用户名: 密码: 验证码:
三阶段两相厌氧工艺处理皂素废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皂素工业是一个重要的生物医药化工行业,产生的废水浓度高酸性强,处理难度大、运行费用高,若不进行有效的处理会对周围环境造成严重污染,并对南水北调中线水源的水质安全构成威胁。
     针对皂素废水的性质,本人所在课题组开发了“三阶段两相厌氧”处理工艺,即在产酸相和产甲烷相中间插入内电解物化处理单元。对于该工艺我们进行了实验室试验和工业性试验,有以下研究内容和成果:
     1.在实验室环境下,进行了单相厌氧、两相厌氧和三阶段两相厌氧处理皂素废水的比较试验。在COD去除率,甲烷产率和硫酸盐去除率上三阶段两相厌氧工艺均有明显的优势。
     2.对内电解单元的位置进行了对比试验,内电解处理单元位于产酸相和产甲烷相中间是最优设置;对其产生作用的机理进行了初步的探讨,认为内电解单元在此位置优化了产甲烷生境,起到缓冲pH、降低氧化还原电位、增加微量元素和明显的降毒作用。
     3.对平行对比试验进行动力学分析得出了单相厌氧、两相厌氧、三阶段两相厌氧工艺产甲烷反应的零级反应和0~1级反应动力学常数。
     4.采用“物化处理+三阶段两相厌氧+好氧+氧化脱色”的整套处理工艺进行黄姜皂素废水的工业性试验。对各个单元按设计参数正常启动和运行后,整个处理工艺能稳定运行,其COD总去除率为99.4%,各项指标均能达到国家皂素工业水污染物排放标准的要求。
Sapogenin industry is an important biological, medical and chemicalindustry. Sapogenin wastewater is difficult to treat for its high concentrationof acid and organic matters, and it will bring serious pollution if it isn't treatedproperly. Sapogenin's main producing areas are in upriver area of Hanjiang.Therefore Sapogenin wastewater engenders a threat to the water source ofcentre line of South-North water Diversion.
     Considering the chemical character of Sapogenin wastewater, wedeveloped "the two-phase anaerobic digestion with three stages process" thatcontains an acidification phase, an inner electrolysis and a methane phase. Wehad laboratory trials and industry trials for this technology. Followings are ourtrial results.
     1. On the laboratory scale, comparative trials for treating Sapogeninwastewater were done by using three following technologies: the single phaseanaerobic digestion, the two-phase anaerobic digestion and the two-phaseanaerobic digestion with three stages. The experimental results demonstratedthat the COD removal, the sulfate removal and the methane yield of thetwo-phase anaerobic digestion with three stages is obviously better than thatof the single phase anaerobic digestion or that of the two-phase anaerobicdigestion.
     2. In this paper, we studied the functioning principles of the innerelectrolysis in "the two-phase anaerobic digestion with three stages".Comparative trials were taken to analyze the effects of the position of theinner electrolysis. Study showed that better effect could be achieved when theinner electrolysis was placed between the acidification phase and the methanephase. Experimental results showed that inner electrolysis decreased ORP, buffered pH, increased microelements, degraded toxicity and optimizedanaerobic circumstance.
     3. In the zero and first grade reaction the kinetic constant of three typesof anaerobic digestion was worked out through comparative trials on kineticanalysis.
     4. We adopted the technology that consists of "physical and chemicaltreatment+anaerobic digestion + aerobic digestion + oxidation decoloration"to treat Sapogenin wastewater in industry field. The whole equipment ofthis technology runned well and the total COD removal rate reached 99.4%.The treatment efficiency was maintained at total COD removal of over 99.4%.The effluent of this technology can fulfill the discharge standard of pollutantsfor sapogenin wastewater.
引文
[1] 江苏新医学院编.中药大词典[M].上海.上海科学技术出版社,1986,6:1698
    [2] 彭司勋.药物化学[M]北京:化学工业出版社,1988,400-447
    [3] 宋发军.甾体药物源植物薯蓣属植物中薯蓣皂甙元的研究及生产状况[J].中成药,2003,25(3):232-234.
    [4] 王巧兰,黄利民,高庆军等.药源植物盾叶薯蓣基础研究及产业化开发利用[J].军事经济学院学报,2002,9(3):92-95.
    [5] 丁志遵.天然甾体药物原料开拓利用的回顾与展望[J].中草药,1985,16(6):28-35.
    [6] 宋发军.甾体药物源植物薯蓣属植物中薯蓣皂甙元的研究及生产状况[J].中成药,2003,25(3):232-234.
    [7] 任建伟,白云,郭秋月.盾叶薯蓣培养细胞的生长及薯蓣皂甙元产生的变化规律[J].中草药1994,25(2),93-94。
    [8] 史振霞,李红.黄姜的研究利用现状[J].陕西农业科学.2005(2):52-53
    [9] 张燕,梅明,董梅.黄姜产业概况及污染防治对策[J].黄石高等专科学校学报,2004,20(4):58-60.
    [10] 郑海金,马步伟.鲜黄姜中提取薯蓣皂素新工艺研究[J].平顶山工学院学报,2005,14(2)40-42
    [11] 黄燕霞.薯蓣皂素生产工艺的研究进展(综述)[J].上海中医药杂志,2004,306(4)56-58
    [12] 李国富,冯振声.黄姜提取皂素新工艺[J].益阳师专学报,1999,16(5):67-69.
    [13] 秦华,贺芸芸.汉中黄姜产业环境问题分析与防治对策[J].陕西环境,2003,10(3):23-25.
    [14] 刘大银,毕亚凡,李庆新等.皂素生产废水综合治理技术研究(Ⅰ)——实用治理技术框架[J].武汉化工学院学报.2003,25(4):33-36.
    [15] 全国环境质量公报,国家环保总局.2002.
    [16] 刘亚平.汉江流域黄姜产业开发中的环境问题及对策[J].环境科学与技术,2002,25(Suppl):38—39.
    [17] 黄进.黄姜提取薯蓣皂甙元及葡萄糖的工艺研究[J].农业工程学报,2001,17(6):119.
    [18] 张勇,祁恩成,张守诚,等.黄姜—皂素废水综合处理技术的探讨[J].环境科学与技术,2004,27(supplement):124-125.
    [19] 钱卫国,李世杰,李其昌等.黄姜皂素废液酒精发酵和复合肥配制[J].化学与生物工程,2004,6:46-48.
    [20] 倪文斌.皂素废水末端治理方案探讨[J].襄樊职业技术学院学报.2005,4(4):1-2.
    [21] 孙欣,邓良伟,吴力斌.皂素生产废水污染特点及治理现状[J].中国沼气.2005,23(1):25-28
    [22] 刘春.皂素生产废水污染特点及治理对策探讨[J].环境保护科学,2001,27 (105):22-24.
    [23] 张志扬,李江华,贾丽云,等.UASB—生物接触氧化—絮凝沉淀法处理皂素废水[J].城市环境与城市生态,2003,16(Suppl):32-34.
    [24] 单丽伟,冯贵颖,朱丹,等.上流式厌氧污泥床(UASB)处理皂素废水的研究[J].西北农林科技大学学报(自然科学版),2003,31(Suppl):109-112.
    [25] 刘礼祥,解清杰,吴晓辉等.水解—激波厌氧—好氧工艺处理皂素废水研究[J].化学与生物工程,2004,16(1):49-51.
    [26] 解清杰,吴晓辉,陆晓华,等.物化—生化组合工艺处理皂素废水[J].环境工程,2005,23(3):26—28.
    [27] 王惠丰,呼世斌.吸收—消化工艺处理薯蓣皂素废水的研究[J].西北农林科技大学学报(自然科学版),2004,32(5):89-91.
    [28] 管运涛,蒋展鹏,祝万鹏,等.两相厌氧膜生物系统处理有机废水的研究[J].环境科学,1998,19(6):57-59.
    [29] Massey, M. l., F. G.,. Phase Separation of Anaerobic Stabilization by Kinetic Controls. JWPCF, 50 (9), pp. 2204-2222, 1978
    [30] Hulshoff Pol, L. W. Microbiology and chemistry of anaerobic digestion. in: 1st Int. Course on Anaerobic and Low Cost Treatment of Wastes and Wastewaters. The Netherlands: IAC and WAU, 1994.
    [31] 金兆丰,余志荣主编.污水处理组合工艺及工程实例[M].化学工业出版社,2003.
    [32] 杨学富.纸浆造纸工业废水处理[M].化学工业出版社,2001.
    [33] P. D. ZAKKOUR, M. R. GATERELL, P. GRIFFIN, et. al. Anaerobic Treatement of Domestic Wastewater in Temperate Climates: Treatment Plant Modelling With Economic Considerations[J]. Wat. Res. 2001, 35(17):4137-4149.
    [34] 孔繁翔主编.环境生物学[M].高等教育出版社.2000,263-264.
    [35] 胡纪萃,周孟津,左剑恶等编著,废水厌氧生物处理理论与技术[M],中国建筑工业出版社,2003:1-3.
    [36] Tuanchi Liu. Anaerobic digestion of solid substrates in an innovative two-phase plug-flow reactor(TPPFR) and a conventional single-phase continuously stirred-tank reactor[J]. 1998, Wat. Sci. Tech. 38(8-9): 453-461
    [37] Boone, D. R... Mehods for the study of methanogens and other strictly anerobic bacteria, presented at the Chengdu Biogas Institute. Sichuan, P. R. china, 1993.
    [38] 闵航等编著.厌氧微生物学.杭州:浙江大学出版社,1993.
    [39] 吕炳南,陈志强编.污水生物处理新技术[M].哈尔滨工业大学出版社,2005.2: 130-136.
    [40] 俞汉青,顾国维.两相厌氧消化工艺处理有机废水的进展和应用[J].城市环境城市生态,1992,5(3)40-43.
    [41] 李刚,欧阳峰,杨立中,等.两相厌氧消化工艺的研究与进展[J].中国沼气,2001,19(2):25-28.
    [42] F. G. Poland, S. Ghosh. Anaerobic Stabilzation of Organic Wastes Two-phase Concept[J]. Envir. Lett, 1981, (1): 255-266.
    [43] S. M. Strunach, T Rudd, J N Lester. Anaerobic Digestion Processes in Industrial Wastewater Treatment[C]. 1986.
    [44] A. MAHDAVI TALARPOSHTI, T. DOMMELLY and G. K. ANDERSON. Colour removal from a simulated dye wastewater using a two-phase anaerobic packed bed reactor[J]. Wat. Res. 2001, 35(2): 425-432.
    [45] O. INCE. Performance of A Two-phase Anaerobic Digestion System When Treating Dairy wastewater[J]. Wat. Res. 1998, 32(9): 2707-2713.
    [46] B. G. Yeoh. Two-phase Anaerobic Treatment of Cane-molasses Alcohol Stillage[J]. Wat. Sci. Tech. 1997, 36(6-7): 441-448.
    [47] M. Beccari, M. Majone, L. Torrisi. Two-reactor System with Partial Phase Separation for Anaerobic Treatment of Olive Oil Mill Effluents[J]. Wat.Sci.Tech.1998, 38 (4-5): 53-60.
    [48] Keunyoung Yang, Youngseob Yu, Seokhwan Hwang. Selective Optimization in Thermophilic Acidogenesis of Cheese-whey Wastewater to Acetic and Butyric Acids: Partial Acidfication and Methanation[J]. Water Research. 2003, 37: 2467-2477.
    [49] 国家环境保护局科技处,清华大学环境工程系.我国几种工业废水治理技术研究·高浓度有机废水(第三分册)[M].北京:化学工业出版社,1988.
    [50] 苏会东,孙玉凤,王艳君.微电解—两相厌氧处理糠醛废水研究[J].沈阳理工大学学报,2005,24(1):53-55.
    [51] 买文宁,孙中党.两相厌氧系统处理抗生素生产废水[J].中国给水排水,2003,19(7): 95-96.
    [52] 祁佩时,陈业钢,李欣,等.一体化两相厌氧反应器处理抗生素废水研究[J].给水排水,2001,27(7):49-51.
    [53] 孙剑辉,倪利晓.UBF与UASB两相厌氧系统处理ZnS—ASA医药废水的研究[J].环境科学研究,2001,14(2):30-32.
    [54] 李建政,任南琪,刘艳玲,等.中药废水高效生物处理技术的研究[J].中国给水排水,2000,16(6):5-8.
    [55] 左剑恶,胡纪萃.含硫酸盐有机废水的厌氧生物处理[J].环境科学,1990,12 (3): 67-71.
    [56] MIZUNO O, NOIKE T. The behavior of sulfate-reducing bacteria in acidogenic phase of anaerobic digestion[J]. Wat Res, 1998, 32(5): 1626-1634.
    [57] 丁琼,胡纪萃,顾夏声.COD/SO_4~(2-)值对硫酸盐废水厌氧消化的影响[J].环境科学.1992,14(1):7-12.
    [58] Rinzema, A, et al. Proc. EWPCA Conf. Anaerobic Treatment: a Grown-up Technology. Amsterdam, The Netherlands. 1988. 205-217.
    [59] MIZUNO O, NOIKE T. The behavior of sulfate-reducing bacteria in acidogenic phase of anaerobic digestion[J]. Wat Res, 1998, 32(5): 1626-1634.
    [60] GAO Y. Anaerobic Digestion of High Strength Wastewater containing High Levels of sulphate[D]. Univ, of Newcastle upon Tyne, 1989.
    [61] 王子波,封克,张键.两相UASB反应器处理含高浓度硫酸盐黑液[J].环境技术,2003,(2):38-40.
    [62] 王爱杰,任南琪,林明,等.硫酸盐还原过程中碱度的平衡与调节[J].哈尔滨工业大学学报,2003,35(6):61-64.
    [63] 杨晓奕,师绍琪,蒋展鹏,等.混凝—两相厌氧—缺氧—好氧工艺处理腈纶废水的研究[J].给水排水,2001,27(6):40-44.
    [64] 张克强,朱文亭,张蕾,等.含硫酸盐高有机物浓度酵母生产废水两相厌氧处理[J].城市环境与城市生态,2002,15(6):42~44.
    [65] 国家环境保护总局,水和废水监测分析方法编委会编.水和废水监测分析方法 [M].2002.
    [66] 黄毅.微波密封消解法测定COD值[J].上海环境科学.1996,15(5):32-34.
    [67] 贺延龄编著.废水的厌氧生物处理[M].中国轻工业出版社,1998:509-510.
    [68] 王永广等.微电解技术在工业废水处理中的研究与应用[J].环境污染治理技术与设备.2002,3(4):69-73.
    [69] 陆斌,韦鹤平.内电解强化处理腈纶废水的试验研究[J].同济大学学报,2001,29(11):1294-1298.
    [70] 罗立新,刘志江.铁屑内电解法废水处理装置研究[J].环境科学与技术,2003,26(2): 42-43.
    [71] 周培国,傅大放.微电解工艺研究进展[J].环境污染治理技术与设备 2001,2(4):18~24.
    [72] R.E.斯皮斯著,李亚新译,中国建筑工业出版社,2001.4:228-231.
    [73] Streicher, C., N. Milande, B. Capdeville, and H. Roques, Environ. Tech., 1990,12: 333-341
    [74] Callander, I. J., J. P. Barford, Precipitation, Chelation and the Availability of Metals as Nutrients in Anaerobic Digestion. Ⅱ. Applications, Biotech and Bioeng., Vol. 25, 1983.
    [75] Monod, J. F. Wat. Sew. Works,Vol. 112, No. 3, pp. 62-65,1975.
    [76] 徐竺,杨玖贤,李正山.高硫酸盐木糖废水厌氧动力学研究[J].四川环境.2002,21(3):11-32.
    [77] 王凯军,胡超.厌氧消化过程的系统分析方法[J].中国沼气.2005,23(2):15-19.
    [78] 毕亚凡,汪建华,严向东,等.黄姜皂素废水厌氧处理间歇试验研究[J].工业水处理,2005,25(9):45-48.
    [79] 王绍文,罗志腾,钱雷编著.高浓度有机废水处理技术与工程应用[M].冶金工业出版社,2003,:13-16.
    [80] 赵毅,朱法华,庞庚林,等.高浓度有机废水处理技术[J].电力环境保护,2003,19(3):46-48.
    [81] 王竹寒,孙玉华.高浓度有机废水的生物处理技术[J].江苏环境科技,1995,(4):30-31.
    [82] 赖万东,杨卓如.接触氧化污水处理技术的研究现状与展望[J].治理技术.2005,24(1):74~77.
    [83] 许炉生,朱靖.微电解—水解酸化—生物接触氧化工艺处理抗生素废水[J].江苏环境科技.2003,16(2):9-11.
    [84] 陆正禹等,UASB反应器常温下处理啤酒废水的生产性启动研究[J]中国给水排水,1995,11(3):7.
    [85] 管运涛,蒋展鹏.两相消化系统产酸相酸化特性模型[J].环境科学,2000,21(3):36-38.
    [86] Cohen A, et al. Influence of Phase Seperation on the Anaerobic Digestion of GlucoseⅡ stability. Process Biochem, 1982,16(6): 449-452.
    [87] 马放,戴爱临,任南琪,等.产氢相最佳发酵类型[J].哈尔滨建筑大学学报,1995,28(5):63-68.
    [88] 林明,任南琪,王爱杰,等.高效产氢发酵细菌在不同气相条件下产氢[J].中国沼气,2002,20(2):3-7.
    [89] 任南琪,王宝贞 有机废水处理生物制氢技术[J] 中国环境科学,1994,14(6).
    [90] 李建政,任南琪,林明,等有机废水发酵法生物制氢中试研究[J] 太阳能学报,2002,23(2):252 256.
    [91] 赵剑强.厌氧酸化工艺的COD去除率的理论分析[J].西安公路学院学报.1994, 14(1): 57-62.
    [92] 张波,史红钻,张丽丽,等.pH对厨余废物两相厌氧消化中水解和酸化过程的影响[J].环境科学学报,2005,25(5):665-668.
    [93] Zootemeyer R J. JC van den Hev. pH influence on acidogenic dissimilation of glucose in an anaerobic digest[J]. Water Reseach. 1980, 16(3).
    [94] Alexiou I E. Aaderson G K. Disign of pre-acidification reactors for the anaerobic treatment of industrial wastewater[J]. Water Science 1994, 29(9).
    [95] 任南琪,王爱杰,等.厌氧生物技术原理与应用[M].化学工业出版社,2004:68~72.
    [96] 孙振世,陈英旭,杨晔.UASB的启动及其影响因素[J].中国沼气,2000,18(2) 17-21.
    [97] Lepisto S S. Rintala J A. Start-up and operation of laboratory-scale thermophilic upflow anaerobic sludge blank reactor treating vegetable processing wastewater[J].J. Chem. Technol. Biotechnol 1997. 68: 331.
    [98] Lettinga G, Van Velsen AFM, Use of the upflow sludge blanket(USB) reactor concept for biological wastewater treatment, specially for anaerobic treatment. Bioteehnol Bioeng, 1980, 22: 699-734.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700