用户名: 密码: 验证码:
纤维质高效水解关键技术及其在木薯燃料乙醇产业中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与其它大宗发酵产品一样,木薯燃料乙醇的生产过程中也存在着大量废水与废渣的污染问题,国际上目前普遍采用“厌氧+好氧”最后达标排放的方式进行治理,然而这种治表不治里的末端治理模式代价高昂且难以根治,给企业造成了重大的经济负担,偷排事件时有发生。一些基于清洁生产理念而提出的废水直接回用或者经膜过滤后再回用的研究探索仍然无法经济有效地解决废水的污染问题。为此,研究改变现有的废水末端治理模式,开发并实现木薯燃料乙醇的“零污染、低能耗”理想制造模式就显得尤为必要。这种理想制造模式的研究和应用将促进木薯燃料乙醇产业的可持续发展,并为其它大宗发酵产品的无废制造指明方向,在提高企业经济收益的同时有望打破产业的污染困局,进而促进整个生物工业产业向绿色制造方向的转型,具有重大的理论价值和现实意义。
     本论文以木薯燃料乙醇的无废制造为研究切入点,根据“生态营养链”原理提出了将木薯燃料乙醇生产与沼气发酵相耦联的环形生产模式,通过建立数学模型的方式研究了木薯酒精沼气双发酵耦联体系的运行规律,探讨了稀硫酸预处理技术在提高木薯渣甲烷产量方面的应用潜力,定向构建了一组高效的纤维素降解复合菌系WX-1并将其应用于木薯渣的高效沼气发酵之中,研究了复合菌系WX-1实现纤维素高效降解的关键因子与降解机制,最后通过工艺集成将复合菌系预处理技术耦合于木薯酒精沼气双发酵耦联体系中,对原双发酵耦联工艺进行了改进和完善。主要研究结果如下:
     (1)建立了木薯酒精沼气双发酵耦联工艺,通过构建的3个数学模型对耦联体系中主要抑制物(如有机物、总离子、挥发酸和色素等)的累积规律进行了模拟。回用水中的抑制物经过3-7批次的循环发酵后达到了一个相对稳定的平衡状态,该结论与数学模型的模拟结果基本一致。这些抑制物对酒精发酵没有明显不利影响,其酒精产量、发酵周期和淀粉利用率与传统的自来水发酵水平相当。然而,每批次的循环过程中将有7.54%(w/w)左右的水分损失,需在下批次循环时补充自来水即可达到稳定。该耦联工艺在13批次的循环过程中被证实能够稳定运行,回用水中抑制物最终所达到的平衡状态可确保该循环工艺的成功运行。
     (2)通过统计学方法研究了热稀硫酸水解技术在木薯渣预处理中的应用,一组三因素的中心组合试验设计确定了木薯渣用于甲烷发酵的最佳稀硫酸预处理条件。在预处理过程中,采用响应面法评估了温度、硫酸浓度以及反应时间对甲烷产量提高率的单独和交互效应。通过优化以后,确定最佳的预处理条件为157.84℃,采用2.99%(w/w TS)的硫酸水解20.15min,此时的最大甲烷产量(248mL/g VS)比空白对照(158mL/g VS)提高了56.96%,与预测值56.53%非常接近。这些结果表明通过响应面分析得到的模型适合于预测最佳的稀硫酸预处理条件,且采用稀硫酸水解技术预处理木薯渣以增加其甲烷产量具有一定的应用潜力。但是,进一步分析发现将稀硫酸预处理技术应用于双发酵耦联体系中却并不合适。
     (3)定向构建了一组稳定耐热的高效纤维素降解复合菌系WX-1,通过变性梯度凝胶电泳和序列分析证实了该复合菌系由多种纤维素降解和非降解菌所组成,这些微生物在复合菌系中的协作与共生关系提高了它们的纤维素降解能力。在厌氧消化前将木薯渣和酒精蒸馏废液按2:50(w/v)的比例混合于55℃的分批反应器中并接入5%(v/v)的复合菌系进行预处理,试验结果表明经过复合菌系WX-1预处理12h后木薯渣的甲烷产量可达到最大值(259.46mL/g-VS),相对于空白对照(131.95mL/g-VS)提高了96.63%。
     (4)采用亲和消化法提取纯化了复合菌系WX-1中的纤维结合蛋白。纯化后的纤维结合蛋白经质谱鉴定由8种蛋白所组成,其中除蛋白CBP4由Paenibacillus sp.分泌的外,其它的蛋白均由C.clariflavum DSM19732所产生的内切与外切纤维素酶或木聚糖酶所组成。由酶谱分析可见,高分子量(66-200kDa)的蛋白具有木聚糖酶和CMC酶的活性,且纤维结合蛋白CBP6的木聚糖酶和CMC酶活性均最强,而低分子量的蛋白则主要表现CMC酶活性。通过结构域预测发现除纤维结合蛋白CBP13外的所有蛋白均拥有一种催化结构域,分别隶属于第8、9、10及48家族的糖苷水解酶。此外,部分蛋白还具有碳水化合物结合域(CBP1,2,4-6)以及连接蛋白结合域(CBP5-12),此发现证实了纤维素降解复合菌系WX~-1主要是通过形成纤维小体的模式来实现纤维素高效降解的。
     (5)通过梯度稀释法阐明了纤维素高效降解复合菌系WX-1的关键功能菌和酶蛋白。原始复合菌系WX~-1经梯度稀释后置于以木薯渣和滤纸为唯一碳源的发酵培养基中进行培养,研究表明复合菌系WX~-1实现滤纸有效降解的稀释临界点为10-5,进一步提高稀释梯度将导致其丧失滤纸的降解能力同时伴随着变性梯度凝胶电泳图上4条条带的消失。在稀释的过程中菌株C. clariflavum DSM19732(条带2)和Paenibacillus(条带4)的消失被证实是该复合菌系丧失滤纸降解能力的主要原因,且这两株菌是复合菌系WX~-1中实现滤纸降解的关键功能菌。此外,由梯度稀释法结合SDS-PAGE电泳及酶谱分析结果可知,由C. clariflavum DSM19732分泌的蛋白CBP6和CBP12,在滤纸的降解中起着最为关键的作用,它们分别隶属于第9和48家族的糖苷水解酶并呈现出内切与外切的纤维素酶的活性。菌株Paenibacillus sp.所产生的木聚糖酶可以促进纤维素的降解,但少量的该菌的存在并不能单独实现滤纸的降解。
     (6)在复合菌系WX-1预处理木薯酒糟的过程中将含有4%(w/v)木薯渣的酒精蒸馏废液与高温厌氧出水按1:2(v/v)的比例进行混合配比并维持0.25vvm的通气量时最有利于后续厌氧消化过程中甲烷产量的提高。经24h的预处理后,0.5L木薯酒糟的甲烷产量可以达到10.29L,相对于0h对照组的甲烷产量(8.75L)提高了17.6%。此外,研究还发现木薯酒糟不经或经过复合菌系预处理的单相或两相甲烷发酵分别能够在有机负荷小于12和20g COD L~(-1)d~(-1)的条件下稳定运行,其各自最大的甲烷体积产率分别为0.93和2.07L CH-4L1d~(-1)。两相甲烷发酵体系中厌氧消化时的比甲烷产率为0.147L CH_4g~(-1)CODremoved比单相时的0.125L CH14g-CODremoved提高了17.6%。上述结果表明通过纤维素降解复合菌系WX-1水解来强化木薯酒糟的厌氧消化过程,能够显著提高厌氧消化过程中的甲烷产量和产率,并能够使厌氧反应更加稳定地进行。
     (7)在耦合复合菌系预处理技术的木薯酒精沼气双发酵耦联工艺中,连续7批次的循环发酵试验证实改进型的双发酵耦联工艺对酒精发酵没有任何不利影响,在料液比为1:2.7(w/w)的条件下酒精产量、淀粉利用率及发酵周期分别维持在12.6%、90%和48h左右,该结果与以自来水作为配料水时的酒精发酵水平相当。在7批次的循环过程中,改进型的双发酵耦联体系中的有机物、挥发酸、总氮和氨氮经过2-5批次的循环后基本达到平衡状态,而体系中的离子浓度和碱度则在循环发酵的过程中却有少许的下降趋势。此外,改进型的双发酵耦联工艺中每循环批次的厌氧消化过程中的总甲烷产量和日均产甲烷速率分别可以达到180-206L和40-45L CH4L~(-1)d~(-1),比原耦联工艺中的总甲烷产量(155L)和日均产甲烷速率(32L CH4L~(-1)d~(-1))分别提高了16.1-32.9%和25-40.6%左右。
The pollution problem with a large amount of wastewater and residues generated from cassava basedbioethanol production is the same as which existed in the production of other bulk fermentation products.At present, the end-treatment model such as “anaerobic plus aerobic” treatment and then being dischargedaccording to the criterion was generally applied in the world. However, such model, which only curing theoutside without curing the inside, is capital–intensive, hard to cure, bringing huge economic burden to theenterprises, resulting in the often occurrence of steal-discharging events. Some exploration based on theconcept of cleaner production, such as reusing wastewater directly or after filtered by membrane, still couldnot economically and effectively solve the pollution problem. Therefore, it is essential to change theexisting end-treatment model, and to explore and realize the ideal manufacture model with “zero pollutionand little energy consumption” for cassava based bioethanol production. The investigation and applicationof such kind of ideal manufacture model would promote the sustainable development of cassava bioethanolindustry and point out the direction for no-waste manufacture of other fermentation products. Suchmeasurement would increase the economic repay for enterprises and simultaneously break the pollutiondilemma, then further promote the transformation of the whole biological industry into greenermanufacture, illustrating great theoretical value and practical significance.
     No-waste manufacture of cassava bioethanol was utilized as the research entry point in this paper,where a circle production model of ethanol and biogas integrated fermentation was proposed according tothe theory of “ecological nutrition chain”. In the present study, the operation rule of an integrated system ofcassava bioethanol and biogas dual fermentation was investigated by the establishment of mathematicsmodels. The application potential of dilute sulfuric acid pretreatment technology was then explored on theenhancement of the methane yield from cassava residues. In addition, a microbial consortium WX-1withhigh efficient cellulolytic ability was directionally constructed and applied in the efficient biogasfermentation of cassava residues, where the key degradation factors and mechanism which realized theefficient degradation of cellulose of this consortium was further investigated. The original integratedtechnology of dual fermentation was finally improved by the process integration through coupling themicrobial consortium pretreatment technology into the integrated system of cassava bioethanol and biogasdual fermentation. The main research results were shown as follows.
     (1) An integrated ethanol-methane fermentation system was proposed for cassava based bioethanolproduction, where three mathematical models were established to simulate the accumulation of majorinhibitory substances, including organic compounds, total ions, volatile fatty acids (VFAs) and colorants.These inhibitory substances in the reused water reached a relative steady state after3to7batches ofrecycling fermentation, which coincided with the results of mathematical models. There were no negativeeffects of these inhibitory substances on ethanol fermentation and the final ethanol yield, fermentation time,starch utilization ratio were very close to that of the conventional process using tap water. However,approximately7.54%(w/w) of water was lost during each circulation, which was replenished in subsequentcirculations, to assure consistent fermentation broth volume. This novel process was confirmed to have astable operation over13recycles. It is concluded the stable states of the inhibitory substances in the reusedwater can assure this recycling process will run successfully.
     (2) The pretreatment of cassava residues by thermal-dilute sulfuric acid (TDSA) hydrolysis wasinvestigated by means of a statistically designed set of experiments. A three-factor central composite design(CCD) was employed to identify the optimum pretreatment condition of cassava residues for methaneproduction. During the pretreatment process, the individual and interactive effects of temperature, H2SO4concentration and reaction time on increase of methane yield (IMY) were evaluated by applying responsesurface methodology (RSM). After optimization, the resulting optimum pretreatment condition was157.84℃, utilizing2.99%(w/w TS) H2SO4for20.15min, where the maximum methane yield (248mL/g VS) was56.96%higher than the control (158mL/g VS), which was very close to the predict value56.53%.These results indicate the model obtained through RSM analysis is suit to predict the optimum pretreatmentcondition and there is great potential of using TDSA pretreatment of cassava residues to enhance methaneyield. However, the utilization of the technology of TDSA pretreatment into the double-fermentationintegrated system is not suitable.
     (3) A stable thermophilic microbial consortium WX-1with high cellulose-degradation ability wassuccessfully constructed. That several species of cellulolytic and non-cellulolytic microbes coexisted in thisconsortium was proved by DGGE (denaturing gradient gel electrophoresis) and sequence analysis. Thecooperation and symbiosis of these microbes in this consortium enhanced their cellulose-degradationability. The pretreatment of cassava residues mixing with distillery wastewater at the ratio of2:50(w/v)prior to anaerobic digestion was investigated by using5%(v/v) of this microbial consortium as inoculumsin batch bioreactors at55°C. The experimental results showed that the maximum methane yield (259.46mL/g-VS) of cassava residues was obtained through12hours of pretreatment by microbial consortiumWX-1, which was96.63%higher than the control (131.95mL/g-VS).
     (4) The cellulose binding proteins of microbial consortium WX-1were purified by affinity digestionmethod. These purified proteins were identified consisting of8proteins by mass spectrum, it was foundonly protein CBP4is secreted by strain Paenibacillus sp., while the other proteins comprised of endo-andexo-cellulase or xylanase are all secreted by strain C. clariflavum DSM19732. According to the zymogramanalysis, it was found the proteins with higher molecular weight (66-200kDa) own both xylanase andCMCnase activities, and protein CBP6both reveal the highest xylanase and CMCnase activities, while theproteins with lower molecular weight mainly reveal CMCnase activities. In addition, all proteins (exceptCBP13) were found owning a kind of catalyze structure domain through structure domain prediction, whichbelongs to hydrolysis enzyme family8,9,10and48respectively. In addition, some proteins were foundowning carbohydrate binding domain (CBP1,2,4-6) and linking protein binding domain (CBP5-12), andthis finding identified the efficient degradation of cellulose of microbial consortium WX-1is realized bythe formation of cellulosome.
     (5) The key functional microbes and proteins of microbial consortium WX-1with high efficientcellulolytic ability were elucidated by a serial dilution method. The original microbial consortium WX-1was serially diluted and incubated in fermentation medium where cassava residues and filter paper wasused as carbon sources. The critical dilution point of this consortium for effective degradation of filterpaper was10-5. Further diluting this consortium from10-5resulted in the loss of degradation ability of filterpaper accompanied with the disappearance of four bands in DGGE (denaturing gradient gel electrophoresis)profiles. The losing of C. clariflavum DSM19732(band2) and Paenibacillus (band4) during the dilutionprocess was confirmed to be the main reason for the loss of degradation ability of filter paper. These resultsindicated that the above two strains are the key functional microbes of consortium WX-1involved in thedegradation of filter paper. In addition, the serial dilution method combined with SDS-PAGE andzymogram analysis results indicated that the proteins CBP6and CBP12secreted by C. clariflavum DSM19732play key roles in the degradation of filter paper. These two proteins belong to hydrolysis enzymefamily9and48, presenting endo-and exo-cellulase activities respectively. The xylanase secreted by strainPaenibacillus sp. could promote the degradation of cellulose, but the existence of this strain with lowquantity could not solely realize the degradation of filter paper.
     (6) During the pretreatment of cassava distillage by microbial consortium WX-1, it would benefit theenhancement of methane yield in the subsequent anaerobic digestion when the distillery wastewatercomprised with4%(w/v) of cassava residues and anaerobic effluent was mixed at the ratio of1:2(v/v) andkept the ventilatory capacity at0.25vvm. After24h of pretreatment, the methane yield of0.5L of cassavadistillage could reach10.29L, which was17.6%higher than the control (8.75L). In addition, it was foundthe single or two stage methane fermentation where the cassava distillage was not or pretreated bymicrobial consortium WX-1, could be stably operated when the organic loading rate was lower than12or 20g COD L~(-1)d~(-1), and their highest methane volume yield could reach0.93or2.07L CH4L~(-1)d~(-1)respectively. The specific methane yield in the two stage system of methane fermentation could reach0.147L CH4g-1CODremoved, which was17.6%higher than that in the single system. The above results revealedthat intensification of the process of cassava distillage digestion by cellulolytic microbial consortium WX-1can obviously increase the methane yield and productivity, and simultaneously promote the anaerobicdigestion proceeding more stably.
     (7) In the integrated process of cassava ethanol and biogas dual fermentation where coupled with themicrobial consortium pretreatment technology,7batches of continuous recycle fermentation testsmanifested that the improved dual fermentation integrated process has no negative effect on ethanolfermentation, where the ethanol yield, starch utilization ratio and fermentation time reached about12.6%,90%and48h respectively when cassava to liquor ratio kept at1:2.7(w/w), which was almost the samewhen fermented with tap water. During7batches of recycle process, the organic substances, volatile fattyacid, total nitrogen and ammonia nitrogen in the improved integrated system reached balanced states after2-5batches of recycle fermentation, while the total ion concentration and alkalinity showed a slow decreasetendency during the recycling process. In addition, the total methane yield and average methane producingvelocity of each recycling process could reached180-206L and42-45L CH14L-d-1respectively in theimproved technology, which was16.1-32.9%and25-40.6%higher than that of the original integratedtechnology, where its total methane yield and average methane producing velocity were only155L and32L CH4L~(-1)d~(-1)respectively.
引文
[1] Campbell CJ, Laherrere JH. The end of cheap oil [J]. Scientific American,1998,278(3):78-83.
    [2] Walter A, Rosillo-Calle F, Dolzan P, et al. Perspectives on fuel ethanol consumption and trade [J].Biomass and Bioenergy,2008,32(8):730-748.
    [3] Demirbas A. The importance of bioethanol and biodiesel from biomass [J]. Energy Sources: Part B:Economics Planning and Policy,2008,3(2):177-185.
    [4]袁振宏,罗文,吕鹏梅,等.生物质能产业现状及发展前景[J].化工进展,2009,28(10):1687-1692.
    [5] Rocha MV, Rodrigues TH, de Macedo GR, et al. Enzymatic hydrolysis and fermentation of pretreatedcashew apple bagasse with alkali and diluted sulfuric acid for bioethanol production [J]. AppliedBiochemistry and Biotechnology,2009,155(1-3):407–417.
    [6] Galbe M, Zacchi G. Pretreatment of lignocellulosic materials for efficient bioethanol production [J].Advances in Biochemical Engineering Biotechnology,2007,108:41–65.
    [7] Keshwani DR. Microwave pretreatment of switchgrass for bioethanol production [D]. ThesisDissertation. North Carolina State University,2009.
    [8]李科,靳艳玲,甘明哲等.木质纤维素生产燃料乙醇的关键技术研究现状[J].应用与环境生物学报,2008,14(6):877-884.
    [9]肖明松,王孟杰.燃料乙醇生产技术与工程建设[M].北京:人民邮电出版社,2010年.
    [10]黄季焜,仇焕广.我国生物燃料乙醇发展的社会经济影响及发展战略与对策研究[M].北京:科学出版社,2010年.
    [11] Singh SK, Juwarkar AA, Pandey RA, et al. Applicability of high rate transpiration system for treatmentof biologically treated distillery effluent [J]. Environmental Monitoring and Assessment,2008,141(1-3):201-202.
    [12] Li BZ, Balan V, Yuan YJ, et al. Process optimization to convert forage and sweet sorghum bagasse toethanol based on ammonia fiber expansion (AFEX) pretreatment [J]. Bioresource Technology,2010,101(4):1285-1292.
    [13] Torry-Smith M, Sommer P, Ahring BK. Purification of bioethanol effluent in an UASB reactor systemwith simultaneous biogas formation [J]. Biotechnology and Bioengineering,2003,84(1):7-12.
    [14]买文宁.生物化工废水处理技术及工程实例[M].北京:化学工业出版社,2002.
    [15]夏其伟,田阳,成国祥.利用木薯酒精糟生产生物饲料的方法[J].资源开发利用:饲料研究,2005,(7):24-26.
    [16] Pandey A, Soccol C R, Nigam P, et al. Biotechnological potential of agro-industrial residues. II:Cassava bagasse [J]. Bioresource Technology,2000,74(1):81-87.
    [17]吕惠生,马振忠,董秀芹,等.薯类酒精废水处理过程好氧污泥零排放工艺[P].中国专利,CN101823816A.2010-09-08.
    [18]张敏华,吕惠生,董秀芹,等.提高酒精废水全糟厌氧消化过程活性污泥浓度的方法[P].中国专利,201010167513.2010-08-18.
    [19]邹中海,罗刚,谢丽,等.木薯酒精废水高温厌氧发酵产氢研究[J].环境污染与防治,2009,31(7):39-43.
    [20] Luo G, Xie L, Zou ZH, et al. Evaluation of pretreatment method on mixed inoculum for both batch andcontinuous thermophilic biohydrogen production from cassava stillage [J]. Bioresource Technology,2010,101(3):959-964.
    [21] Luo G, Xie L, Zhou Q. Enhanced treatment efficiency of an anaerobic sequencing batch reactor(ASBR) for cassava stillage with high solids content [J]. Journal of Bioscience and Bioengineering,2009,107(6):641-645.
    [22]冼萍,邓清华,张萍,等.木薯酒精废液的达标处理研究[J].工业用水与废水,2006,37(6):20-22.
    [23]张柯,陈建军,陶冠红.木薯酒精废水的深度处理研究[J].工业水处理,2009,29(8):42-44.
    [24]杨孝奎,唐世勤,郭少春,等.玉米酒糟清液回用量的探讨[J].酿酒科技,2003(1):80-81.
    [25]马赞华,陈克平.应用清洁生产技术治理糖蜜酒精糟液[J].污染防治技术,2002(1):35-36.
    [26]吴代林,张逸庭.酒精废醪液在酒精生产中的再利用[J].云南环境科学,2001,20(4):38-37.
    [27] Kim JS, Kim BG, Lee CH. Distillery waste recycle through membrane filtration in batch alcoholfermentation [J]. Biotechnology Letters,1999,21(5):401–405.
    [28] Ding ZY, Zhang L, Fang YY, et al. Application of full permeate recycling to very high gravity ethanolfermentation from corn [J]. Korean Journal of Chemical Engineering,2009,26(3):719-723
    [29]毛忠贵,张建华.燃料乙醇制造的“零污染零能耗”趋势[J].生物工程学报.2008,24(6):946–949.
    [30] Wilson Parawira. Anaerobic treatment of agricultural residues and wastewater—Application ofhigh-rate reactors [D]. Doctor thesis, Lund University, Sweden,2004.
    [31] Mosey FE, Fernandes XA. Patterns of hydrogen in biogas from the anaerobic digestion of milk sugars[J]. Water Science and Technology,1989,21(4-5):187-196.
    [32] Rozzi A, DiPinto AC. Start up and operation of anaerobic digesters with automatic bicarbonate control[J]. Bioresource Technology,1994,48(3):215-219.
    [33] Taherzadeh MJ, Karimi K. Pretreatment of lignocellulosic wastes to improve ethanol and biogasproduction: A review [J]. International Journal of Molecular Sciences.2008,9(9):1621-1651.
    [34] Chang VS, Holtzapple MT. Fundamental factors affecting biomass enzymatic reactivity [J]. AppliedBiochemistry and Biotechnology,2000,84-86:5–37.
    [35] Laureano-Perez L, Teymouri F, Alizadeh H, et al. Understanding factors that limit enzymatichydrolysis of biomass [J]. Applied Biochemistry and Biotechnology,2005,121-124:1081–1099.
    [36] Zhang YH, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose:noncomplexed cellulase systems [J]. Biotechnology and Bioengineering,2004,88(7):797–824.
    [37] Palonen H, Thomsen AB, Tenkanen M, et al. Evaluation of wet oxidation pretreatment for enzymatichydrolysis of softwood [J]. Applied Biochemistry and Biotechnology,2004,117(1):1–17.
    [38] Delgenés JP, Penaud V, Moletta R. Pretreatments for the enhancement of anaerobic digestion of solidwastes Chapter8. In: Biomethanization of the Organic Fraction of Municipal Solid Wastes [M]. IWAPublishing,2002.201–228.
    [39] Tiehm A, Nickel K, Zellhorn M, et al. Ultrasonic waste activated sludge disintegration for improvinganaerobic stabilization [J]. Water Research,2001,35(8):2003-2009.
    [40] Hooper RJ, Li J. Summary of the factors critical to the commercial application of bioenergytechnologies [J]. Biomass and Bioenergy,1996,11(6):469-474.
    [41] Mladenovska Z, Hartmann H, Kvist T, et al. Thermal pretreatment of the solid fraction of manure:impact on the biogas reactor performance and microbial community [J]. Water Science and Technology,2006,53(8):59-67.
    [42] Bougrier C, Delgenes JP, Carrere H. Combination of thermal treatments and anaerobic digestion toreduce sewage sludge quantity and improve biogas yield [J]. Process Safety and Environmental Protection,2006,84(4):280-284.
    [43] Kivaisi AK, Eliapenda S. Pretreatment of bagasse and coconut fibres for enhanced anaerobicdegradation by rumen microorganisms [J]. Renewable Energy,1994,5(5-8):791-795.
    [44] Xiao WP, Clarkson WW. Acid solubilization of lignin and bioconversion of treated newsprint tomethane [J]. Biodegradation,1997,8(1):61-66.
    [45] Zheng M, Li X, Li L, et al. Enhancing anaerobic biogasification of corn stover through wet stateNaOH pretreatment [J]. Bioresource Technology,2009,100(21):5140–5145.
    [46] Lin Y, Wang D, Wu S, et al. Alkali pretreatment enhances biogas production in the anaerobicdigestion of pulp and paper sludge [J]. Journal of Hazardous Materials,2009,170(1):366–373.
    [47] Pan X, Arato C, Gilkes N, et al. Biorefining of softwoods using ethanol organosolv pulping:Preliminary evaluation of process streams for manufacture of fuel-grade ethanol and co-products [J].Biotechnology and Bioengineering,2005,90(4):473–481.
    [48] Arato C, Pye EK, Gjennestad G. The lignol approach to biorefining of woody biomass to produceethanol and chemicals [J]. Applied Biochemistry and Biotechnology,2005,121-124:871–882.
    [49] Lissens G, Thomsen AB, De Baere L, et al. Thermal wet oxidation improves anaerobicbiodegradability of raw and digested biowaste [J]. Environmental Science&Technology,2004,38(12):3418-3424.
    [50] Weemaes M, Grootaerd H, Simoens F, et al. Anaerobic digestion of ozonized biosolids [J]. WaterResearch,2000,34(8):2330-2336.
    [51] Hatakka AI. Pretreatment of wheat straw by white-rot fungi for enzymic saccharification of cellulose[J]. Applied Microbiology and Biotechnology,1983,18(6):350-357.
    [52] Srilatha HR, Nand K, Babu KS, et al. Fungal pretreatment of orange processing wastes by solid-statefermentation for improved production of methane [J]. Process Biochemistry,1995,30(4):327-331.
    [53] Dhouib A, Ellouz M, Aloui F, et al. Effect of bioaugmentation of activated sludge with white-rot fungion olive mill wastewater detoxification [J]. Letters in Applied Microbiology,2006,42(4):405-411.
    [54] Kivaisi A, Eliapenda S. Application of rumen microorganisms for enhanced anaerobic degradation ofbagasse and maize bran [J]. Biomass and Bioenergy,1995,8(1):45-50.
    [55] Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production: A review [J].Bioresource Technology,2002,83(1):1-11.
    [56] Ding SY, Xu Q, Crowley M, et al. A biophysical perspective on the cellulosome: new opportunitiesfor biomass conversion [J]. Current Opinion in Biotechnology,2008,19(3):218227.
    [57] Kumar P, Barrett DM, Delwiche MJ, et al. Methods for pretreatment of lignocellulosic biomass forefficient hydrolysis and biofuel production [J]. Industrial and Engineering Chemistry Research.2009,48(8):3713–3729
    [58] Lynd LR. Weimer PJ, Van Zyl WH, et al. Microbial cellulose utilization: fundamentals andbiotechnology [J]. Microbiology and Molecular Biology Reviews,2002,66(3):506-577.
    [59] Dashtban M, Schraft H, Qin W. Fungal bioconversion of lignocellulosic residues: opportunities&perspectives [J]. International Journal of Biological Sciences,2009,5(6):578-595.
    [60] Christopher HV. The molecular composition of lignin in spruce decayed by white-rot fungi(Phanerochaete chrysosporium and Trametes versicolor) using pyrolysis–GC–MS and thermochemolysiswith tetramethylammonium hydroxide [J]. International Biodeterioration and Biodegradation,2003,51(1):67–75.
    [61] Haq IU, Javed MM, Khan TS, et al. Cotton saccharifying activity of cellulases produced by co-cultureof Aspergillus niger and Trichoderma viride [J]. Research Journal of Agriculture and Biological Sciences,2005,1(3):241–245.
    [62]陈耀宁.堆肥化中协同降解木质纤维素的混合菌筛选及其培养[D]:[博士学位论文].长沙:湖南大学,2007.
    [63]涂漩,薛泉宏,司美茹,等.多元混菌发酵对纤维素酶活性的影响[J].工业微生物,2004,34(1):30–34.
    [64] Yang YH, Wang BC. Construction of a microbial consortium used for solid-state fermentation on ricechaff [J]. Colloids and Surfaces B: Biointerfaces,2003,32(1):51–56.
    [65]蒲涛,钟毅沪,郑宗坤.混合培养对固氮菌和纤维素分解菌生长及固氮的影响[J].氨基酸和生物资源,2000,22(1):1–4.
    [66] Ng TK, Ben-Bassat A, Zeikus JG. Ethanol production by thermophilic bacteria: fermentation ofcellulosic substrates by cocultures of Clostridium thermocellum and Clostridium thermohydrosulfuricum [J].Applied and Environmental Microbiology,1981,41(6):13371343.
    [67] Maki M, Leung KT, Qin W. The prospects of cellulase-producing bacteria for the bioconversion oflignocellulosic biomass [J]. International Journal of Biological Sciences,2009,5(5):500516.
    [68]梁朝宁,薛燕芬,马延和.微生物降解利用木质纤维素的协同作用[J].生物工程学报,2010,26(10):1327-1332.
    [69] Odom JM,Wall JD. Photoproduction of H2from cellulose by an anaerobic bacterial coculture [J].Applied and Environmental Microbiology,1983,45(4):1300-1305.
    [70] Lewis SM, Montgomery L, Garleb KA, et al. Effects of alkaline hydrogen peroxide treatment oninvitro degradation of cellulosic substrates by mixed ruminal microorganisms and Bacteroidessuccinogenes S85[J]. Applied and Environmental Microbiology,1988,54(5):1163-1169.
    [71] Haruta S, Cui Z, Huang Z, et al. Construction of a stable microbial community with highcellulose-degradation ability[J]. Applied Microbiology and Biotechnology,2002,59(4-5):529-534.
    [72] Wongwilaiwalina S, Rattanachomsria U, Laothanachareona T, et al. Analysis of a thermophiliclignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system [J].Enzyme and Microbial Technology,2010,47(6):283–290.
    [73] Gladden JM, Allgaier M, Miller CS, et al. Glycoside hydrolase activities of thermophilic bacterialconsortia adapted to switchgrass [J]. Applied and Environmental Microbiology,2011,77(16):5804-5812.
    [74] Bell T, Newman JA, Silverman BW, et al. The contribution of species richness and composition tobacterial services [J]. Nature,2005,436(7074):1157–1160.
    [75]崔宗均,李美丹,朴哲,等.一组高效稳定纤维素分解菌复合系MC1的筛选及功能[J].环境科学,2002,23(3):36-39.
    [76]牛俊玲,崔宗均,李国学,等.高效纤维素分解菌复合系的筛选构建及其对秸秆的分解特性[J].农业环境科学学报,2005,24(4):795-799.
    [77]王伟东,王小芬,高丽娟,等.高效稳定纤维素分解菌复合系WSC-6的筛选及其功能[J].黑龙江八一农垦大学学报,2005,17(3):14-17.
    [78]王伟东,崔宗均,杨洪岩,等.高效稳定纤维素分解菌复合系WSC-6的稳定性[J].环境科学,2005,25(5):567-571.
    [79]王伟东,宋亚彬,王彦杰,等.复合菌系BYND-8的种群组成及其对沼气产量的影响[J].环境科学,2011,32(1):253-258.
    [80]潘虎,董俊德,卢向阳,等.高效纤维素分解菌群的构建及其生物多样性分析[J].湖南农业大学学报,2012,38(2):139-145.
    [81] Henrissant B, Driguez H, Viet C, et al. Synergism of cellulases from Trichoderma reesei in thedegradation of cellulose [J]. Nature Biotechnology,1985,3:722-726.
    [82] Gillian W, Reese ET. Evidence for multiple components in microbial cellulose [J]. Canadian Journal ofMicrobiology,1984,17(1):90-107.
    [83] Selby K. The purification and properties of the C1component of the cellulase complex [J]. Advancesin Chemistry,1969,95:34-50.
    [84] McHale A, Coughlan MP. Synergistic hydrolysis of cellulose by components of the extracellularcellulose system of Telaromyces emersonii [J]. FEBS Letters.1980,117(1):319-322.
    [85]卢雪梅,李越中,王蔚,高培基.黄孢原毛平革菌木素过氧化物酶类在天然木素降解中作用的研究[J].菌物系统,1998,17(2):179-184.
    [86]陈冠军,杜宗军,高培基.耐碱性真菌纤维素酶生产菌的筛选及酶学性质的初步研究[J].工业微生物,2000,30(4):23-27.
    [87] Lamed R, Bayer EA. The cellulosome of Clostridium thermocellum [J]. Advances in AppliedMicrobiology,1988,33:1-46.
    [88] Ahmed S, Deka D, Jawed M, et al. Biochemical characterization of a recombinant derivative (CtLic26A-Cel5) of a cellulosomal cellulase from Clostridium thermocellum [J]. Current Trends in Biotechnologyand Pharmacy,2009,3(1):56-63.
    [89] Haimovitz R, Barak Y, Morag E, et al. Cohesin-dockerin microarray: Diverse specificities betweentwo complementary families of interacting protein modules [J]. Proteomics,2008,8(5):968-979.
    [90] Shoseyov O, Shani Z, Levy I. Carbohydrate binding modules: biochemical properties and novelapplications [J]. Microbiology and Molecular Biology Reviews,2006,70(2):283-295.
    [91] Demain AL, Newcomb M, Wu JH. Cellulase, clostridia, and ethanol [J]. Microbiology and MolecularBiology Reviews,2005,69(1):124-154.
    [92] Berger E, Zhang D, Zverlov VV, et al. Two noncellulosomal cellulases of Clostridium thermocellum,Cel9I and Cel48Y, hydrolyse crystalline cellulose synergistically [J]. FEMS Microbiology,2007,268(2):194-201.
    [93] Himmel ME, Ding SY, Johnson DK, et al. Biomass recalcitrance: engineering plants and enzymes forbiofuels production [J]. Science,2007,315(5813):804-807.
    [94] Xie G, Bruee DC, Challacombe JF, et al. Genome sequence of the cellulolytic gliding bacteriumCytophaga hutchinsonii [J]. Applied and Environmental Microbiology,2007,73(11):3536-3546.
    [95] Zhu Y, Li H, Zhou H, et al. Cellulose and cellodextrin utilization by the cellulolytic baeteriumCytophaga hutchinsonii [J]. Bioresource Technology,2010,101(16):6432-6437.
    [96] Wilson DB. Evidence for a novel mechanism of microbial cellulose degradation [J]. Cellulose,2009,16(4):723-727.
    [97] Wilson DB. Three microbial strategies for plant cell wall degradation [J]. Annals of the New YorkAcademy of Science,2008,1125(1):289-97.
    [98] Cardona CA, Sánchez óJ. Fuel ethanol production: Process design trends and integration opportunities[J]. Bioresource Technology,2007,98(12):2415–2457.
    [99] Trovati J, Giordano RC, Giordano RLC. Improving the performance of a continuous process for theproduction of ethanol from starch [J]. Applied Biochemistry and Biotechnology,2009,156(1-3):506–520.
    [100] Saha NK, Balakrishnan M, Batra VS. Improving industrial water use: case study for an Indiandistillery [J]. Resources, Conservation and Recycling,2005,43(2):163–174.
    [101] Migo VP, Matsumara M, Rosario EJD, et al. Decolorization of molasses wastewater using aninorganic flocculant [J]. Journal of Fermentation and Bioengineering,1993,75(6):438–442.
    [102] Larsson M, Galbe M, Zacchi G. Recirculation of process water in the production of ethanol fromsoftwood [J]. Bioresource Technology,1997,60(2):143–151.
    [103] Yavuz Y. EC and EF processes for the treatment of ethanol distillery wastewater [J]. Separation andPurification Technology,2007,53(1):135–140.
    [104] Kim JS, Kim BG, Lee CH, et al. Development of clean technology in ethanol fermentation industry[J]. Journal of Cleaner Production,1997,5(4):263–267.
    [105] Teramoto Y, Ueki T, Kimura K, et al. Semi-continuous ethanol fermentation with Shochu distillerywaste [J]. Journal of the Institute of Brewing,1993,99(2):139–142.
    [106] Zhang W, Xiong RC, Wei G. Biological flocculation treatment on distillery wastewater andrecirculation of wastewater [J]. Journal of Hazardous Materials,2009,172(2-3):1252-1257
    [107] Converti A, Arni S, Sato S, et al. Simplified modeling of fed-batch alcoholic fermentation ofsugarcan blackstrap molasses [J]. Biotechnology and Bioengineering,2003,84(1):88–95.
    [108] Leksawasdi N, Joachimsthal EL, Rogers PL. Mathematical modeling of ethanol production fromglucose/xylose mixtures by recombinant Zymomonas mobilis [J]. Biotechnology Letters,2001,23(13):1087–1093.
    [109] Costa AC, Atala DIP, Maugeri F, et al. Factorial design and simulation for the optimization anddetermination of control structures for an extractive alcoholic fermentation [J]. Process Biochemistry,2001,37(2):125–137.
    [110] APHA. Standard methods for the examination of water and wastewater [S]. American Public HealthAssociation, Washington, DC, USA,1995.
    [111]水质色度的测定. GB11903-89[S].北京:中国环境保护部,1989.
    [112] Yamada M, Yamauchi M, Suzuki T, et al. On-site treatment of high-strength alcohol distillerywastewater by a pilot-scale thermophilic multi-staged UASB (MS-UASB) reactor [J]. Water Science andTechnology,2006,53(3):27–35.
    [113] Wolmarans B, Villiers GH. Start-up of a UASB effluent treatment plant on distillery wastewater [J].Water SA,2002,28(1):63–68.
    [114]任南琪,赵丹,陈晓蕾,等.厌氧生物处理丙酸产生和积累的原因及对策[J].中国科学(B辑).2002,32(1):83-89.
    [115] Hanaki K, Hirunmasuwan S, Matsuo T. Protection of methanogenic bacteria from low pH and toxicmaterials by immobilization using polyvinyl alcohol [J]. Water Research,1994,28(4):877-885.
    [116]翟芳芳,张静,张建华,等.酒精沼气双发酵偶联工艺中沼液有机酸对酒精发酵的影响[J].食品与生物技术学报,2010,29(3):432-436.
    [117] Pant D, Adholeya A. Biological approaches for treatment of distillery wastewater: A review [J].Bioresource Technology,2007,98(12):2321–2334.
    [118] Kim J, Park C, Kim TH, et al. Effects of various pre-treatments for enhanced anaerobic digestionwith waste activated sludge [J]. Journal of Bioscience and Bioengineering,2003,95(3):271–275.
    [119] Park C, Lee C, Kim S, et al. Upgrading of anaerobic digestion by incorporating two differenthydrolysis processes [J]. Journal of Bioscience and Bioengineering,2005,100(2):164–167.
    [120] Liu CZ, Cheng XY. Microwave-assisted acid pretreatment for enhancing biogas production fromherbal-extraction process residue [J]. Energy Fuels,2009,23(12):6152–6155.
    [121] Wang J, Yue ZB, Chen TH, et al.2010. Anaerobic digestibility and fiber composition of bulrush inresponse to steam explosion [J]. Bioresource Technology,100,101(17):6610–6614.
    [122] Hogan F, Mormede S, Clark P, et al. Ultrasound sludge treatment for enhanced anaerobic digestion[J]. Water Sciecne and Technology,2004,50(9):25–32.
    [123] Hendriks ATWM, Zeeman G. Pretreatments to enhance the digestibility of lignocellulosic biomass[J]. Bioresource Technology,2009,100(1):10–18.
    [124] Cara C, Moya M, Ballesteros I, et al. Influence of solid loading on enzymatic hydrolysis of steamexploded or liquid hot water pretreated olive tree biomass [J]. Process Biochemistry,2007,42(6):1003–1009.
    [125] Kim Y, Mosier NS, Ladisch MR. Enzymatic digestion of liquid hot water pretreated hybrid poplar [J].Biotechnology Progress,2009,25(2):340–348.
    [126] Zehnder AJB, Stumm W. Geochemistry and biogeochemistry of anaerobic habitats. In: Zehnder,A.J.B.(Ed.), Biology of Anaerobic Microorganisms [M]. Wiley Interscience, New York,1988.1–38.
    [127] Bruni E, Jensen AP, Angelidaki I. Steam treatment of digested biofibers for increasing biogasproduction [J]. Bioresource Technology,2010,101(19):7668–7671.
    [128] Zhang QH, Lu X, Tang L, et al. A novel full recycling process through two-stage anaerobic treatmentof distillery wastewater for bioethanol production from cassava [J]. Journal of Hazardous Materials,2010,179(1-3):635–641.
    [129] Talebnia F, Karakashev D, Angelidaki I. Production of bioethanol from wheat straw: an overview onpretreatment, hydrolysis and fermentation [J]. Bioresource Technology,2009,101(13):4744–4753.
    [130] Martinez A, Rodriguez ME, York SW, et al. Use of UV absorbance to monitor furans in dilute acidhydrolysates of biomass [J]. Biotechnology Progress,2000,16(4):637-641.
    [131] Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber, andnonstarch polysaccharides in relation to animal nutrition [J]. Journal of Dairy Science,1991,74(10):3583–3597.
    [132]任南琪,王爱杰,马放.产酸发酵微生物生理生态学[M].北京:科学出版社,2005.
    [133] Allen SG, Schulman D, Lichwa J, et al. A comparison between hot liquid water and steamfractionation of corn fiber [J]. Industrial and Engineering Chemistry Research,2001,40(13):2934-2941.
    [134] Duff SJB, Murray WD. Bioconversion of forest products industry waste cellulosics to fuel ethanol: areview [J]. Bioresource Technology,1996,55(1):1-33.
    [135] Sassner P, M rtensson CG, Galbe M, et al. Steam pretreatment of H2SO4-impregnated Salix for theproduction of bioethanol [J]. Bioresource Technology,2008,99(1):137–145.
    [136] Dien BS, Cotta MA, Jeffries TW. Bacteria engineered for fuel ethanol production: current status [J].Applied Microbiology and Biotechnology,2003,63(3):258–266.
    [137] Zhao R, Zhang Z, Zhang R, et al. Methane production from rice straw pretreated by a mixture ofacetic–propionic acid [J]. Bioresource Technology,2010,101(3):990–994
    [138] Palmqvist E, Hahn-H gerdal B. Fermentation of lignocellulosic hydrolysates. II: Inhibitors andmechanisms of inhibition [J]. Bioresource Technology,2000,74(1):25–33.
    [139] Fox MH, Noike T, Ohki T. Alkaline subcritical-water treatment and alkaline heat treatment for theincrease in biodegradability of newsprint waste [J]. Water Science and Technology,2003,48(4):77–84.
    [140] Rivard CJ, Grohmann K. Degradation of furfural (2-Furaldehyde) to methane and carbon dioxide byan anaerobic consortium [J]. Applied Biochemistry and Biotechnology,1999,28-29:285–295.
    [141] Chou KW, Norli I, Anees A. Evaluation of the effect of temperature, NaOH concentration and timeon solubilization of palm oil mill effluent (POME) using response surface methodology (RSM)[J].BioresourceTechnology,2010,101(22):8616–8622.
    [142] J rgensen H, Kristensen JB, Felby C. Enzymatic conversion of lignocellulose into fermentable sugars:challenges and opportunities [J]. Biofuels, Bioproducts and Biorefining.2007,1(2):119–134.
    [143] Gregg D, Saddler JN. A techno-economic assessment of the pretreatment and fractionation steps of abiomass-to-ethanol process [J]. Applied Biochemistry and Biotechnology,1996,57-58(1):711–727.
    [144] Mussatto SI, Fernandes M, Milagres AMF, et al. Effect of hemicellulose and lignin on enzymematichydrolysis of cellulose from brewer’s spent grain [J]. Enzyme Microbial and Technology,2008,43(2):124–129.
    [145] Damianovic MHRZ, Foresti E. Dynamics of sulfidogenesis associated to methanogenesis inhorizontal-flow anaerobic immobilized biomass reactor [J]. Process Biochemistry,2009,44(9):1050–1054.
    [146] Vavilin VA, Fernandez B, Palatsi J, et al. Hydrolysis kinetics in anaerobic degradation of particulateorganic material: an overview [J]. Waste Management,2008,28(6):939–951.
    [147] Pommier S, Llamas AM, Lefebvre X. Analysis of the outcome of shredding pretreatment on theanaerobic biodegradability of paper and cardboard materials [J]. Bioresource Technology,2010,101(2):463–468.
    [148] Zhang Q, Tang L, Zhang J, et al. Optimization of thermal-dilute sulfuric acid pretreatment forenhancement of methane production from cassava residues [J]. Bioresource Technology,2011,102(4):3958–3965.
    [149] Mshandete A, Bj rnsson L, Kivaisi AK, et al. Enhancement of anaerobic batch digestion of sisal pulpwaste by mesophilic aerobic pre-treatment [J]. Water Research,2005,39(8):1569–1575.
    [150] Bruni E, Jensen AP, Angelidaki I. Comparative study of mechanical, hydrothermal, chemical andenzymatic treatments of digested biofibers to improve biogas production [J]. Bioresource Technology,2010,101(22):8713–8717.
    [151] Mshandete AM, Bj rnsson L, Kivaisi AK, et al.2008. Two-stage anaerobic digestion of aerobicpre-treated sisal leaf decortications residues: hydrolases activities and biogas production profile [J]. AfricanJournal of Biochemistry Research.2008,2(11):211-218.
    [152] Kumar R, Singh S, Singh OV. Bioconversion of lignocellulosic biomass: biochemical and molecularperspectives [J]. Journal of Industrial Microbiology and Biotechnology,2008,35(5):377–391.
    [153] Soundar S, Chandra TS. Cellulose degradation by a mixed bacterial culture [J]. Journal of IndustrialMicrobiology and Biotechnology,1987,2(5):257–265.
    [154] Zhu H, Qu F, Zhu LH. Isolation of genomic DNAs from plants, fungi and bacteria using benzylchloride [J]. Nucleic Acids Research,1993,21(22):5278–5280.
    [155] Dubois M, Gilles KA, Hamilton JK, et al. Calorimetric method for determination of sugars andrelated substances [J]. Analytical Chemistry,1956,28(3):350–356.
    [156]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998.
    [157] Bayer EA, Belaich JP, Shoham Y, et al. The cellulosome: multienzyme machines for degradation ofplant cell wall polysaccharides [J]. Annual Review of Microbiology,2004,58:521-524.
    [158] Liu JB, Wang WD, Yang HY, et al.2006.The process of rice-straw degradation and dynamic trend ofpH by the microbial community of MC1[J]. Journal of Environmental Science (China),2006,18(6):1142-1146.
    [159] Parawira W, Murto M, Read JS, et al. Profile of hydrolases and biogas production during two-stagemesophilic anaerobic digestion of solid potato waste [J]. Process Biochemistry,2005,40(9):2945-2952.
    [160] Schink B. Energetic of syntrophic cooperation in methanogenic degradation [J]. Microbiology andMolecular Biology Reviews: MMBR,1997,61(2):262-280.
    [161] Johansen JE, Bakke R. Enhancing hydrolysis with microaeration [J]. Water Science and Technology,2006,53(8):43–50.
    [162] Kato S, Haruta S, Cui ZJ, et al. Effective cellulose degradation by a mixed-culture system composedof a cellulolytic Clostridium and anaerobic non-cellulolytic bacteria [J]. FEMS Microbiology Ecology,2004,51(1):133–142.
    [163] Kato S, Haruta S, Cui ZJ, et al. Stable coexistence of five bacterial strains as a cellulose-degradingcommunity [J]. Applied and Environmental Microbiology,2005,71(11):7099–7106.
    [164] Wang Q, Kuninobu M, Ogawa HI, et al. Degradation of volatile fatty acids in highly efficientanaerobic digestion [J]. Biomass and Bioenergy.1999,16(6):407-416.
    [165] Pohlschroeder M, Leschine SB, Canale-Parola E. Spirochaeta caldaria sp. nov., a thermophilicbacterium that enhances cellulose degradation by Clostridium thermocellum [J]. Archives Microbiology,1994,161(1):17–24.
    [166] Valásková V, de Boer W, Gunnewiek PJ, et al. Phylogenetic composition and properties of bacteriacoexisting with the fungus Hypholoma fasciculare in decaying wood [J]. The ISME Journal,2009,3(10):1218–1221.
    [167] Yu Y, Park B, Hwang S. Co-digestion of lignocellulosics with glucose using thermophilic acidogens[J]. Biochemical Engineering Journal,2004,18(3):225-229.
    [168] Cassini ST, Andrade MC, Abreu TA, et al. Alkaline and acid hydrolytic processes in aerobic andanaerobic sludges: effect on total EPS and fractions [J]. Water Science and Technology,2006,53(8):51-58.
    [169] Park WJ, Ahn JH, Hwang SW, et al. Effect of output power, target temperature, and solidconcentration on the solubilization of waste activated sludge using microwave irradiation [J]. BioresourceTechnology,2009,101(Suppl.1):S13–S16.
    [170] Khalid M, Yang WJ, Kishwar N, et al. Study of cellulolytic soil fungi and two nova species and newmedium [J]. Journal of Zhejiang University. Science B,2006,7(6):459–466.
    [171] Yang YH, Wang BC, Wang QH, et al. Research on solid-state fermentation on rice chaff with amicrobial consortium [J]. Colloids and Surfaces. B, Biointerfaces,2004,34(1):1-6.
    [172] Wang W, Yan L, Cui Z, et al. Characterization of a microbial consortium capable of degradinglignocellulose [J]. Bioresource Techology,2011,102(19):9321-9324.
    [173] Wang A, Gao L, Ren N, et al. Enrichment strategy to select functional consortium from mixedcultures: Consortium from rumen liquor for simultaneous cellulose degradation and hydrogen production[J]. International Journal of Hydrogen Energy,2010,35(24):13413-13418.
    [174] Yu R, Wang L, Duan X, et al. Isolation of cellulolytic enzymes from moldy silage by newculture-independent strategy [J]. Biotechnology Letters,2007,29(7):1037–1043.
    [175] Zhang Q, He J, Tian M, et al. Enhancement of methane production from cassava residues bybiological pretreatment using a constructed microbial consortium [J]. Bioresource Technology,2011,102(19):8899-8906.
    [176] Bhat MK. Clostridium thermocellum cellulosome: Dissociation, isolation and characterization ofsubunits and the potential biotechnological implications [J]. Recent Research Development ofBiotechnology and Bioengineering,1998,1:59-84.
    [177] Boraston AB, Bolam DN, Gilbert HJ, et al. Carbohydrate-binding modules: fine tuningpolysaccharide recognition [J]. Biochemical Journal,2004,382(3):769-781.
    [178] Morag E, Bayer EA, Lamed R. Affinity digestion for the near-total recovery of purified cellulosomefrom Clostridium thermocellum [J]. Enzyme and Microbial Technology,1992,14(4):289-292.
    [179] Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis usingmaximum likelihood, evolutionary distance, and maximum parsimony methods [J]. Molecular Biology andEvolution,2011,28(10):2731–2739.
    [180] Shiratori H, Sasaya K, Ohiwa H, et al. Clostridium clariflavum sp. nov. and Clostridium caenicola sp.nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge.International Journal of Systematic and Evolutionary Microbiology,2009,59(7):1764–1770.
    [181] Sizova MV, Izquierdo JA, Panikov NS, et al. Cellulose-and xylan-degrading thermophilic anaerobicbacteria from biocompost [J]. Applied and Environmental Microbiology,2011,77(7):2282–2291.
    [182]刘长莉.木质纤维素分解复合菌群NSC-7菌种组成及种间协作机理[D]:[博士学位论文].哈尔滨:东北林业大学,2008.
    [183] Lee YE, Lim PO. Purification and characterization of two thermostable xylanases from Paenibacillussp. DG-22[J]. Journal of Microbiology and Biotechnology,2004,14(5):1014-1021.
    [184] Shiratori H, Ikeno H, Ayame S, et al. Isolation and characterization of a new Clostridium sp, andperforms effective cellulosic waste digestion in a thermophilic methanogenic bioreactor [J]. Applied andEnvironmental Microbiology,2006,72(5):3702-3709.
    [185] Yadav S, Kaushik R, Saxena AK, et al. Diversity and phylogeny of plant growth-promoting bacillifrom moderately acidic soil [J]. Journal of Basic Microbiology,2011,51(1):98–106.
    [186] Lee ZK, Li SL, Kuo PC, et al. Thermophilic bio-energy process study on hydrogen fermentation withvegetable kitchen waste [J]. International Journal of Hydrogen Energy,2010,35(24):13458-13466.
    [187] Partanen P, Hultman J, Paulin L, et al. Bacterial diversity at different stages of the compostingprocess [J]. BMC Microbiology,2010,10:94.
    [188] Mbadinga SM, Li KP, Zhou L, et al. Analysis of alkane-dependent methanogenic community derivedfrom production water of a high-temperature petroleum reservoir [J]. Applied Microbiology andBiotechnology,2012, doi:10.1007/s00253-011-3828-8
    [189] Fendri I, Tardif C, Fierobe HP, et al. The cellulosomes from Clostridium cellulolyticum: identificationof new components and synergies between complexes [J]. The FEBS Journal,2009,276(11):3076-3086.
    [190] Watanabe K, Nagao N, Toda T, et al. The dominant bacteria shifted from the order "Lactobacillales"to Bacillales and Actinomycetales during a start-up period of large-scale, completely-mixed compostingreactor using plastic bottle flakes as bulking agent [J]. World Journal of Microbiology and Biotechnology,2009,25(5):803-811.
    [191] Visessanguan W, Benjakul S, Potachareon W, et al. Accelerated proteolysi of soy protein duringfermentation of thua-nao inoculated with Bacillus subtilis [J]. Journal of Food Biochemistry,2005,29(4):349-366.
    [192] Watanabe S, Viet DN, Kaneko J, et al. Cloning, expression, and transglycosylation reaction ofPaenibacillus sp. Strain W-61Xylanase1[J]. Bioscience, Biotechnology, and Biochemistry.2008,72(4):951–958.
    [193] Dror TW, Morag E, Rolider A, et al. Regulation of the cellulosomal celS (cel48A) gene ofClostridium thermocellum is growth rate dependent [J]. Journal of Bacteriology,2003,185(10):3042–3048.
    [194] Izquierdo JA, Sizova MV, Lynd LR. Diversity of bacteria and glycosyl hydrolase family48Genes incellulolytic consortia enriched from thermophilic biocompost [J]. Applied and EnvironmentalMicrobiology,2010,76(11):3545–3553.
    [195] Lee TH, Lim PO, Lee YE. Cloning, characterization, and expression of xylanase A gene fromPaenibacillus sp. DG-22in Escherichia coli [J]. Journal of Microbiology and Biotechnology,2007,17(1):29–36.
    [196] Pason P, Kosugi A, Waeonukul R, et al. Purification and characterization of a multienzyme complexproduced by Paenibacillus curdlanolyticus B-6[J]. Applied Microbiology and Biotechnology,2010,85(3):573–580.
    [197]吕睿瑞.天然木质素降解相关酶的宏蛋白组学分析与鉴定[D]:[硕士学位论文].福州:福建师范大学,2010.
    [35] Tomme P, Tilbeurgh HV, Pettersson G, et al. Studies of the cellulolytic system of Trichoderma reeseiQM9414[J]. European Journal of Biochemistry,1988,170(3):575-581.
    [198] Gilkes NR, Warren RAJ, Miller RC, et al. Precise excision of the cellulose binding domains from twocellulomonas fimi cellulases by a homologous protease and the effect on catalysis [J]. The Journal ofBiological Chemistry,1988,263(21):10401-10407.
    [199] Maglione G, Matsushita O, Russel JB, et al. Properties of a genetically reconstructed Prevotellaruminicola endoglucanase [J]. Applied and Environmental Microbiology,1992,58(11):3593-3597.
    [200] Lemaire M, Miras I, Gounon P, et al. Identification of region responsible for binding to the cell wallwithin the S-layer protein of Clostridium thermocellum [J]. Microbiology,1998,144(1):211-217.
    [201] Lemaire M, Ohayon H, Gounon P, et al. OlpB, a new outer layer protein of Clostridium thermocellum,and binding of its S-layer-like domain to components of the cell envelope [J]. Journal of Bacteriology,1995,177(9):2451-2459.
    [202] Mesnage S, Tosi-Couture E, Fouet A. Production and cell surface anchoring of functional fusionsbetween the SLH motifs of the Bacillus anthracis S-layer proteins and the Bacillus subtilis levansucrase [J].Molecular Microbiology,1999,31(3):927-936.
    [203] Irwin DC, Zhang S, Wilson DB. Cloning, expression and characterization of a family48exocellulase,Cel48A, from Thermobifida fusca [J]. European Journal of Biochemistry,2000,267(16):4988-4997.
    [204] García-Campayo V, Béguin P. Synergism between the cellulosome-integrating protein CipA andendoglucanase CelD of Clostridium thermocellum [J]. Journal of Biotechnology,1997,57(1-3):39-47.
    [205] Chanakya HN, Malayil S. Anaerobic Digestion for Bioenergy from Agro-Residues and Other SolidWastes—An Overview of Science, Technology and Sustainability [J]. Journal of the Indian Institute ofScience,2012,92(1):111-143.
    [206]任南琪,王爱杰,赵阳国.废水厌氧处理硫酸盐还原菌生态学[M].北京:科学出版社,2009.
    [207]谢志鹏,徐志南,郑建明.靛酚蓝反应测定发酵液中的氨态氮[J].浙江大学学报(工学版).2005,39(3):437-440.
    [208] Chen Y, Cheng JJ, Creamer KS. Inhibition of anaerobic digestion process: A review. BioresourceTechnology,2008,99(10):4044-4064.
    [209] Zhu M, Lü F, Hao LP, et al. Regulating the hydrolysis of organic wastes by micro-aeration andeffluent recirculation [J]. Waste Management.2009,29(7):2042-2050.
    [210]郝丽萍,吕凡,何品晶,等.甲烷化出水循环量对固体废物厌氧水解的影响[J].环境科学.2008,29(9):2637-2642.
    [211] Gilbert HJ, Hazlewood GP. Bacterial cellulases and xylanases [J]. Journal of General Microbiology,1993,139(2):187.
    [212] Hagesawa S, Shiota N, Katsura K, et al. Solubilization of organic sludge by thermophilic aerobicbacteria as a pre-treatment for anaerobic digestion [J]. Water Science and Technology,2000,41(3):163-169.
    [213] Fannin KF. Start-up, operation, stability and control. In: Chynoweth, D.P., Isaacson, R.(Eds.).Anaerobic digestion of biomass [M]. Elesevier, London, UK,1987.171-196.
    [214] Demirer GN, Chen S. Two-phase anaerobic digestion of unscreened dairy manure [J]. ProcessBiochemistry,2005,40(11):3542–3549.
    [215] Shin HS, Han SK, Song YC, et al. Performance of an UASB reactor treating leachate fromacidogenic fermenter in the two-phase anaerobic digestion of food waste [J]. Water Research,2001,35(14):3441–3447.
    [216] Andersson J, Bj rnsson L. Evaluation of straw as a biofilm carrier in the methanogenic stage oftwo-stage anaerobic digestion of crop residues [J]. Bioresource Technology,2002,85(1):51–56.
    [217]姜立.酒精沼气双发酵耦联工艺探究——酒精发酵抑制因子及资源化沼液研究[D]:[硕士论文].无锡:江南大学,2012年.
    [218]孙廷宏,赵长新.几种无机离子对啤酒酵母生理代谢的影响及发酵过程的产酸机制[J].大连轻工业学院学报,2002.21(001):29-32.
    [219] Kugelman IJ, McCarty PL. Cation toxicity and stimulation in anaerobic waste treatment [J]. JournalWPCF,1965,37(1):97-116.
    [220]郑新,闵航.亚硫酸盐,硫化物对厌氧消化的影响[J].环境污染与防治,1995,17(4):1-4.
    [221] Liu T, Sung S. Ammonia inhibition on thermophilic aceticlastic methanogens [J]. Water Science andTechnology,2002,45(10):113–120.
    [222] Borja R, Sánchez E, Weiland P. Influence of ammonia concentration on thermophilic anaerobicdigestion of cattle manure in upflow anaerobic sludge blanket (UASB) reactors [J]. Process Biochemistry,1996,31(5):477–483.
    [223] Ripley LE, Boyle WC, Converse JC. Improved alkalimetric monitoring for anaerobic digestion ofhigh-strength wastes [J]. Journal WPCF,1986,58(5):406-411.
    [224] Hawkes F, Guwy A, Hawkes D, et al. On-line monitoring of anaerobic digestion: application of adevice for continuous measurement of bicarbonate alkalinity[J]. Water Science and Technology,1994,30(12):1-10.
    [225] Speece R E.工业废水的厌氧生物技术[M].北京:中国建筑工业出版社.2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700