H W T, Desilva S P, et al. Evaluation of the biocompatibility of a chitosan scaffold in mice. Journal of Biomedical Materials Research, 2002, 59(3): 585-590
    [23]吴振军,何莉萍,陈宗璋.电化学方法制备HA/金属生物复合材料研究进展.表面技术, 2003, 32(3): 1-4
    [24]时海燕,胡仁,林昌健.羟基磷灰石涂层的电化学可控制备及生物性能的初步表征.电化学, 2005, 11(4): 440-445
    [25]石秋芝,石春芝,杨长春等. 1Ni-NiS合金析氢阴极的制备研究.郑州大学学报, 1998, 30(4): 68-71
    [26]刘敬肖,史非,周靖等.模拟体液中仿生羟基磷灰石超细粉的制备及表征.硅酸盐学报, 2006, 34(3): 334-339
    [27] Tas A C. Synthesis of biomimetic Ca-hydroxyapatite powders at 37℃in synt hetic body fluids. Biomaterials, 2000, 21(14): 1429-1438
    [28] Itoh S, Kikuchi M, Takakuda K. The biocompatibility and osteoconductive activity of a novel hydroxyapatite/collagencomposite biomaterial, and its function as a carrier of rhBMP-2. Journal of Biomedial Materials Research, 2001, 54(3): 445-453
    [29]王学江.纳米羟基磷灰石仿生复合材料的研究: [四川大学博士论文].四川:四川大学医学生物工程, 2003, 18-21
    [30]李志宏,武继民,李瑞欣等.纳米羟基磷灰石及其复合材料的研究进展.医疗卫生装备, 2007, 28(4): 30-32
    [31]李亚军,阮建明.聚乳酸/羟基磷灰石复合型多孔状可降解生物材料.中南工业大学学报, 2002, 33(3): 261-265
    [32]许凤兰,李玉宝,姚晓明等.纳米羟基磷灰石/聚乙烯醇复合人工角膜材料.复合材料学报, 2005, 22(1): 27-31
    [33]王群波,蒋电明,安洪等.纳米羟基磷灰石/聚酰胺66复合人工椎体在胸椎骨折中的应用.中国创伤杂志, 2005, 21(9): 690-692
    [34] VandeVord P J, Matthew H W T, DeSilva S P, et al. Evaluation of the biocompatibility of a chitosan scaffold in mice. Journal of Biomedial Materials Research, 2002, 59(3): 585-590
    [35]吕彩霞,姚子华.羟基磷灰石/壳聚糖复合材料研究进展.化工进展, 2006, 25(7): 755-759
    [36]陈星河,曾超,米运等.壳聚糖在固定化酶载体上的应用.广西轻工业, 2007, 8:18-19
    [37]姚子昂,吴海歌,邢有福等.壳聚糖在组织工程中应用的研究进展.中国生物工程杂志, 2003, 23(10): 32-36
    [38] Sivakumar M, Manjubala I, Panduranga Rao K. Preparation, characterization and in-vitro release of gentamicin from coralline hydroxyapatite-chitosan composite microspheres. Carbohydrate Polymers, 2002, 49(3): 281-288
    [39] Hu Q L, Fang Z P, Zhao Y, et al. A new method to prepare chitosan membrane as a biomedical material. Chinese Journal of Polymer Science, 2001, 19(5): 467-470
    [40]曹鹏,刘万顺,韩宝芹等.壳聚糖与硫酸软骨素共混膜性质的研究.中国生物医学工程学报, 2005, 24(1): 43-49
    [41]张利,李玉宝,杨爱萍.骨组织工程用纳米羟基磷灰石/壳聚糖多孔支架材料的制备及性能表征.功能材料, 2005, 2(36): 314-317
    [42]李宝强,胡巧玲,钱秀珍等.原位沉析法制备可吸收壳聚糖/羟基磷灰石棒材.高分子学报, 2002, 19(6): 828-833
    [43] Yamaguchi I,Toduchi K, Fukuzadi H, et al. Preparation and mechanical properties of chitosan/hydroxyapatite nanocomposites. Key Engineering Materials, 2001, 673(9): 192-195
    [44]张利,李玉宝,魏杰等.纳米羟基磷灰石/壳聚糖复合骨修复材料的共沉淀法制备及其性能表征.功能材料, 2005, 36(3): 441-444
    [45] Yin Y, Ye F, Yao K, et al. Preparation and characterization of macroporous chitosan-gelatin/-tricalcium phosphate composite scaffolds for bone tissue engineering. Journal of Biomedical Materials Research, 2003, 67A(3): 844-855
    [46]孙凯莹,孙卫斌,储成等.纳米羟基磷灰石-壳聚糖复合材料对细胞粘附的影响.临床口腔医学杂志, 2007, 23(3): 150-153
    [47]袁华,陈宁,吕晓迎等.天然羟基磷灰石-壳聚糖复合材料修复骨缺损的实验研究.口腔医学, 2005, 25(2): 65-67
    [48]陈建洪,李幸宽.壳聚糖羟基磷灰石在改良翻瓣术中的应用.口腔医学纵横杂志, 1997, 13(3): 165-167
    [49]赵峰,尹玉姬,宋雪峰等.壳聚糖-明胶网络/羟基磷灰石复合材料支架的研究制备及形貌.中国修复重建外科杂志, 2001, 15(5): 276-279
    [50]崔福斋,冯庆玲.生物材料学.北京:科学出版社, l996, 74-78
    [51] Heuer A H, Fink D J, Laraia V J, et al. Innovative materials processing strategies: a biomimetic approach. Science, 1992, 255(28): 1098-1105
    [52] Model M A, Healy K E. Quantification of the surface density of fluorescent label with the optical microscope. Journal of Biomedial Materials Research, 2000, 50A (1): 90-96
    [53] Puleo D A, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials, 1999, 20(23-24): 2311-2321
    [54] Hayakawa T, Yoshinari M, Nemoto K. Characterizationand protein-adsorption behavior of deposite dorganic thin film onto titanium by plasma polymerization with hexamethvldisiloxane. Biomaterials, 2004, 25(1): 119-127
    [55] Zhang F, Kang B T, Neoh K G, et al. Surface modification of stainless steel by grafting of poly(thyleneglycol) for reduction in protein adsorption . Biomaterials, 2001, 22(12): 1541-1548
    [56] Myles J L, Burgess B T, Dickinson R B. Modification of the adhesive properties of collagen by covalent grafting with RGD peptides. Journal of Biomaterials Science, Polymer Edition, 2000, 11(1): 69-86
    [57] Ying P Q, Yu Y, Jin G, et al. Competitive protein adsorption studied with atomic forcemi crosopy and imaging ellipsometry. Colloids and Surface B-Biointerfaces, 2003, 32(1): 1-10
    [58] Oleschuk R D, Mccomb M E, Chow A, et al. Characterization of plasma proteins adsorbedon to biomaterials by MALDI-TOFMS. Biomaterials, 2000, 21(16): 1701-1710
    [59] Susan J, McCarthy A, Kaplan L, et al. Functionalized silk protein biomaterialsfor bone regeneration. Sixth Norld Biomaterials Congress Transaction, Hawaii, U.S.A, 2000: 1206-1208
    [60]叶青.羟基磷灰石与牛血清白蛋白相互作用的原位ATR-FTIR及EQCM研究: [厦门大学硕士论文].厦门:厦门大学物理化学, 2006, 4-6
    [61] Ward M D, Buttry D A. In situ interfacial mass detection with piezoelectric transducers. Science, 1990, 249(4972): 1000-1007
    [62] Deakin M R, Buttry D A. Electrochemical applications of the quartz crystal microbalance. Analytical Chemistry, 1989, 61(20): 1147A-1154A
    [63] Buttry D A, Ward M D. Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chemical Reviews, 1992, 92(6): 1355-1379
    [64] Sauerbrey G. Verwendung von schwingquarzen zur wagung dunnerschichten und zur mikrowagung. Zeitschrift für Physik, 1959, 155(2): 206-222
    [65] Martin S J, Frye G C, Senturla S D. Dynamic and response of polymer-coated surface acoustic wave devices: effect of viscoelastic properties and film resonance. Analytical Chemistry, 1994, 66(14): 2201-2219
    [66] Topart P A, Noel M A M. High-frequency impedance analysis of quartz crystal microbalances: Electrochemical deposition and redox switching of conducting polymers. Analytical Chemistry, 1994, 66 (18): 2926-2934
    [67] Schumacher R, Borges G, Kanazawa K K. The quartz microbalnce: a sensitive tool to probe surface reconstructions on gold electrodes in liquid. Surface Science, 1985, 163(1): L621-L626
    [68] Schumacher R. The quartz microbalnce: a novel approach to the in-situ investigation of interfacial phenomena at the solid/liquid junction. Angewandte Chemie International Edition, 1990, 29(4): 329-343
    [69] Martin S J, Granstaff V E, Frye G G. Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Analytical Chemistry, 1991, 63 (20): 2272-2281
    [70]扈显琦,梁成浩.交流阻抗技术的发展与应用.腐蚀与防护, 2004, 25(2): 57-60
    [71]曹楚南,张鉴清.电化学阻抗谱导论.北京:科学出版社, 2002: 21-24
    [72]贾铮,戴长松,陈玲.电化学测量方法.北京:化学工业出版社, 2006: 137-140
    [73]朱松然.循环伏安法在铅酸蓄电池中的应用.蓄电池, 2003, 3(1): 99-103
    [74]李瑞琦,张国平,任立中.纳米羟基磷灰石及其复合生物材料的特征及应用.中国组织工程研究与临床康复, 2008, 12(19):3747-3750
    [75] Darimont G L, Cloots R, Heinen E, et al. In vivo behavior of hydroxyapatite coatings on titanium implants: a quantitative study in the rabbit. Biomaterials, 2002, 23(12): 2569-2575
    [76] Yoshinari M, Oda Y, Inoue T, et al. Bone response to calcium phosphate-coated and bisphosphonate-immobilized titanium implants. Biomaterials, 2002, 23(14): 2879-2885
    [77] Zhao Z W, Zhang G, Li H G. Preparation of calcium phosphate coating on pure titanium substrate by electrodepsition method. Journal of Central South University of Technology, 2004, 11(2): 147-151
    [78]章媛媛,陶杰,庞迎.电化学沉积法制备钛基HA涂层.稀有金属材料与工程, 2006, 35(3): 459-462
    [79] Shirkhanzadeh M. Bioactive calcium phosphate coatings preparedby electrodeposition. Journal of Materials Science Letters, 1991, 10(23): 1415-1417
    [80]吴振军,何莉萍,陈宗璋.电化学方法制备HA/金属生物复合材料研究进展.表面技术, 2003, 32(3): 1-4
    [81]王学江.纳米羟基磷灰石仿生复合材料的研究: [四川大学博士论文].四川:四川大学医学生物工程, 2003, 9-10
    [82] Liu D M, Chou H M, Wu J D, et al. Hydroxyapatite formation in a thermal process. Materials Chemistry and Physics, 1994, 37(1): 39-44
    [83] Hsu Y S, Chang E, Liu H S. Hydrothermally-grow mometite(CaHPO4) on hydroxyapaptite . Ceramics International, 1998, 24(4): 249-254
    [84] Pramanik S, Kumar A, Rai K N, et al. Development of high strength hydroxyapatite by solid-state-sintering process .Ceramics International, 2007, 33(3): 419-426
    [85] Pattanak D K, Dash R, Prasad R C, et al. Synthesis and sintered properties evaluation of calcium phosphate ceramics. Material Science and Engineering, 2007, C27(4): 684-690
    [86] Zou J P, Ruan J M, Huang B Y, et al. Physico-chemical properties and microstructure of hydroxyapatite-316L stainless steel biomaterials. Journal of Central South University of Technology, 2004, 11(2): 113-118
    [87] Silva M H, Lima J H C, Soares G A, et al. Transformation of monetite to hydroxyapatite in bioactive coatings on titanium.Surface and Coatings Technology, 2001, 137(2-3): 270-276
    [88] Shih W J, ChenY H, Wang S H, et al. Effect of NaOH(aq) treatment on thephase transformation and morphology of calcium phosphate deposited by an electrolytic method. Crystal Growth, 2005, 285 (4): 633-641
    [89] Liu C S, Huang Y, Shen W, et al. Kinetics of hydroxyapatite precipitation at pH 10 to 11. Biomaterials, 2001, 22(4): 301-306
    [90] Sauerbrey G. The use of quartz oscillators for weighting thin layers and for microweighing. Journal of Physics, 1959, 155(1): 206-212
    [91] Sato T, Serizawa T E, Okahata Y B. Binding of influenza A virus to monosialogangli-oside (GM3) reconstituted in glucosylceramide and sphingomyelin membranes. Biochimica et Biophysica Acta, 1996, 1285(1): 14-20
    [92] Muramatsu H, Tamiya E, Karube I. Computation of equivalent circuit parameters of quartz crystals in contact with liquids and study of liquid properties. Analytical Chemistry, 1988, 60(19): 2142-2146
    [93] Berry E E, Baddiel C B. The infra-red spectrum of dicalcium phosphate dihydrate (brushite). Spectrochimica Acta, 1967, 23A(7): 2089-2097
    [94] Legros R J. Calcium phosphates in oral biology and medicine [M]. Monographs in oral science. Basel(Switzerland): Karger, 1991: 108-128
    [95] Dasarathy Y H, Riley C, Coble H D. Analysis of Apatite Deposits on Substrates. Biomedical Materials Research, 1993, 27(4):477-482
    [96] Gadaleta S J, Paschalis E P, Betts F, et al. Fourier transform infrared spectroscopy of the solution-mediated conversion of amorphous calcium phosphate to hydroxyapatite: new correlation between X-ray di!raction and infrared data. Calcified Tissue International, 1996, 58(1): 9-16
    [97] Wojciech L S, Pavel S, Kullaiah B, et al. Mechanochemical–hydrothermal synthesis of carbonated apatite powders at room temperature .Biomaterials, 2002, 23(3): 699-710
    [98] Hench L L. Biomaterials: A forecast for the future. Biomaterials, 1998, 19(16): 1419-1423
    [99]张斌,周科朝,黄苏萍等. HA/HDPE/UHMWPE复合材料的制备和表征.中南大学学报, 2008, 39(1): 23-28
    [100] Kong L J, Gao Y, Cao W L, et al. Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. Journal of Biomedical Materials Research Part A, 2005, 75(2): 275-282
    [101] Kokubo T. Bioactive glass ceramics: properties and applications. Biomaterials, 1991, 12(2): 155-163
    [102] Kokubo T, Kushitani H, Sakka S, et al. Solutions able to reproduce in vivo surface-structure change inbioactive glass-ceramic A–W. Journal of Biomedial Materials Research, 1990, 24(6): 721-734
    [103] Kokubo T, Takadama H. How useful is SBF in predicting in vivo bone bioactivity. Biomaterials, 2006, 27(15): 2907-2915
    [104] Kokubo T, Kushiyani M, Ebisawa Y, et al. Apatite formation on bioactive ceramics in body environment. Tokyo: IshiyakuEuroAmerica, 1988: 157-62
    [105] Kim H M, Himeno T, Kokubo T, et al. Process and kinetics of bonelike apatite formation on sintered hydroxyapatite in a simulated body fluid. Biomaterials, 2005, 26(21): 4366-4373
    [106] Gu Y W, Khor K A, Cheang P. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS). Biomaterials, 2004, 25(18): 4127-4134
    [107] Bigi A, Panzavolta S, Rubini K. Setting mechanism of biomimetic bone cement. Chemistry of Materials, 2004, 16(19): 3740-3745
    [108] Laird D F, Mucalo M R, Yokogawa Y. Growth of calcium hydroxyapatite (Ca-HAp) on cholesterol and cholestanol crystals from a simulated body fluid: A possible insight into the pathological calcifications associated with atherosclerosis. Journal of Colloid and Interface Science, 2006, 295(2): 348-363
    [109] Kong L J, Gao Y, Lu G Y. A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. European Polymer Journal, 2006, 42(12): 3171-3179
    [110] Cooper M A, Singleton V T. A survey of the 2001 to 2005 quartz crystal microbalance biosensor literature: applications of acoustic physics to the analysis of biomolecular interactions. Journal of Molecular Recognition, 2007, 20(3): 154-184
    [111]王庆良,葛世荣,朱华等.常温常压下纳米羟基磷灰石晶体的合成及结构研究.中国矿业大学学报, 2004, 33(5): 533-536
    [112] Nakamatsu J, Torres F G, Omar P. Processing and characterization of porous structures from chitosan and starch for tissue engineering scaffolds. Biomacromolecules, 2006, 7(12): 3345-3355
    [113]郑裕东,王迎军,杨槐,等.生物活性复合材料在生物矿化过程中的微观形貌与离子浓度变化.高等学校化学学报, 2005,12(11): 2140-2144
    [114] Sundaram C S, Viswanathan N, Meenakshi S. Uptake of fluoride by nano-hydroxyapatite/chitosan, a bioinorganic composite. BioresourceTechnology, 2008, 99(17): 8226-8230
    [115] Oliveira J M, Rodrigues M T, Silva S S, et al. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondraltissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials, 2006, 27(36): 6123-6137
    [116] Cheng X M, Li Y B, Zuo Y, et al. Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Materials Science and Engineering C, 2008, 29(1): 29-35
    [117] Puleo D A, Nanci A. Understanding and controlling the bone-implant interface. Biomaterials, 1999, 20(23-24): 2311-2321
    [118] Oleschuk R D, Mccomb M E, Chow A. Characterization of plasma proteins adsorbed on to biomaterials by MALDI-TOFMS. Biomaterials, 2000, 21(16): 1701-1710
    [119] Boonsongrit Y, Abe H, Sato K, et al. Controlled release of bovine serum albumin from hydroxyapatite microspheres for protein delivery system. Journal of Materials Science and Engineering B, 2008, 148(1-3): 162-165
    [120] Allal B, Etienne L, J acques L, et al. Adsorption of catalase on hydroxyapatite. Journal of Colloid and Interface Science, 1998, 208(1): 147-152
    [121]王爱娟,吕宇鹏,孙瑞雪.羟基磷灰石在生物活性物质分离与提纯领域中应用的研究进展.材料导报, 2006, 20(6): 111-115
    [122] Kumar M N, Muzzarelli R A, Muzzarelli C, et al. Chitosan chemistry and pharmaceutical perspectives.Chem Rev, 2004, 104(12): 6017–84
    [123] Kawasaki K, Kambara M, Matsumura H, et al. A comparison of the adsorption of saliva proteins and some typical proteins onto the surface of hydroxyapatite. Colloids and Surfaces B: Biointerfaces, 2003, 32 (4): 321-334
    [124] Lee W, McGuire J, Bothwell M K. Competitive adsorption of bacteriophage T4 lysozyme stability variants at hydrophilic glass surfaces. Journal of Colloid and Interface Science, 2004, 269(1): 251-254
    [125] Miao Y H, Helseth L E. Adsorption of bovine serum albumin on polyelectrolyte-coated glass substrates: Applications to colloidal lithography. Colloids and Surfaces B: Biointerfaces, 2008, 66 (2): 299-303
    [126] Daly S M, Przybycien T M, Tilton R D. Coverage-dependent orientation of lysozyme adsorbed on silica. Langmuir, 2003, 19(9): 3848-3857
    [127] Steiner G, Tunc S, Maitz M, et al. Conformational changes during protein adsorption. FT-IR spectroscopic imaging of adsorbed fibrinogen layers.Analytical Chemistry, 2007, 79(4): 1311-1316
    [128] McArthur S L. Applications of XPS in bioengineering. Surface and Interface Analysis, 2006, 38(11): 1380-1385
    [129] Doering W E, Nie S. Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement. Journal of Physical Chemistry B, 2002, 106(2): 311-317
    [130] Liu M L, Zhang Y Y, Wang M L. Adsorption of bovine serum albumin and fibrinogen on hydrophilicity-controllable surfaces of polypyrrole dopedwith dodecyl benzene sulfonate-A combined piezoelectric quartzcrystal impedance and electrochemical impedance study. Polymer, 2006, 47(10): 3372-3381
    [131] Tsapikouni T S, Missirlis Y F. Protein-material interactions: From micro-to- nano scale. Materials Science and Engineering B, 2008, 152(1-3): 2-7
    [132] Liu Y J, Li Y L, Yao S Z. Monitoring the self-assembly of chitosan/ glutaraldehyde/cysteamine/Au-colloid and the binding of human serum albumin with hesperidin. Biomaterials, 2004, 25 (26): 5725-5733
    [133] Pan S, Rothberg L. Chemical control of electrode functionalization for detection of DNA hybridization by Electrochemical Impedance Spectroscopy. Langmuir, 2005, 21(3): 1022-1027

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700