用户名: 密码: 验证码:
单重保温海底管道理论分析及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海底管道作为海洋油气资源开发和运输的生命线,起着连接海上油气开采和陆上加工处理的枢纽作用。海底管道的投资往往在整个油气田项目中占有举足轻重的地位,如何合理地降低管道的造价并且保证其安全运行,是个长久以来具有挑战性的课题。
     我国海上原油大多含蜡量较高,具有较高的倾点和粘度,在管道输送时经常需要保温措施。传统使用的双重管道能够满足保温以及工程力学要求,但其缺点是钢材有近三分之二浪费在仅起保温和保护作用的外层钢管上。此外,焊接双重管道的速度慢,大大增加了施工船机设备的台班费用,而且维护修理难度较大。单重保温管道则省去外层钢管,代之以保温层和防护层,可以节约大量昂贵的钢材。此外,单重管道在铺设时只需焊接一层钢管,大大提高了施工速度。本论文以两个实际工程项目为依托,参考国外已有的实际经验和研究成果,进行了大量的试验研究和理论分析,并将所得到的试验结论和研究成果用于指导实际工程,旨在加快单重保温管道在我国的应用。
     在参考国内外已有的经验和成果的基础上,对保温材料进行了抗压和抗剪能力的物理性能试验,测定出其主要的力学指标。采用全比尺试件进行室内试验,测定出单重管层间的抗剪强度指标以及管道抗压性能指标。在铺管船上进行的现场全比尺试验是对单重管道铺设的模拟和演练,对试验过程中出现的现象进行了理论分析和数值计算,以达到改善设计和优化施工的目的。
     本文对管道铺设进行了理论分析,参考已有的成果得出奇异摄动解,并采用牛顿割线迭代法将其实现为计算程序代码,计算出管道在铺设时的变形和内力。对单重保温管道在施工以及运行期间的层间剪切力进行了校核,提出了一套简化的计算模型和计算方法,并将此成果成功用于指导工程实践。采用有限元软件,对管道在进行铺设时受张紧器的压夹作用进行了仿真模拟,计算出其安全储备情况。从弹性理论出发对管道在静水压力作用下进行了压溃分析,并采用有限元软件对管道进行了线性和非线性屈曲分析。管道膨胀弯的吊装方案采用有限元软件对三种方案进行比较而达到优化的目的。对管土相互作用这一专项进行了研究,并将UWAPIPE模型进行了改进,并将其作为宏单元分别采用显式和隐式算法整合到结构计算程序中。利用该程序,计算了管道在海底荷载下的响应,并研究了悬跨段长度对管道的变形产生的影响。
     鉴于单重保温管道所具有的优势,可以预计其具有广泛应用的前景和潜力。然而,单重保温管道在我国尚处于起步阶段,到目前总计已施工运行的管道也不过两三条。施工操作经验还有待于进一步积累,研究水平和深度也有待于深入。本论文是我国开始使用海底单重保温管道而进行的试验研究和理论分析一个初步总结,作者希望抛砖引玉,能为将来的研究和应用提供一些参考。
Subsea pipelines are the crucial link between oil and gas development and mainland as the lifelines of transportation and gathering of petroleum crude. The investment to pipeline accounts for the big part of the whole cost of oil field. It has been being a challenging subject to reduce the expenditure and maintain the good conditon of pipeline.
     Heat preservation measures are inevitably required in China offshore projects because most of the crude oil has high pour point and viscocity. The conventional pipe-in-pipe structure consumes steel material too extravagantly because near 2/3 steel is used by the outer pipe, which only acts as the protect coat and heat preservation, although it may be capable of the task. Moreover, this tradional pipe increases the the cost on construction because the welding work is quite time consuming and maintain cost is very high. Considerable amount of steel can be saved using thermally insulated pipeline, where the outer steel pipe is substituted by heat insulated layer and jacket. It is self-evident that faster laying speed is anticipated because only single layer steel pipe is needed to weld. Referring to the foreign experiences and research results, a lot of experiments and threotical study have been carried out. Based on two practical engineering projects, this paper aims to accelerate the development and application of this new type pipeline in China by directing the engineering projects.
     Laboratory tests have been lauched to investigate the compress and shear strength of heat preserving material. Full scale specimens were adopted to measure the shear strength between layers and compress strength of the pipe. Furthermore, the experiments carried on the laying barge were the preview and simulation of pipe laying. Some phonomena occurred during the tests have been explained from the view of therotical analysis and numerical calculation.
     Referring to available research results, pipe laying analysis has been performed and solution has been obtained using a singular disturbation method. The results were implemented into program code within a Newton-secant iteration framework. The configuration and stress of the pipeline can be achieved with this program. A serial of calculation models were introduced and simple equations has been acquired to check the shear stress between layers of pipeline during both laying and operation period. Simulation of pipeline in tensioner was carried out with FEM software to check the safety factor. Both linear and nonlinear buckle analysises have been performed to calculate the safety status under hydrostatic pressure. The hoist of elbow has been optimized by comparing three schemes with FEM analysis. The research progress of pipe soil interaction has been retropested.
     The UWPAPIPE models were improved and implemented into a structure analysis program as macroelemet. The pipeline response was examined due to hydrodynamic load with the program to study the influence of the span length. Prospective widely application of thermally insulated pipeline is anticipated since it has the unique advantages. However, thermally insulated pipeline is still immature with total 2-3 finished pipelines in China. Therotic study practical construction experience is anticipated to intensify. This thesis could be taken as a summary of experiment analysis and theoretical stuy of the beginning application of thermally insulated pipeline in China. The author humbly hopes all these could provide some references to prospective researchers.
引文
[1] Pallesen, T.R., Braestrup, M.W., Jorgensen, O., Andersen, J.B. (1986). DANISH LINE INSULATED AGAINST HYDRATE FORMATION. Oil and Gas Journal, 84(16), p 52-56
    [2] Anfinsen, K.A. (1995). Review of free spanning pipelines. Proc. of 5th Int. Symp. on Offshore and Polar Engineering (ISOPE). The Netherlands
    [3] Bienen, B., Byrne, B.W., Houlsby, G.T., Cassidy, M.J. (2006). Investigating six degree of freedom loading of shallow foundations on sand. Géotechnique. 56(6), pp. 367-379.
    [4] Bienen, B. and Cassidy, M.J. (2006a). Three-dimensional analysis of jack-up structures. Journal of Advances in Structural Engineering, 9(1), pp. 19-37.
    [5] Bienen, B. and Cassidy, M.J. (2006b). Advances in the three-dimensional fluid-structure-soil interaction analysis of offshore jack-up structures. Marine Structures, Accepted and In press. (Available as Report No. C:1627, Centre for Offshore Foundation Systems, The University of Western Australia.)
    [6] Bijker, R., Staub, C., Silvis, F., Bruschi, R. (1991). Scour induced free spans. Offshore Technology Conference, 23, paper no. 6762, Houston
    [7] Brennan, A.J, Cassidy, M.J. (2005). Centrifuge tests of on-bottom pipelines on silica sand. Geo: 05365, Centre for Offshore Foundation Systems, The University of Western Australia.
    [8] Cathie, D.N., Jaeck, C. Ballard, J.-C., Wintgens, J.-F. (2005). Pipeline geotechnics – state-of-the-art. Proc. of the Int. Symp. on the Frontiers in Offshore Geotechnics: ISFOG 2005, Taylor and Francis Group, pp. 95-114.
    [9] Cassidy, M.J., Martin, C.M., Houlsby, G.T. (2004). Development and application of force resultant models describing jacking-up foundation behaviour, Marine Structure, 17, 2004, p 165-193
    [10] Chong, S.Y., Verification of a pipe-soil interaction model. Bachelor Thesis. The University of Western Australia
    [11] Dafalias, Y.F., Popov, E.P. (1975). A model of nonlinearly hardening materials for complex loading. Acta Mechanica. 21, pp. 173-192
    [12] Dafalias, Y.F., Popov, E.P. (1977). Cyclic loading for material with a vanishing elastic region. Nuclear Enginerring and Design. 41, pp. 293-302
    [13] Dafalias, Y.F. and Herrmann L.R. (1980). A bounding surface soil plasticity model. Proc. Int. Symp. Soils under Cyclic Trans. Load., Swansea, pp. 335-345
    [14] Dafalias, Y.F. (1986). Bounding surface plasticity. I: Mathematical foundation and hypoplasticity. J. Eng. Mech. ASCE, 112, pp. 966-987
    [15] DNV (1998). Guidelines-No.14. Free spanning pipelines. June.
    [16] Drucker, D.C. (1988). Conventional and unconventional plastic response and representation. Appl. Mech. Rev. (ASME), 112, pp. 966-987
    [17] Gajo, A. and Muir Wood, D. (2001). A new approach to anisotropic, bounding surface plasticity: general formulation and simulations of natural and reconstituted clay behaviour. Int. J. Numer. Anal. Meth. Geomech, 25, pp. 207-241
    [18] Gottardi, G., Houlsby, G.T., Butterfield, R. (1999). Plastic response of circular footings on sand under general planar loading. Géotechnique, 49(4), pp. 453-469
    [19] Hashiguchi, K. (1980). Constitutive equations of elastoplastic materials with elastic-plastic transition. J. Appl. Mech. (ASME), 47, pp. 266-272
    [20] Hashiguchi, K. (1988). A mathematical modification of two surface model formulation in plasticity. Int. J. Solid Structures, 24(10), pp. 987-1001
    [21] Hashiguchi, K. (1993). Mechanical requirements and structures of cyclic plasticity models. International Journal of Plasticity, 9, pp. 721-748
    [22] Kershenbaum, N.Y. and Harrison, G.E. (1995). Seabed irregularity in subsea pipeline spanning. Proc. of 5th Int. Symp. Offshore and Polar Engineering (ISOPE), The Netherlands
    [23] Klomp, W.H.G, Hansen, E.A., Chen, Z., Bijker, R. Bryndum, M.B. (1995). Pipeline seabed interaction, free span development, Int. Symp. Offshore and Polar Engineering (ISOPE ), The Netherlands
    [24] Krieg, R.D. (1975). A practical two surface plasticity theory, Transactions of the ASME. Series E, Journal of Applied Mechanics, 42(3), pp. 641-6
    [25] Lieng, J.T., Sotberg, T. and Brennodden, H. (1988). Engergy based pipe-soil interaction model, report STF 69-F7024, STNTEF
    [26] Martin, C.M. (1994). Physical and numerical modelling of offshore foundations under combined loads, D.Phil thesis, U. of Oxford
    [27] Moshagen, H. and Kjeldsen, S.P. (1980). Fishing gear loads and effects on submarine pipelines. Offshore Technology Conference, Paper No. 378, Houston, Texas
    [28] Mroz, Z. (1967). On the description of anisotropic work hardening. J. Mech. Phys. Solids, 15, pp. 163-175
    [29] Mroz, Z., Norris, V.A., Zienkiewicz, O.C. (1979). Application of an anisotropic hardening model in the analysis of elasto-plastic deformation of soils. Géotechnique, 29(1), pp. 1-34
    [30] Mroz, Z., Norris, V.A., Zienkiewicz, O.C. (1981). An anisotropic, critical state model for soils subject to cyclic loading. Géotechnique, 31(4), 451-469
    [31] Muir Wood, D. (2001). Geotechnical modelling. Spons Architecture Price Book.
    [32] Nes, H. and Sortland, L. (2001). Risk-based condition assessment and inspection planning for submarine pipeline systems. Proc. of 11th Int. Symp. Offshore and Polar Engineering (ISOPE), Norway
    [33] Nyman, K.J. (1984). Soil response against oblique motion of pipes. Journal of Transportation Engineering, 110(2), pp. 190-202
    [34] Palmer, A.C., Steenfelt, J.S., Steensen-Bach, J.O. and Jacobsen, V. (1988). Lateral resistance of marine pipelines on sand. Offshore Technology Conference, Paper No. 5853. Houston, Texas
    [35] Park, H.I. and Kim, C.H. (1997). Analytical methods for the determination of allowable free span lengths of subsea pipelines. Proc. of 7th Int. Symp. Offshore and Polar Engineering (ISOPE)
    [36] Rouainia, M. and Muir Wood, D. (2000). A kinematic hardening constitutive model for natural clays with loss of structure. Géotechnique, 50(2), pp.153-164
    [37] Rouainia, M. and Muir Wood, D. (2001). Implicit numerical integration for a kinematic hardening soil plasticity model. Int. J. Numer. Anal. Meth. Geomech, 25, pp. 1305-1325
    [38] Sawicki, A., Swidzinski, W. and Zadroga, B. (1998). Settlement of shallow foundations due to cyclic vertical force. Soils and Foundations, 38(1), pp. 35-43.
    [39] S?reide, T., Paulsen, G., Nielsen, F.G. (2001). Parameter study of long free span. Proc. of 11th ISOPE, Norway
    [40] Tan, F.S.C. (1990). Centrifuge and Theoretical Modelling of Conical Footings on Sand. PhD Thesis, Cambridge University
    [41] Verley, R.L.P., Sotberg, T. (1992). Soil resistance model for pipelines placed on sandy soils. Proceedings of the International Offshore Mechanics and Arctic Engineering Symposium, v 5, n pt A, Pipeline Technology, pp. 123-131
    [42] Verley, R., Lund, K.M. (1995). Soil resistance model for pipelines placed on clay soils. Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering - OMAE, v 5, pp. 225-232
    [43] Vidich, S.D., Kulhawy, F.H. and Trautmann, C.H. (1998). Laboratory modelling of inclined-loaded shafts in sand. Geotechnical Testing Journal. GTJODJ, 21(3), pp. 203-212.
    [44] Wagner, D.A., Murff, J.D., Brennodden, H. and Sveggen, O. (1987). Pipe-soil interaction model. OTC 5504. Houston, Texas
    [45] White, C.S. (1996). A two surface plasticity model with bounding surface softening, Transactions of the ASME Journal of Engineering Materials and Technology, 118(1), pp. 37-42
    [46] Zhang, J., Stewart, D.P., Randolph, M.F. (2002). Modelling of shallowly embedded offshore pipelines in calcareous sand. Journal of Geotechnical and Geoenvironmental Engineering, 128(5), pp. 363-371
    [47] Zhang, J., Randolph, M.F., Steward, D.P. (1999). Elasto-plastic model for pipe-soil interaction of unburied pipelines. Proc. of the International Offshore and Polar Engineering Conference (ISOPE), v 2, p 185-192
    [48] Zhang, J. (2000). Centrifuge modelling of pipeline-soil interaction in calcareous sand. The 4th ANZ Young Geotechnical Professional Conference, House and Watson (eds), Perth, pp. 251-256
    [49] Zhang, J. (2001) Geotechnical stability of offshore pipelines in calcareous sand. PhD thesis, U. of Western Australia
    [50] Zhang, J., Stewart, D.P. and Randolph, M.F. (2001). Centrifuge modelling of drained behaviour for pipelines shallowly embedded in calcareous sand. International Journal of Physical Modelling in Geotechnics, Vol. 1. pp. 25-39
    [51] Guarracino, F., Mallardo, V. (1999). Refined analytical analysis of submerged pipelines in seabed laying. Applied Ocean Research. 21(6). p 281-293
    [52] Zhu DS, Cheung YK. (1997). Optimization of buoyancy of an articulated stinger on submerged pipelines laid with a barge. Ocean Engng. 24(4). 301–11.
    [53] DNV (1988). RP E305. On-bottom stability design of submarine pipelines
    [54] Mousselli, A.H. (1981). Offshore pipeline design, analysis and methods. Pena well publishing company.
    [55] Chen, W.F., Han, D.J. (1988). Plasticity for structural engineers. New York, Springer-Verlag
    [56] Simo, J.C., Hughes, J.R. (1997). Computational inelasticity. New York, Springer
    [57] O’Malley, R.E. (1974). Introduction to singular perturbations. Academic Press
    [58] Zienkiewicz, O.C., Taylor, R.L. (2000). The finite element method. Oxford; Boston
    [59] Auricchio, F., Taylor, R.L. (1999). A return-map algorithm for general associative isotropic elasto-plastic materials in large deformation regimes. International Journal of Plasticity, 15(12): 1359-78
    [60] Chen, C. (1995). Global secant relaxation (GSR) method-based predictor-corrector procedure for the iterative solution of finite element systems. Computers and Structures, 54(2): 199-205
    [61] Chen, W.F., Baladi, G.Y. (1985). Soil plasticity : theory and implementation. Amsterdam ; New York, Elsevier.
    [62] Chen, W.F., Han, D.J. (1988). Plasticity for structural engineers. New York, Springer-Verlag.
    [63] Liu, Z., Al-Bermani, F.G.A. (1995). A return mapping algorithm for plane stress and degenerated shell plasticity. Structural Engineering and Mechanics 3(2): 185-92
    [64] Lof, J., van den Boogaard, A.H. (2001). Adaptive return mapping algorithms for J2 elasto-viscoplastic flow. International Journal for Numerical Methods in Engineering, 51(11): 1283-1298
    [65] Loret, B. P., J.H. (1986). Accurate numerical solutions for Drucker-Prager elastic-plastic models. Computer Methods in Applied Mechanics and Engineering, 54(n 3): 259-77
    [66] Luccioni, L. X., Pestana, J.M., Rodriguez-Marek, A. (2000). An implicit integration algorithm for the finite element implementation of a nonlinear anisotropic material model including hysteretic nonlinearity. Computer Methods in Applied Mechanics and Engineering, 190(13-14): 1827-44.
    [67] Luccioni, L. X. P., J.M.; Taylor, R.L. (2001). Finite element implementation of non-linear elastoplastic constitutive laws using local and global explicit algorithms with automatic error control. International Journal for Numerical Methods in Engineering, 50(5): 1191-212.
    [68] Macari, E. J. W., Stefan; Arduino, Pedro (1997). Implicit integration of elastoplastic constitutive models for frictional materials with highly non-linear hardening functions. Mechanics of Cohesive-Frictional Materials, 2(1): p 1-29.
    [69] Matzenmiller, A. T., R.L. (1994). A return mapping algorithm for isotropic elastoplasticity. International Journal for Numerical Methods in Engineering, 37(5): 813-26.
    [70] Muir Wood, D. (2001). Geotechnical modelling. Spons Architecture Price Book.
    [71] Ortiz, M., Nour-Omid, B. (1986). Unconditionally stable concurrent procedures for transient finite element analysis. Computer Methods in Applied Mechanics and Engineering, 58(2): p 151-74.
    [72] Ortiz, M., Nour-Omid, Bahram, Sotelino, Elisa D. (1988). ACCURACY OF A CLASS OF CONCURRENT ALGORITHMS FOR TRANSIENT FINITE ELEMENT ANALYSIS. International Journal for Numerical Methods in Engineering, 26(2): p 379-391.
    [73] Ortiz, M., Pandolfi, A. (1994). A variational Cam-clay theory of plasticity. Computer Methods in Applied Mechanics and Engineering, 193(27-29): p 2645-2666.
    [74] Ortiz, M., Pinsky, P.M., Taylor, R.L. (1983). Operator split methods for the numerical solution of the elastoplastic dynamic problem. Computer Methods in Applied Mechanics and Engineering, 39(2): p 137-57.
    [75] Ortiz, M., Popov, E. P. (1982). A PHYSICAL MODEL FOR THE INELASTICITY OF CONCRETE. Proceedings of The Royal Society of London, Series A: Mathematical and Physical Sciences.
    [76] Ortiz, M., Popov, E.P. (1985). Accuracy and stability of integration algorithms for elastoplastic constitutive relations. International Journal for Numerical Methods in Engineering 21(9): 1561-1576
    [77] Ortiz, M., Simo, J.C. (1986). An analysis of a new class of integration algorithms for elastoplastic constitutive relations. International Journal for Numerical Methods in Engineering, 23(3):353-366
    [78] Ortiz, M., Sotelino, E.D., Nour-Omid, B. (1989). Efficiency of group implicit concurrent algorithms for transient finite element analysis. International Journal for Numerical Methods in Engineering, 28(12): 2761-2776
    [79] Rouainia, M., Muir Wood, D. (2000). An Implicit constitutive algorithm for finite strain Cam-clay elasto-plastic model. Mechanics of Cohesive-Frictional Materials, 5(6): p 469-489.
    [80] RUNESSON, K., STURE, S., WILLAM, K. (1988). INTEGRATION IN COMPUTATIONAL PLASTICITY. Computers and Structures, 30(1-2): 119-30
    [81] Sawyer, J. P. G. W., C.H.; Jones, R. (2001). An implicit algorithm using explicit correctors for the kinematic hardening model with multiple back stresses. International Journal for Numerical Methods in Engineering, 50(9): 2093-107
    [82] Simo, J. C. (1991). Nonlinear stability of the time-discrete variational problem of evolution in nonlinear heat conduction, plasticity and viscoplasticity. Computer Methods in Applied Mechanics and Engineering, 88(1): p 111-131
    [83] Simo, J. C. and T. J. R. Hughes (1997). Computational inelasticity. New York, Springer.
    [84] Simo, J. C. and R. L. Taylor (1985). Consistent tangent operators for rate-independent elastoplasticity. Computer Methods in Applied Mechanics and Engineering, 48(1): 101-18.
    [85] Simo, J. C., Taylor, R.L. (1986). A return mapping algorithm for plane stress elastoplasticity. International Journal for Numerical Methods in Engineering, 22(3): 649-70.
    [86] Singh, A. K., Pandey, P.C. (1999). An implicit integration algorithm for plane stress damage coupled elastoplasticity. Mechanics Research Communications 26(6): 693-700.
    [87] Sivakumar, M. S., Voyiadjis, G.Z. (1997). A simple implicit scheme for stress response computation in plasticity models. Computational Mechanics, 20(6): 520-529.
    [88] Sloan, S.W. (1987).Substepping schemes for the numerical integration of elastoplastic stress-strain relations, Int. J. Num. Meth. Eng., 24(5), 893-911
    [89] Smith, I. M., Griffiths, D. V. (1998). Programming the finite element method. Chichester ; New York, John Wiley & Sons.
    [90] Sosa, J. L. C., de Souza Neto, E., Owen, D.R.J. (2006). A combined implicit-explicit algorithm in time for non-linear finite element analysis. Communications in Numerical Methods in Engineering, 22(1): 63-75.
    [91] Tan, F.S.C. (1990). Centrifuge and Theoretical Modelling of Conical Footings on Sand. PhD Thesis, Cambridge University
    [92] Zeng, L. F., Horrigmoe, G., Andersen, R. (1996). Numerical implementation of constitutive integration for rate-independent elastoplasticity. Computational Mechanics, 18(5), 387-396
    [93] Zhang, H. W., Heeres, O.M., de Borst, R., Schrefler, B.A. (2001). Implicit integration of a generalized plasticity constitutive model for partially saturated soil. Engineering Computations. 8(1-2), 314-34.
    [94] Zhang, Z.L. (1995). Explicit consistent tangent moduli with a return mapping algorithm for pressure-dependent elastoplasticity models. Computer Methods in Applied Mechanics and Engineering, 121(1-4), 29-44.
    [95] Zienkiewicz, O. C. and R. L. Taylor (2000). The finite element method-Volume 2: Solid Mechanics. Oxford ; Boston : , Butterworth-Heinemann.
    [96] 戴英杰 (1999). 海洋管道铺设过程中的力学性质及相关技术的研究 . 大连理工大学博士论文
    [97] 石油大学 (华东 ),渤海工程设计公司 . (1991). 海底单重保温管道译文集.
    [98] 中华人民共和国国家标准 GB/T 1043-93. 硬质塑料简支梁冲击试验方法. 国家技术监督局
    [99] 中华人民共和国国家标准 GB 9641-88. 硬质泡沫塑料拉伸性能试验方法. 中华人民共和国轻工业部
    [100] 中 华 人 民 共 和 国 国 家 标 准 GB10007-88. 硬 质 泡 沫 塑 料 剪 切 强 度 试验方法. 中华人民共和国轻工业部
    [101] 中华人民共和国国家标准 GB8812-88. 硬质泡沫塑料弯曲试验方法 . 中华人民共和国轻工业部
    [102] 中华人民共和国国家标准 GB8813-88. 硬质泡沫塑料压缩试验方法 . 中华人民共和国轻工业部
    [103] 海洋石油工程股份有限公司 ,天津大学建工学院 . (2005) 单重保温管强度性能计算理论及试验研究报告
    [104] 中 海 石 油 研 究 中 心 ,渤 海 石 油 管 道 涂 敷 工 程 公 司 ,天 津 大 学 建 工 学 院 . (2005) 涠洲单层保温管道理论及实验研究报告
    [105] 祝效华 ,余志祥 . (2004). ANSYS 高级工程有限元分析范例精选 . 电子工业出版社. 北京
    [106] 王润富 ,陈国荣 . (2005). 温度场和温度应力 . 科学出版社 . 北京
    [107] 卓卫东 . (2005). 应用弹塑性力学 . 科学出版社 . 北京
    [108] 张学言 , 闫澍旺 . (2004). 岩土塑性力学基础 . 天津大学出版社 . 天津
    [109] 龚晓南 . (1999). 土塑性力学 . 浙江大学出版社 . 杭州
    [110] 郑 颖 人 ,沈 珠 江 ,龚 晓 南 . (2002) 广 义 塑 性 力 学 --岩 土 塑 性 力 学 原 理 . 中国建筑工业出版社. 北京
    [111] 王勗成 ,常亮明 . (1986). 运动硬化材料本构关系的精确积分及其推广应用. 力学学报 18(3) p226-234
    [112] 王勗成 ,常亮明 . (1986). 各向同性硬化材料弹塑性本构关系的渐进积分及计算精度. 固体力学学报 69-77
    [113] 许可康 . (1986). 控制系统中的奇异摄动 . 科学出版社 北京
    [114] 张志涌 . (2003). 精通 MATLAB6.5 版 . 北京航空航天大学出版社 北京
    [115] 郭艳林 ,梁政 . (1999). 海底管道铺设施工设计分析 . 石油学报 . 20(4) p83-87
    [116] 金伟良 . (1997). 海洋工程的若干力学问题 . 科技通报 . 13(2) p86-92
    [117] 刘西拉 ,王开健 . (2004). 材料非线性问题的广义逆力法有限元格式表达. 岩石力学与工程学报 23(1) p3629-3635
    [118] 苏 煜 城 ,吴 启 光 . (1991). 奇 异 摄 动 问 题 数 值 方 法 引 论 . 重 庆 出 版 社 . 重庆
    [119] 孙训方 ,方孝淑 ,关来泰 . (1994). 材料力学 . 高等教育出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700