用户名: 密码: 验证码:
温度对鸡粪与作物秸秆混合原料厌氧发酵产气特性影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国农村人口众多、能源短缺,大力发展沼气技术,既为人们提供了生物质能源,又利用了农业(这里指大农业,包括畜牧业)废弃物,同时还为农户提供了有机肥料,具有显著的能源、经济、生态和环保效益,在农作物和人畜粪便等废弃物的无害化处理及资源化利用中已得到广泛应用。厌氧发酵是指各种有机物在厌氧条件下被各类发酵微生物分解转化,最终生成沼气的过程。由于厌氧消化过程受原料的组成、环境条件和大量的细菌、真菌等因素的调控,其反应机理非常复杂。其中,温度是影响厌氧消化的主要因素之一。温度的适宜与否直接决定了厌氧消化的成败。目前为止,温度对厌氧消化产气量和对原料发酵时间长短的影响没有确定的数据和记录。理论上,10~60℃的范围内,沼气均能正常发酵产气。在实际操作中,很多地区根据理论值指导生产,却没有收到显著的成效,结果造成人力、物力和财力的浪费。因此,研究和探索厌氧消化过程中,不同发酵温度对厌氧消化产气量、产气速率的变化规律,并寻求最优的发酵温度很有必要。本研究旨为实现沼气发酵的可控化及我国沼气发酵适宜区的评价提供科学依据,同时也为解决农业废弃物不合理利用而造成的环境污染问题和农业环境污染源头治理对策制定提供理论依据和技术支撑。
     本试验通过自行研究设计的可控性恒温发酵装置,以鸡粪分别与水稻秸秆、小麦秸秆和玉米秸秆干物质量比分别为1:1、2:1和3:1的混合原料为发酵原料,以常温厌氧发酵池的底物为接种物,在总固体TS(Total Solid)质量分数为8%的条件下进行批量试验。研究了它们在11个恒定发酵温度10℃、15℃、20℃、25℃、30℃、35℃、40℃、45℃、50℃、55℃和60℃下的产气情况,并用SAS软件对试验结果进行多元回归方程,建立最优回归方程,得出不同发酵原料的最优发酵温度、相应的消化时间和最大干物质累积产气量。得出以下主要结论:
     (1)本试验所用的混合原料在11个恒定温度组下均能正常产气,但在10℃和15℃的温度下,混合原料需要经过一段停滞时期才能正常产气,且产气速率变化不大,没有出现明显的产气高峰期。其它温度组里,鸡粪:稻秆1:1、鸡粪:稻秆2:1、鸡粪:稻秆3:1、鸡粪:麦秆1:1、鸡粪:麦秆2:1、鸡粪:麦秆3:1、鸡粪:玉米秆1:1、鸡粪:玉米秆2:1和鸡粪:玉米秆3:1分别在7~43d、7~42d、13~41d、7~39d、11~39d、10~41d、5~43d、9~43d和6~40d左右达到产气高峰,并分别在厌氧发酵后的31~45d、35~46d、30~46d、34~48d、36~46d、36~45d、35~46d、35~46d和35~46d左右,累积产气量达到总累积产气量的90%,表明发酵完成。
     (2)由相关性分析结果得出,本试验所用的混合原料的发酵温度与最大产气速率均呈正相关,即厌氧发酵最大产气速率在10~60℃范围内,基本上随着温度的升高而升高;与累积产气量均呈正相关,即在10~60℃范围内随着温度的升高,反应进行的越彻底。发酵温度与到达最大产气速率的时间和厌氧发酵时间均呈负相关,即在10~60℃范围内,厌氧发酵最大产气速率的最大峰值出现时间和厌氧发酵时间,基本上均随着温度的升高而缩短。
     (3)用SAS软件对试验数据进行多元回归分析得出:鸡粪:稻秆1:1的最佳温度为48℃,最佳发酵时间为53d,对应的最大干物质累积产气量为299.54mL/g;鸡粪:稻秆2:1的最佳温度为52℃,最佳发酵时间为50d,对应的最大干物质累积产气量为296.02mL/g;鸡粪:稻秆3:1的最佳温度为42℃,最佳发酵时间为50d,对应的最大干物质累积产气量为295.70mL/g;鸡粪:麦秆1:1的最佳温度为53℃,最佳发酵时间为47d,对应的最大干物质累积产气量为271.78mL/g;鸡粪:麦秆2:1的最佳温度为47℃,最佳发酵时间为47d,对应的最大干物质累积产气量为265.80mL/g;鸡粪:麦秆3:1的最佳温度为50℃,最佳发酵时间为56d,对应的最大干物质累积产气量为306.59mL/g;鸡粪:玉米秆1:1的最佳温度为57℃,最佳发酵时间为45d,对应的最大干物质累积产气量为274.66mL/g;鸡粪:玉米秆2:1的最佳温度为48℃,最佳发酵时间为49d,对应的最大干物质累积产气量为296.18mL/g;鸡粪:玉米秆3:1的最佳温度为48℃,最佳发酵时间为53d,对应的最大干物质累积产气量为299.54mL/g。
There are large population and energy shortage in the rural areas of China, promoting the innovation development of biogas technology can not only provide a source of biomass energy, but also make use of the agriculture and livestock waste, as well as provide organic fertilizer for farmers, so biogas technology has significant energy, economic, ecological and environmental benefits, and has been applied abroad on the innocuity dealing with castoff and resource utilization, for example, crop straw, the dejecta of human or livestock and so on. Anaerobic fermentation is the process that various types of organic waste are decomposed to generate biogas by microbial in anaerobic conditions. It is used in waste treating of animals and vegetable,widely.Anaerobic digestion processing is influenced by bacteria, protozoan and epiphyte etc. Its reactive mechanism is complex. Temperature is one of the main factors. Whether the temperature is proper that decided the success or fail of the anaerobic digestion directly. Up to now, temperature was the only one which had no assured data and record on the influence of producing biogas capacity through anaerobic digestion and the material fermented time. Firedamp could fermented and produced gas at the 10~60℃in theory. A lot of region coached base on the theory value in practice operation, but received little effect, and wasted the manpower, material resources and financial. The study is to explore on the rule that the influence of ferment temperature to the producing gas capacity through anaerobic digestion and biogas producing speed in the process of anaerobic digestion, seeking optimal ferment temperature, the purpose of realizing the controlling the firedamp ferment and providing the scientific according as estimate in order region of China, offering theory and technology support on settling the problem of environments pollution in the using inconsequence the agriculture castoff and the father countermeasure on the headstream of the agriculture pollution.
     This experiment carried through batch test using ferment equipment of constant temperature could be controlling and designed by ourselves, the proportioning materials of TS ratio (1:1, 2:1, 3:1) of chicken feces respectively with rice straw, wheat straw and corn straw as raw materials, and the fundus-thing of normal temperature oxygen-detested digesting pool served as the inoculate substance, with the condition of the total solid mass fraction is 8%. Chose 10℃, 15℃, 20℃, 25℃, 30℃, 35℃, 40℃, 45℃, 50℃, 55℃and 60℃as constant temperature. Through research, and analyzed the method of excessive factor regress by SAS software, and the best excellent regress equation was found, the most proper ferment temperature of different ferment material was educed and the correspond digest time and the most tolerance produced by the substance cumulate were found at the same time.The main conclusions were drawn as following:
     1. The mixed materials can producted biogas under 11 constant temperature group normally. But mixed materials need to be after a period of stagnation at 10℃and 15℃, and the biogas production rate change not change significantly. 1:1 mixture of chicken feces and rice straw, 2:1 mixture of chicken feces and rice straw, 3:1 mixture of chicken feces and rice straw, 1:1 mixture of chicken feces and wheat straw, 2:1 mixture of chicken feces and wheat straw, 3:1 mixture of chicken feces and wheat straw, 1:1 mixture of chicken feces and corn straw, 2:1 mixture of chicken feces and corn straw and 3:1 mixture of chicken feces and corn straw reached the max biogas production in 7~43d, 7~42d, 13~41d, 7~39d, 11~39d, 10~41d, 5~43d, 9~43d and 6~40d., and percentage the cumulative biogas production above 90% in 31~45d, 35~46d, 30~46d, 34~48d, 36~46d, 36~45d, 35~46d, 35~46d and 35~46d. The fermentation completied.
     2. By the results of correlation analysis, the fermentation temperature of the mixture materials positively correlated the maximum biogas production rate, and also correlated the cumulative biogas production. It means that the maximum daily biogas production and cumulative biogas production increased as the temperature increased. The the fermentation temperature of the mixture materials negatively correlated the day of max biogas production and aerobic digestion time. It means that the higher of temperature, the earlier of the day attained maximum daily biogas production appeared, and the overall length of the fermentation period was shortened as temperature increased within a certain range.
     3. The experimentation results were analyzed with the method of excessive factor regress by SAS software. The corresponding biogas production per unit dry matter of 1:1 mixture of chicken feces and rice straw which ferment at 48℃for 53d was 299.54mL/g. The corresponding biogas production per unit dry matter of 2:1 mixture of chicken feces and rice straw which ferment at 52℃for 52d was 296.02mL/g. The corresponding biogas production per unit dry matter of 3:1 mixture of chicken feces and rice straw which ferment at 42℃for 50d was 295.70mL/g. The corresponding biogas production per unit dry matter of 1:1 mixture of chicken feces and wheat straw which ferment at 53℃for 47d was 271.78mL/g. The corresponding biogas production per unit dry matter of 2:1 mixture of chicken feces and wheat straw which ferment at 47℃for 47d was 265.80mL/g. The corresponding biogas production per unit dry matter of 3:1 mixture of chicken feces and wheat straw which ferment at 50℃for 56d was 306.59mL/g. The corresponding biogas production per unit dry matter of 1:1 mixture of chicken feces and corn straw which ferment at 57℃for 45d was 274.66mL/g. The corresponding biogas production per unit dry matter of 2:1 mixture of chicken feces and corn straw which ferment at 48℃for 49d was 296.18mL/g. The corresponding biogas production per unit dry matter of 3:1 mixture of chicken feces and corn straw which ferment at 48℃for 53d was 299.54mL/g.
引文
[1]杨素萍,赵春贵,曲音波,等.生物产氢研究进展[J ].中国生物工程杂志, 2002, 22(4) : 44~47.
    [2]李维炯,李季,徐艇.农业生态工程基础[M].北京:中国环境科学出版社, 2004.
    [3]张百良.农村能源工程学[M].中国农业出版社, 1997.
    [4]邓可蕴.中国农村能源综合建设理论与实践[J].北京:中国环境科学出版社, 2001. 2~18.
    [5]李文华.中国可持续农业的理论与实践[M].北京:化学工业出版社, 2003.
    [6]万仁能.生物质能工程[M].北京:中国农业出版社, 1992.
    [7]朱俊生.中国新能源和可再生能源发展状况[J ].可再生能源, 2003, (2) : 3~8.
    [8]王玉庆.影响我国农业可持续发展的环境因素[J].农业生态环境, 1998, 14(4): 34~38.
    [9]芈振明.固体废弃物的处理与处置[M].北京:高等教育出版社, 1993.
    [10]张光明.城市垃圾厌氧消化产酸阶段研究[J ].重庆环境科学, 1998, 20 (1) : 35~37.
    [11]贺延龄.废水厌氧处理[M ].北京:中国轻工业出版社, 1999: 10~20.
    [12]边炳鑫,赵由才.农业固体废弃物的处理与综合利用[M].北京:化学工业出版社,2004.
    [13]李东,马隆龙,华南地区稻秸常温干式厌氧发酵试验研究.农业工程学报. 2006(12): 176~179
    [14]石磊,赵由才,柴晓利.我国农作物稻秸的综合利用技术进展[J ].中国沼气, 2005, 2(2): 11~19.
    [15]伊晓路,孙立,郭东彦,等.生物质稻秸预处理技术[J ].可再生能源, 2005, 2: 31~33.
    [16]冯永忠,杨世琦,任广鑫.双重背景下发展沼气产业的机遇和挑战[J].中国沼气, 2005, 23(3): 32~33
    [17]井艳文,李军,潘安君.畜禽养殖业污水控制与粪污资源化利用.北京水利, 1998, 6: 37~41
    [18]华中农业大学微生物学专业编.厌氧消化微生物学
    [19]张明峰.日益严重的畜牧污染问题[J].世界农业, 1996, 321~323.
    [20]季明,吴长征.集约化养殖业对环境的危害与预防措施[J].环境科学与技术, 1999, (2): 32~34.
    [21]吴东雷,陈声明.农业生态环境保护[M].北京:化学工业出版社, 2005. 5
    [22]张安荣,吴力斌,温世鼎.我国沼气技术研究应用进展和发展前景[J].新能源. 1997,19(7):29~34.
    [23]曾邦龙.我国沼气工程发展现状与建议[J].中国沼气. 1997, 17(20): 21~23.
    [24]陶朴良,张无敌,宋洪川,等.沼气发酵综合利用的现状与发展趋势[J].能源工程. 2001, 5:9~11.
    [25]苏亚欣,毛玉如,赵敬德.新能源与可再生能源概论[M].北京:化学工业出版社, 2006.
    [26]张涵,李文哲.鸡粪厌氧发酵特性的试验研究[J].农机化研究, 2005, 5: 190~192.
    [27]路娟娟,张无敌,刘士清,等.羊粪沼气发酵产气潜力的试验研究[J].可再生能源, 2006, 129(5): 29~31.
    [28]林双,卢玉宇,陈均生.鸭粪、鸡粪不同料液浓度对沼气发酵产气特性的影响[J].福建农业大学学报, 1997, 26(2): 237~240.
    [29]刘德江,高桂丽,朱妍梅,等.猪粪、鸡粪、羊粪沼气发酵比较试验.塔里木大学学报, 2005, 17(2): 9~12.
    [30]朱洪光,陈晓华,唐集兴.以互花米草为原料生产沼气的初步研究.农业工程学报, 2007, 23(5): 201~204.
    [31]毛羽,张无敌.菠菜叶秆厌氧发酵产气潜力的研究[J].农业与技术, 2004, 24(2): 38~41.
    [32]卢旭珍.动植物生产废弃物厌氧消化工艺研究[D].杨凌:西北农林科技大学, 2004, 6.
    [33]庞云芝,李秀金,罗庆明.温度和化学预处理对玉米秸厌氧消化产气量的影响[J].生物加工过程, 2005, 3(1): 37~41.
    [34]四川省生物研究所.沼气(资料汇报)第二集.科学技术文献出版社重庆分社, 1977.
    [35]刘荣厚,郝元元,武丽娟.温度条件对猪粪厌氧发酵沼气产气特性的影响.可再生能源, 2006(5): 32~35
    [36]王忠江,李文哲,王丽丽,等.温度波动对鸡粪高浓度水解酸化特性的影响.农业工程学报, 2007, 23(10): 199~203.
    [37]楚莉莉,杨改河,张翠丽,等.不同温度条件下农作物秸秆产气效率研究.干旱地区农业研究, 2008, 26(2): 190~199.
    [38]吴满昌,孙可伟,李如燕,等.温度对城市生活垃圾厌氧消化的影响.生态环境,2005,14(5):683~685.
    [39]于晓章,彭晓英,周朴华.温度对厌氧嗜热菌群产甲烷能力的影响.湖南农业大学学报(自然科学版), 2005, 31(4): 422~426.
    [40]张翠丽,李轶冰,卜东升,等.牲畜粪便与麦秆混合厌氧发酵的产气量、发酵时间及最优温度[J].应用生态学报,2008,19(8):1817~1822.
    [41]张翠丽,杨改河,任广鑫,等.温度对4种不同粪便厌氧消化产气效率及消化时间的影响[J].农业工程学报,2008,24(7):209-212.
    [42]李秋红,葛海华.城市有机生活垃圾厌氧发酵处理研究.江苏环境科技, 2004, 17(增刊):1~5.
    [43]李东,孙永明,袁振宏,等.原料比例和pH值对厨余垃圾和废纸联合厌氧消化的影响.过程工程学报, 2009, 9(1): 53~58.
    [44]叶子良,刘荣厚,郝元元,等.沼气发酵接种物对沼气及沼液成分的影响[J].农机化研究, 2004, 1: 187~188.
    [45]潘云霞,李文哲.接种物浓度对厌氧发酵产气特性影响的研究[J].农机化研究,2008,2:142~146.
    [46]陈明功,贾同领,高凤彩.生活垃圾发酵废水治理的研究[J].煤矿环境保护, 2001, 15(6): 24~26.
    [47]Ilyina V K, Korniushenkovaa IN , Starkovaa L V , et al. Study of methanogenesis during bioutilization of plantresiduals[J ]. Acta Astronautica, 2005, 56: 465~470.
    [48]SinghalV , Rai J P N. Biogas production from water and channel grass used for phytoremediation of industrial effluents [ J ]. Bio resource Techno logy, 2003,86: 221~225.
    [49]N eves L , Ribeiro R, O liveira R, et al. Enhancement of methane product ion from barley waste [J ]. Biomass and Bioenergy, 2006, 30: 599~603.
    [50]夏祖璋.发达国家沼气装置概述.新能源, 1994, 6:9~22.
    [51]Kettunen R H,Rintala J A.The effect of low temperature(5~20℃) and adaptation on the methanogenic activity ofbiomass[J].Appl Microbiol Biotechnol,1997,48:570~576.
    [52]Vavilin V A, Lokshina L Y,Ritov S V, et al. Description of two-steps kinetics in methane formation during psycrophilic H2/CO2 and mesophilic glucose conversion[J]. Bioresour Technol, 2000, 71: 195~209.
    [53]Vavilin V A, Lokshina L Y,Ritov S V,et al.Modelinglow-temperature methane production from cattle manureby an acclimated microbial community[J].Bioresour Technol, 1998, 63: 159~167.
    [54]Rimkus P P,Ryan J M,Cook E J.Full-scale thermophilicdigestion at the West–Southwest sewage treatment works,Chicago,Illinois [J].Journal of Water Pollution Control Federation, 1982, 54: 1447~1457.
    [55]黄志南译.世界沼气建设的研究概况[M].国外沼气资料, 1981, 5: 1~6.
    [56]蔡磊.德国利物浦罐技术在大中型沼气工程中的应用.中国沼气, 1997, 15(2): 29~32.
    [57]George Simons,Zhiqin Zhang. California continues push for dairy power[J]. Biocycle energy, 2003, 7(4): 63.
    [58]Liu Tuanchi,Sambhunath Ghosh.Phase separation during anaerobic fermentation of solid substrates in innovative plug-flow reactor[J]. Water Sci Tech, 1997, 36:30~310.
    [59]胡启春.国外厌氧处理城镇生活污水技术的应用现状和发展趋势[J].中国沼气,1998,16(2):11~15.
    [60]C V Krishna.Biogas promotion in India[EB/OL]. http://www.hedon.info/goto.php/browse/order. Type ADESC/start.library. html, 2006, 9, 6.
    [61]Sundar B, Christopherk. The strengths and weaknesses of private sector in the biogas support program in Nepa[A]. Proceedings of International Seminaron Biogas forPoverty Reduction and Sustainable Debelopment[C]. Beijing: MAG&ESCAP-UN, 2005: 113~121.
    [62]Matthew S. Mendis, WimJ. banNes. The Nepal Biogas Support Program[EB/OL]. http://www.snvworld. org/cds/rgccre/Hyperlinks Energy/BSP Nepal. pdf, 2006, 9, 6.
    [63]Biogas Project Division.upport Project to the Biogas Program for the Animal Husbandry Sector in some Provinces of Vietnam[EB/OL]. http://www.biogas.org.vn/english/aboutus. 2006, 9,6.
    [64]E Rvan Mansvelt,etal.Survey of plastic biogas digesters in Cambodia[A]. First Meeting of Nerwork of Experts on Domestic Biogas[C]. Hanoi, Vietnam: SNV,2006.
    [65]Prakash C G,Wim J. van Nes. Meetiong summary of First Meeting of Network of Experts on Domestic Biogas[EB/OL].http://www.hedon.info/goto.php/browse/order.type:DESC/start.library.html,2006,9,6.
    [66]Wim H.vanNes. Biogas from anaerobic digestion rolls out across Asia[EB/OL]. http://www.umapcaem. org/Activities Files/A01/Asia Hits The Gas. pdf, 2006, 9, 6.
    [67]H.B.Moller, S.G.Sommer, B.K.Ahring Methane productivity of manure, straw and solid fractions of manure[J]. Biomass and Bioenergy, 2004, 26(5): 485~195.
    [68]El-Shinnawi MM, Alaa El-Din MN, El-Shinmi SA,Badawi MA.Biogas production from crop residues and aquatic weeds[J]. Resour Conserv Recycling, 1989, 3:33~45.
    [69]El-Shinnawi MM, El-Houssieni M, A boel-Naga SA, Fahmy S. Chemical changes during a two-stage digestion technique for biogas production from combinations of organic wastes[J]. Resour Conserv Recycling, 1990, 3: 27~30.
    [70]Radwan AM, Sebak HA, Mitry NR, El-Zanati EA, Hamad MA.Dry anaerobic fermentation of agricultural residues[J]. Biomass Bioenergy, 1995: 495~499.
    [71]丘凌,张正茂,谢惠民.农村沼气工程理论与实践[M].西安:世界图书出版社, 1998.
    [72]邱凌.沼气与庭院生态农业[M].北京:经济管理出版社, 1998.
    [73]朱俊生.中国新能源和可再生能源发展状况[J].可再生能源, 2003, (2): 3~8.
    [74]邱凌,杨松甫,郭士英.厌氧消化与综合利用[M].杨陵:天则出版社, 1990.
    [75]邱凌.中国西部发展农村沼气的条件与对策研究[J].干旱地区农业研究, 2005.
    [76]2000年国际沼气技术与持续发展研讨会[J].中国沼气,2000.
    [77]袁书钦,周建方.农村沼气实用技术[M].郑州:河南科学技术出版社, 2005.
    [78]刘定发.稻秸处理的化学和生物学方法[J ].畜禽业, 1999, 106 (2) : 22~25.
    [79]殷志明,刘涟淮,曹安辉,金佩兰.沼气技术在新农村节能减排中的效用和发展对策.环境整治, 2007(6): 74~76.
    [80]郑戈,李景明,等.中小城镇生活污水净化沼气池工程产业化发展对策研究[J].中国沼气, 2002,(3): 28~30.
    [81]林聪.沼气技术理论与工程[M].北京:化学工业出版社, 2006. 8
    [82]Ahring B K, Ibrahim A A, MLadenovska Z. Effect of temperature increase from 55℃to 65℃on performance and microbial population dynamics of an anaerobic reactor treating cattle manure [J]. Water Research, 2001, 35: 2446~2452.
    [83]王丽丽,王忠江,梁俊爽,等. 20~30℃鸡粪厌氧发酵产气特性的试验[J].东北农业学学, 2006, 37(6): 791~795.
    [84]赵杰红,张波,蔡伟民.温度对厨余垃圾两相厌氧消化中水解和酸化过程的影响[J].环境科学, 2006, 27(8): 1682~1686.
    [85]付胜涛,于水利,严晓菊,等.剩余活性污泥和厨余垃圾的混合中温厌氧消化[J].环境科学, 2006, 27(7): 1459~1463.
    [86]李杰,李文哲,王永成,等.不同载体对鸡粪30℃厌氧处理性能的影响[J].农业环境科学学报, 2006, 25(增刊): 613~616.
    [87]Sosnowski P, Wieczorek A, Ledakowicz S. Anaerobicco-digestion of sewage sludge and organic fraction of municipal solid wastes[J]. Advances in Environmental Research, 2003,7: 609~616.
    [88]Laffitte Trouque S, Foster C F. Dualan aerobic co-digestion of Sewage and confectionery waste[J]. Bioresource Technology, 2000, 71:77~82.
    [89]Liu Shuangjiang, Hu Jicui, Gu Xiasheng. Microbiological Studies on Anaerobic Sludge Granu-lation[J]. China Environmental Science,1993,12(6):406~409.
    [90]Babel S, Fukushi K, Sitanrassamee B.Effect of acid speciation on solid waste liquefaction in anaerobic acid digester[J].Wat.Res, 2004,38:2417~2423.
    [91]Veeken A, Hamelers B.Effect of substrate seed mixing and leachate recirculation on solid state digestion of biowaste[J].WaterSci.Technol.,2000,41:255~262.
    [92]Wang J Y, Xu H L, Tay J H. A hybrid two phase system for anaerobic digestion of food waste[J]. Water Sci. Technol., 2002, 45: 159~165.
    [93]Han S K, Shin H S. Enhanced acidogenic fermentation of food waste in acontinuous 2 flow reactor[J]. Waste Manage Res., 2002, 20: 110~118.
    [94]Zinder S H, Anguish T, Cardwell S C.Effect of temperature on methanogenesis in a thermophilic (58℃) anaerobic digester [J]. Appl Environ Microbiol, 1984, 35: 808~813.
    [95]Santha H, Sung S.Valuable by-products recovery from cattle wastes using temperature-phased anaerobic digestion process[A].Hanze M.WEFs Biosolids Spec- ialty Conference[C].Verona:Lago Orta Press, 2001. 120~136.
    [96]Converti A, DelBorghi A,Zilli M, et al. Anaerobic digestion of the vegetable fraction of municipal refuses:mesophilic versus thermophilic conditions[J]. Bioprocess Eng, 1999, 21: 371~376.
    [97]李长生.农村沼气实用技术[M].北京:金盾出版社, 2004: 1~2.
    [98]张全国.沼气技术及其应用[M].北京:化学工业出版社, 2008. 6.
    [99]伍义泽.沼气新技术应用研究[M].成都:四川科技出版社, 1988.
    [100]周孟津,张榕林,蔺金印.沼气实用技术[M].北京:化学工业出版社, 2004: 34~38.
    [101]陈世和,陈建华,王十分.微生物生理学原理[M].上海:同济大学出版社. 1992: 354.
    [102]胡纪萃,周孟津,左剑恶,等.废水厌氧生物处理理论与技术[M].北京:中国建筑工业出版社. 2003: 121~128.
    [103]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社, 2003.
    [104]卢永川.沼气工程设计[M].北京:农业出版社, 1987.
    [105]黄光裕.农村沼气实用技术[M].长沙:湖南科技出版社, 1992.
    [106]农业部人事劳动司,沼气生产工.中国农业出版社, 2004.
    [107]苑瑞华.沼气生态农业技术[M].北京:中国农业出版社, 2001: 1~15.
    [108]中国科学院成都生物所.沼气发酵常规分析[M].北京:北京科学技术出版社, 1984.
    [109]刘勇,张宁珍,刘善军,等.沼肥在农业生态模式中转化应用研究[J].江西农业大学学报, 1999, 21(2): 257~260.
    [110]胡小平,王长发. SAS基础及统计实例教程[M].西安:西安地图出版社, 2001.
    [111]徐曾符.沼气工艺学[M].北京:农业出版社, 1981.
    [112] Santha H, Sung S. Valuable by-products recovery from cattle wastes using temperature-phased anaerobic digestion process[A] . Hanze M.WEFs biosolids specialty conference. Berona:Lago Orta Press, 2001: 120~136.
    [113] Converti A, Delborghi A, Zilli M, et al. Anaerobic digestion of the vegetable fraction of municipal refuses: mesophilic versus thermophilic conditions[J]. Bioprocess Eng, 1999, 21: 371~376.
    [114] Speece R E,李亚新.工业废水的厌氧生物技术[M].北京:中国建筑工业出版社,2001:35~41,80.
    [115] Wim H.vanNes.Biogas from anaerobic digestion rolls out across Asia[EB/OL]. http://www.unapcaem. org/ Activities Files / A01/Asia Hits The Gas. pdf, 2006, 9, 6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700