用户名: 密码: 验证码:
铝合金熔体的超声处理及表面复合材料的超声法制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
功率超声在合金处理方面的应用是当今材料研究的热点之一,在铸造铝合金方面有广阔的应用前景,尤其功率超声应用在铝合金中制备表面复合材料还未见报道。本实验采用功率超声对铝及铝合金熔体进行超声处理,改善了组织形态,开发了制备内生颗粒增强表面复合材料的新方法。
     在研究过程中,设计发明了“变幅坩埚”,应用该“变幅坩埚”作为超声变幅杆来进行熔体的超声处理。由于熔体是超声变幅杆的一部分,因此能实现超声与熔体很好的耦合,使熔体处在超声的近场区并被超声强烈地振动处理。
     首先系统研究了超声对工业纯铝和过共晶铝硅合金的作用。功率超声的空化作用和声流作用,对工业纯铝有很好的细化作用。过共晶铝硅合金经超声处理后,合金组织能够得到均匀和细化,初晶Si和α-Al相得到很好的超声变质效果,共晶组织则稍有粗化。作为耐磨材料,超声处理过共晶Al-Si合金具有更好的摩擦磨损性能。因此,研究超声对过共晶铝硅合金中初生硅的作用效果及作用机制具有重要的理论意义和实际价值。
     其次,研究了超声对亚共晶和共晶铝硅合金的作用,制备出了表面富Si的自生颗粒增强铝基表面复合材料,并对铝硅共晶合金自生表面复合材料的组织和性能(硬度与耐磨性)进行了观察和研究,得出了一系列创造性的研究成果。体现了超声处理亚共晶及共晶铝硅合金制备铝基表面复合材料的优越性,具有重要理论和实际意义。
     最后,研究了超声制备TiAl_3自生颗粒增强型铝基表面复合材料的工艺、表面复合层组织与性能。结果表明,随着超声功率及超声处理时间的增加,颗粒增强表面复合层的厚度逐渐变小,复合层硬度逐渐增大。
In the production of industry and agriculture, a great deal of parts bearing friction and wear need not only better surface performance but also better overall strength and toughness. In addition, with the aggravation of the global energy crisis year after year, the decrease of the weight and consumption of vehicle has been mentioned on the agenda. It is an important means for lightening own weight of the machine, has become a hot area of the material research at home and abroad, and is also the trend of the future development of the transport industry that light metals such as aluminum alloys replace the steel and iron materials with high density. However, some performances of light metals such as Al alloys etc, such as hardness and wear resistance, can not often satisfy the operating requirement. Therefore, it has important practical significance to improve the microstructure and properties of aluminum alloys in order to solve the contradiction between the wear resistance and decreasing weight of the mechanical parts. Recently, it is also one of the hotspots in material research that power ultrasonic is used to treat the melts of Al alloys, refine the microstructures, and improve the properties of Al alloys. Especially that power ultrasonic was used to treat the melts of Al alloys and prepare the surface composites in order to obtain both the good surface properties and preferable overall strength and toughness was not reported till now. Therefore, it has important theoretical and practical significance to research deeply and systematically in these fields.
     In this paper, power ultrasonic was adopted to treat the melts of Al and Al alloys. The effects and their mechanisms of power ultrasonic on the microstructures and properties of Al and Al alloys were discussed. A novel method was developed to prepare in-situ particles reinforced surface composites.
     Firstly, the system that the ultrasonic treated the melts was improved. Horn crucible was designed and invented. It was employed as a part of horn to treat the melts. The results were as fellows:
     1. A novel horn crucible has been designed and invented. The horn crucible is a part of the horn. The cooling system was set in the node of the horn to decrease the influence of the temperature on the ultrasonic transducer during ultrasonic treatment, which exhibited sufficiently the ability of the transducer.
     2. The melts as a part of the horn could be coupled very well with ultrasonic in the course of the ultrasonic treatment. As a result, the melts were treated intensively near ultrasonic zone. During the ultrasonic treatment and solidification, the ultrasonic was introduced upward so that the surface of melts could not be destroyed when the surface composites were fabricated. This provides a guarantee for the heat preservation of the melt at high temperature and the investigations of the movement of particles in the sound field during the ultrasonic treatment and the change of alloy microstructure.
     Secondly, the effects of ultrasonic on the microstructure and properties of the pure Al and hypereutectic Al-Si alloy were researched. The commercial pure Al was refined by the effects of the cavitation and acoustic flowing of ultrasonic treatment. After ultrasonic treatment, the microstructures of hypereutectic Al-Si alloy were homogenized and fined well, and this alloy had better friction and wear properties. The main results were as fellows:
     1. The microstructure of commercial pure Al treated by ultrasonic at 720℃was refined in comparison with that untreated by ultrasonic whether it was the permanent mold pouring or rapid water cooling. The dendriticα-Al was changed to equiaxial crystal. The commercial pure Al could be refined well by ultrasonic with as-ultrasonic treatment Al-5Ti-0.25C alloy grain refiner. The minimal grain size was 62μm when the contact interval was 30 s, and the anti-decay ability of the grain refiner was enhanced.
     2. The macrostructures of hypereutectic Al-23%Si alloy treated by ultrasonic (150 W, 10 min) were smaller than those untreated by ultrasonic. With increasing ultrasonic power, the microstructure of primary Si changed from five-petaled star flowers and flat bar shape to octahedron (75 W, 10 min). On the condition of high power (150W, 10min) the microstructure of primary Si was changed to fine irregular cluster primary Si. The distribution of the primary Si was uniform, and the mean size of primary Si decreased from 500μm to 180μm. The grain size ofα-Al increased firstly and then decreased, and the morphology was changed from dendrite to equiaxed crystal. The size of eutectic Si decreased from 40μm to 20μm, while the space length increased from 2.2μm to 2.8μm. With the increase of ultrasonic treating time, the microstructure of the primary Si changed from five-petaled star flowers and flat bar shape to fine irregular cluster primary Si.
     3. The hardness of hypereutectic Al-Si alloy treated by ultrasonic was analyzed with the mathematical statistics for the first time, and the distribution of the hardness was much uniform. The tensile strength of hypereutectic Al-Si alloy treated by ultrasonic was improved, but the ductility was reduced. The wear resistance of the alloy was much improved and the wear mechanism was transformed from spalling to microcutting.
     Thirdly, the effects of the ultrasonic treatment on eutectic Al-Si alloy were investigated, and Sip/Al-Si alloy surface composites were prepared. The microstructures and properties of the surface composites, such as hardness and wear resistance, were investigated. The main results were as fellows:
     1. In the eutectic Al-Si alloy treated by ultrasonic, the primary Si particles were concentrated in the surface layer due to the ultrasonic radiation force, weight and buoyance in the ultrasonic field, thus the surface composites of Sip/Al-Si alloy were fabricated. The microstructure distribution with the primary Si in the surface layer and the dendriteα-Al and eutectic in others was obtained creatively.
     2. With the increase of the ultrasonic power, the thickness of rich Si surface layer reduced and the unit area fraction of the primary Si increased. The eutectic Si was modified from needle and/or flake shape to fiber shape in middle of samples. Theα-Al dendritic was precipitated increasedly in the underside of samples. The primary dendritic arm was fined and the space of secondary dendritic arm was decreased.
     3. The hardness of the surface layer of Sip/Al-Si surface composites was higher than that of other position. The wear resistance of surface composite layer was good and the block primary Si was distributed uniformly in surface layer in contrast to that untreated by ultrasonic.
     Finally, in-situ Al_3Ti/Al surface composites were prepared by ultrasonic method. The microstructure and hardness were studied. The results were as fellows:
     1. As the melt of Al_3Ti/Al composites was treated by ultrasonic, the Al_3Ti particles were concentrated in the surface layer and formed the surface composites under the ultrasonic radiation force, weight and buoyance in the ultrasonic standing wave field. With the increase of the ultrasonic power and treating time, the thickness of the particle reinforced surface layer reduced.
     2. The sizes of Al_3Ti particles were decreased because of the cavitation and sound flowing effect of ultrasonic treatment. Meanwhile, the relative content of Ti in Al_3Ti phase increased. There were the homologous crystal lattice between Al_3Ti andα-Al, andα-Al phase solidified on the nucleus of Al_3Ti.
     3. By ultrasonic treatment, the dislocation density in the interface between the reinforce phase and matrix was increased. In the interior and grain boundary ofα-Al a great deal of dense dislocation was generated by the cavitation and sound pressure of ultrasonic. The hardness of the surface composites was increased distinctly after ultrasonic treatment.
     To sum up, the microstructures were refined and the properties were improved when the melts of Al and Al alloys were treated by ultrasonic. By the ultrasonic treatment of certain Al alloys, the surface composites could be fabricated. The results have great importance in enriching the theory of ultrasonic treating melts and broadening the application field of ultrasonic and fill up the theoretical blank of the surface composites prepared by ultrasonic method.
引文
[1]刘春玲,郭威,于思荣等.超声波在铸造法制备金属基复合材料中的应用[J].铸造技术,2004,25(6):474-476.
    [2]谢建华,王树奇,杨永涛.内生颗粒增强铁基表面复合材料的研究进展[J].表面技术,2005,34(2):4-7.
    [3]魏大均.钢表面强化工艺硼铬共渗的研究[J].兵器材料科学与工程,1990,08:24-26.
    [4]张晓玲,秦绪波,猛庆华等.无压渗透法制备铸造表面复合材料[J].复合材料学报,1999,16(3):57-60.
    [5]黄瑞芬,罗建民,王春琴.激光熔覆技术的应用及其发展[J].兵器材料科学与工程,2005,28(4):23-25.
    [6] TANG JINKE, JEFFERY S. ZABINSKI, JOHN E. BULTMAN. TiC coatings prepared by pulsed laser deposition and magnetron sputtering [J]. Surface and Coatings Technology, 1997,91:69-73.
    [7]李娟.自蔓延合成技术及其应用[J ].建材技术与应用,2003,5:20-21.
    [8]邹正光. TiC/Fe复合材料的自蔓延高温合成工艺及应用[M].北京:冶金工业出版社,2002.
    [9]谭银元.离心铸造过共晶Al-Si合金自生梯度复合材料及其阻尼性能[J].中国有色金属学报,2002,12(2):353-357.
    [10]王渠东,丁文江,金俊泽.离心铸造复合材料的研究与发展[J].材料导报,1998,12(6):61-64.
    [11]张新平,于思荣,何镇明.离心铸造梯度功能材料的研究现状及展望[J].铸造,1999,5:47-50.
    [12]程广萍.自蔓延-离心法制备复合管新工艺[J].湖南冶金,2001,4:18-22
    [13] ROBERTO ORRO, BARBARA SINMONCINI, GIACOMO CAOETAL. Computer-aided manufacturing of centrifugal SHS coatings [J]. Computer ChemEngineering, 1996, 20:1185-1190.
    [14]殷声.自蔓延高温合成技术和材料[M].北京:冶金工业出版社,1995,122.
    [15]付永信,王建江,杜心康等.热喷涂技术制备功能梯度材料涂层的发展状况材料保护[J],2006,39(6):41-44.
    [16]刘长松,刘永和,殷声.火焰喷涂合成TiC-Fe涂层的热力学分析[J].金属学报,2000,36(1):62-66.
    [17]孙志平,王一三,丁义超等.铸造烧结VC-Fe基表面复合材料[J].铸造技术,2001,22(5):46-49.
    [18]严有为,刘生发,范晓明等.基于SHS技术制备铸造钢基TiC-Fe梯度复合涂层及其界面结构[J].复合材料学报,2003,20(3):64-68.
    [19]冯若,李化茂.声化学及其应用[M].安徽:安徽科学技术出版社,1992.
    [20]林书玉.功率超声技术的研究现状及其最新进展[J].陕西师范大学学报(自然科学版),2001,29(1):101-106.
    [21]王建明.功率超声技术的现状与展望[J].声学技术. 1997,16(1):46-48.
    [22]陈思忠.我们功率超声技术近况与应用进展[J].声学技术,2002,21:46-49.
    [23]潘蕾,陈锋,吴申庆,王俊.高能超声作用下SiCp/ZA27复合材料的制备及性能[J].铸造,52,4:235-238..
    [24]张艳臻.超声波的声纳原理和空化效应[J].广西物理,1996,17(4):8-10.
    [25]陈锋,何德玶,舒光冀.超声处理在金属及其复合材料制备中的应用[J].材料导报,1994,5:13-15
    [26]巴比科夫.超声波及其在工业上的应用[M].北京:科学出版社,1962.
    [27] G. I. ESKIN. Cavitation mechanism of ultrasonic melt degassing [J]. Ultrasonics Sonochemistry,1995,2(2):S137-S141.
    [28] V. ABRAMOV, O. ABRAMOV, V. BULGAKOV, et al. Solidification of aluminium alloys under ultrasonic irradiation using water-cooled resonator [J]. Materials Letter, 1998,37:27-34.
    [29] H.B. XU, T.T. MEEK. Degassing of molten aluminum A356 alloy using ultrasonic vibration [J]. Materials Letters, 2004;58(29):3669-3673.
    [30]胡化文,陈康华等.超声波熔体处理对铝合金组织和性能的影响[J].特种铸造及有色合金,2004,4:11-13.
    [31] G.I. ESKIN. Broad prospects for commercial application of the ultrasonic (cavitation) melt treatment of light alloys [J]. Ultrasonics Sonochemistry, 2001,8(3):319-325.
    [32]李应龙,高彩茹,王玉贵.铝硅合金的振动变质研究[J].轻合金加工技术,1999,27:8-18.
    [33]李英龙,李宝绵,刘永涛,高彩茹,戴恩泰.功率超声对Al-Si合金组织和性能的影响[J].中国有色金属学报,1999,9(4):719-722.
    [34]高守雷,张家涛等.超声场下熔体温度对SnSb合金凝固组织的影响[J].特种铸造及有色合金,2003(3):21-22.
    [35] JIAN X, XU H, MEEK TT, HAN Q. Effect of power ultrasound on solidificationof aluminum A356 alloy [J]. Materials Letter, 2005;59(2-3):190-193.
    [36] X. JIAN, T.T. MEEK, Q. HAN. Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration [J]. Scripta Materialia, 2006,54:893-896.
    [37]赵忠兴,毕鉴智,郑一,金光,穆玉刚.铝合金超声铸造技术[J].特种铸造及有色合金,1999,1:13-15.
    [38]赵忠兴,穆玉刚,周广英,张辽远,黄金日.超声振动对铸造合金结晶过程的影响[J].沈阳工业学院学报, 16,3:9-13.
    [39] V.O.ABRAMOV, O.V. ABRAMOV, B.B. STRAUMAL, et al. Hypereutectic Al-Si based alloys with a thixotropic microstructure produced by ultrasonic treatment [J]. Materials and Design, 1997,18:323-326.
    [40] SOMMER F., ABRAMOV O.V., ORLOV D., ABRAMOV V.O. Properties of Al-Pb base alloys applying electromagnetic forces and ultrasonic vibration during casting [J]. Materials Letters, 1995,23:17-20.
    [41] G. N. KOZHEMYAKIN. Influence of ultrasonic vibrations on the growth of In-Sb crystals [J]. Journal of Crystal Growth, 1995,149:266-268.
    [42] C.K. JEN, H. SODA, Y.S. LIU, et al. Acoustic characterization of metals with columnar grains [J]. Ultrasonics, 1995,33:181-186.
    [43]潘蕾,陈锋,吴申庆等.高能超声作用下金属基复合材料的制备[J].机械工程材料,2003,27(7):1-3.
    [44]王俊,周尧和,舒光冀,张力宁.用高能超声制备金属基复合材料的现状与发展[J].铸造,1997,12:40-42.
    [45] ESKIN G.I., ESKIN D.G. Production of natural and synthesized aluminum-based composite materials with the aid of ultrasonic (cavitation) treatment of the melt [J]. Ultrasonics Sonochemistry, 2003,10(4-5):297-301.
    [46]王俊,陈锋,孙宝德.高能超声在制备颗粒增强金属基复合材料中的作用[J].上海交通大学学报,1999,33(7):813-816.
    [47]王俊,陈峰,张力宁,舒逃冀.高能超声制备Al2O3/ZA22复合材料与性能研究[J].铸造,1997,5:1-3.
    [48]马立群,陈锋,舒光冀.用高能超声法制备微细颗粒增强金属基复合材料[J].材料研究学报,1995,9(4):372-375.
    [49]陈锋,舒光冀,马立群,何德坪.高能超声作用下数种金属基复合材料的制备及机制[J].复合材料学报,1998,15(3):12-16.
    [50] YANG YONG, LAN JIE, LI XIAOCHUN. Study on bulk aluminum matrix nano-composite fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy [J]. Materials Science and Engineering A,2004,380(1-2):378-383.
    [51]杨德明,潘进,尹新方等.功率超声在金属基复合材料和超细粉制备中的应用[J].稀有金属材料与工程,1996,25(6):50-54.
    [52]潘蕾,陈锋等.高能超声稀释原位反应烧结块的研究[J].特种铸造及有色合金,2004,1:34-36.
    [53] R.J. TOWNSEND, M. HILL, N.R. HARRIS, N.M. WHITE. Modelling of particle paths passing through an ultrasonic standing wave [J]. Ultrasonics, 2004,42:319–324.
    [54]白晓清,赫冀成.流动液体中粒子的超声分离实验研究[J].过滤与分离,2001,11(4):1-3.
    [55]白晓清,赫冀成.超声波作用下金属液中微小夹杂物的凝聚过程[J].钢铁研究学报,2001,13(6):1-4.
    [56] M.C. BEKKER, J.P. MEYER, L. PRETORIOUS, D.F. VANDER MERWE. Separation of solid-liquid suspensions with ultrasonic acoustic energy [J]. Water Research,1997,31(10):2543-2549.
    [57] S. GUPTA, D.L. FEKE, I. MANAS-ZLOCZOWER. Fractionation of mixed particulate solids according to compressibility using ultrasonic standing wave fields [J]. Chemical Engineering Science, 1995, 50(20) : 3275-3284.
    [58] DWAYNE A. JOHNSON, DONALD L. FEKE. Methodology for fractionating suspended particles using ultrasonic standing wave and divided flow fields [J]. Separations Technology, 1995,5(4):251-258.
    [59] OHTANI KEISUKE, KOIKE YOSHIKAZU, UEHA SADAYUKI, YOKOI HIROSHI. Novel wedge-shaped doubly inclined chamber for the flow-through separation of suspended particles [J]. ultraonics, 2000,38(1-8):647-649.
    [60] HAWKES J.J., BARROW D., COAKLEY W.T.. Microparticle manipulation in millimetre scale ultrasonic standing wave chambers [J]. Ultrasonics, 1998,36(9):925-931
    [61] LIMAYE M.S., HAWKES J.J., COAKLEY W.T.. Ultrasonic standing wave removal of microorganisms from suspension in small batch systems [J]. Journal of Microbiological Methods, 1996,27:211-220.
    [62]解文军,曹崇德,魏炳波.声悬浮的实验研究和数值模拟分析[J].物理学报,1999,48:250-256.
    [63]王刚,王伟平,曹竹友.通过数值模拟方法讨论声悬浮装置中颗粒稳定性[J].化工学报,2000,51:134-138.
    [64]曹竹友,刘书琴,李治民,等.声悬浮反应器的设计与控制[J].化学反应工程与工艺,1995,11:120-127.
    [65]秦炜,原永辉,戴猷元.超声场对化工分离过程的强化[J].化工进展,1995,1:1-5.
    [66]胡松青,丘泰球,张喜梅,姚成灿.功率超声在分离纯化中的应用[J].声学技术,1999,18(4):180-184.
    [67]丘泰球,胡松青,谢雄飞,张喜梅.超声促进胶体聚沉作用的研究[J].应用声学,1998,17(6):32-35.
    [68]丘泰球,曾思贤,蔡纯,等.声场对胶体物系絮凝分离作用的研究[J].华南理工大学学报(自然科学版),1999,27(12):94-99.
    [69]吴宏.超声作用茂金属聚乙烯及其共混体系流变行为及结构与性能的演变[D].四川大学,2004.
    [70]李英龙,李宝绵等.超声波对热浸镀锌的影响[J].材料保护,2000,33(3):23-25.
    [71]李英龙,李宝绵等.超声波对热浸镀锌的影响[J].腐蚀科学与防护技术,2000,12(1):32-35.
    [72]崔宁,杨连喜,杨熙珍,柴林兴.超声波对化学镀Ni-P非晶态合金性能的影响[J].山东工业大学学报,1994,24(2):122-126.
    [73]杨盛良,卓钺,尹新方,杨德明.碳纤维增强铝复合材料的界面微观结构[J].材料工程,2001,7:19-21.
    [74]杨盛良,尹新方,卓钺,杨德明. CF-Al复合丝的超声浸渗制备工艺与性能[J].新技术新工艺,1999,5:32-33.
    [75]许维源,马金娣.铝硅合金超声波浸锌化学镀镍[J].表面技术,1994,23(6):276-277.
    [76]杨德明,潘进,尹新方等.功率超声在复合材料液相浸渗工艺中的应用[J].声学技术:178-179.
    [77]曲建俊,姜开利,张凯,周铁英.超声驱动的超声波振动减摩作用研究[J].声学学报,.2001,26(6):497-502.
    [78]左武炘,陈永洁等.超声波复合振动加工机理及应用的研究[J].华中理工大学学报,1994,22:7-10.
    [79]周正干,王春生,张波,张德远,李和平.超声波振动加工中的自动调谐技术研究[J].制造业自动化,2000,22(4):20-23.
    [80]马睿,王君,韩建涛,佟键,李莹. TiO2催化超声降解技术在处理污水中的应用[J].当代化工,2003,32(2):100-102.
    [81]李春喜,王京刚,王子镐,魏晖,张朝军.超声波技术在污水处理中的应用与研究进展[J].环境污染治理技术与设备,2001,2(2):65-69.
    [82]熊宜栋.功率超声在废水处理中的应用[J].应用声学,2002,21(4):33-36.
    [83] S.A. SHEDID. An ultrasonic irradiation technique for treatment of asphaltene deposition [J]. Journal of Petroleum Science and Engineering, 2004, 42:57-70.
    [84]韩萍芳,祁高明,徐宁.原油超声破乳研究[J].南京工业大学学报,2002,24(6):30-34.
    [85]孙宝江,颜大椿.乳化原油的超声波脱水研究[J].声学学报,1999,24(3):327-331.
    [86]严炽培.功率超声在油田开发中的应用[J].声学技术,1994,13:150-151.
    [87]刘藻,超声波和超声场[J].现代物理知识,1995,7(6):25-26.
    [88]高守雷,翟启杰,戚飞鹏,富知愚,龚永勇.超声波在金属凝固中的应用与发展[J].材料导报,2002,16(9):5-32.
    [89]金长善.超声工程[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [90]沈耀亚,赵德智,许凤军.功率超声在化工领域中的应用[J].现代化工,2000,20(10):14-18.
    [91]应崇福.超声学[M].北京:科学出版社,1990.
    [92]李军文,桃野正.超声波导入杆与振动子之间的共振度对铝合金铸锭组织的影响及其模拟试验[J].轻合金加工技术,2004,32(5):6-8.
    [93] O.V. ABRAMOV. Ultrasound in Liquid and Solid Metals [M]. CRC Press, Boca Raton, FL, 1994.
    [94]周光平.超声弯曲振动变幅杆的特性[J].声学技术,2002,21(3):128-130.
    [95]俞载道.结构动力学基础[M].上海:同济大学出版社,1987.
    [96]张波,赵波,李济顺等.功率超声变幅杆固有频率的模态分析[J].机械制造,2005,43(489):25-27.
    [97] SIRONG YU, HAIKUO FENG, YINGLONG LI. A novel method for preparing Al matrix surface composites[J]. Journal of alloys and compounds, 2008,457:404-407.
    [98]刘相法,边秀房,周生存,杨阳,马家骥. AlTi中间合金中TiAl3形态及对细化效果的影响[J].热加工工艺,1997,1:9-11.
    [99] M VANDYOUSSEFI, J WORTH, A L GREER. Effect of instability of TiC particles on grain refinement of Al and Al-Mg alloys by addition of Al-Ti-C inoculants[J]. Materials Science and Technology,2000,16:1121-1128.
    [100] BANERJI ABINASH, REIF WINFRIED. Producing titanium carbide particles in metal matrix and method of using resulting product to grain refine: United Staes Patent: 4748001[P]. May 31,1988.
    [101]方鸿生,李建国,张柏清,马洪涛,郑燕康.用于铝及铝合金的复合晶粒细化剂及其制备工艺:中国,98119378.1[P]. 1998-09-25.
    [102] A. BANERJI, W. REIF. Metallographic Investigation of TiC nucleants in thenewly developed Al-Ti-C grain refiner[J]. Journal of materials science ,1994,29:
    [103] K. AKIO, O. ATSUSHI, K. TOSHIRO, et al. Light Metal 49 (1999) 149-154.
    [104] K.M .MUSSERT, W. P. VELLINGA, A. BAKKER. A nano-indentation study on the mechanical behaviour of the matrix material in an AA6061 - Al2O3 MMC [J]. Journal of Materials science,2002,37:789-792.
    [105] I MAXWELL, A HELLAWELL. An analysis of the peritectic reaction with particular reference to Al-Ti alloys [J]. Acta Metallurgica, 1975,23(8):901-909.
    [106] GEOFFREY K. SIGWORTH. Communication on mechanism of grain refinement in aluminum[J]. Scripta Materialia,1996,34(6):919-922.
    [107] P.S. MOHANTY, J.E. GRUZLESKI. Mechanism of grain refinement in aluminium [J]. Acta Metallurgica et Materialia,1995,43(5):2001-2012.
    [108]李英龙,曹富荣,陈彦博,温景林. Al-Ti-C晶粒细化剂液-固反应合成机制研究[J].特种铸造及有色合金,2006,26(9):592-595.
    [109] YINGLONG LI, HAIKUO FENG, FURONG CAO, YANBO CHEN, LIYAN GONG. Effect of high density ultrasonic on the microstructure and refining property of Al-5Ti-0.25C grain refiner alloy [J]. Materials Science & Engineering A. 487(2008)518-523.
    [110]毛卫民,李树索,赵爱民,崔成林,钟雪友.电磁搅拌对过共晶Al-Si合金初生Si长大过程和形貌的影响[J].材料科学与工艺,2001,9(2):117-121.
    [111]孙淑红,张家涛,彭著刚,王凯,樊刚.复合变质对过共晶铝硅合金晶体形貌的影响[J].昆明理工大学学报(理工版),2005,30(1):22-24.
    [112]桂满昌,贾均,李庆春.液态过热对高硅Al-Si合金组织和性能的影响[J].航空材料学报,1996,16(1):26-31.
    [113]刘昌明,何乃军.过共晶铝硅合金半固态挤压铸造近终成形技术研究[J].金属盛开工艺,2000,18(1):38-43.
    [114]连峰,李廷举,胡国兵,金俊泽.强磁场对过共晶铝硅合金中初晶Si分布的影响[J].材料工程,2005,12:41-44.
    [115] H.K. FENG, S.R. YU, Y.L. LI, L.Y. GONG. Effect of ultrasonic treatment on microstructures of hypereutectic Al-Si alloy [J]. Journal of materials processing technology, 2008,208(1-3):330-335.
    [116]刘达利,齐丕骧.新型铝活塞[M].北京:国防工业出版社,1999.
    [117]徐自立.离心铸造过共晶Al-Si合金自生梯度功能材料的研究[J].航空工程,2001,5:24-26.
    [118]赵树国,袁晓光,于海朋.电磁搅拌对过共晶Al_Si合金组织的影响[J].辽宁工程技术大学学报,2005,24(6):913-915.
    [119]李伟等. Ba-P复合变质对铝硅合金初晶硅的细化作用[J].热加工工艺,1997,5:16-18.
    [120]李小平等.高硅铝合金悬浮铸造的组织细化[J].特种铸造及有色合金,1999,6:20-21.
    [121]桂满昌,宋广生,贾军等. Al-18%Si过共晶合金熔体结构特征及磷的影响[J].金属学报,1995,A31(4):177-180.
    [122]袁晓光,徐达鸣,张淑英等.喷射沉积Al-Si-Fe-Cu-Mg合金的微观组织和力学行为[J].金属学报,1997,33(3):248-251.
    [123]谢壮德,沈军,董寅生,周彼德,李庆春.快速凝固铝硅合金的制备、组织特征及断裂行为[J].粉末冶金技术,2000,18(2):111-116.
    [124]蒋益民,陈刚,蒋宗宇.低温铸造法制备过共晶铝硅合金坯料的研究[J].铸造,2003,52(2):109-111.
    [125]宋国胜,胡松青,李琳.功率超声在结晶过程中应用的进展[J].应用声学,2008,27(1):74-79.
    [126]潘蕾,陶杰,陈照峰,刘子利.高能超声在颗粒/金属熔体体系中的声学效应[J].材料工程,2006,1:35-37.
    [127]何柞镛.声学理论基础[M].北京:国防工业出版社,1985.
    [128]李光,张阳,李喜孟,冯伟骏. Pb-Sn合金在功率超声场中的凝固过程研究[J].铸造技术,2006,27(4):374-377.
    [129]高守雷,张家涛,李祖齐等.超声场下熔体温度对SnSb合金凝固组织的影响[J].特种铸造及有色合金,2003,3:21-22.
    [130]常国威,王建中.金属凝固过程中的晶体生长与控制[M].北京:冶金工业出版社,2002.
    [131]王俊,陈锋,孙宝德.高能超声在制备颗粒增强金属基复合材料中的作用[J].上海交通大学学报,1999,33(7):813-816.
    [132]赵忠兴.超声波对合金结晶过程的均匀化作用[J].热加工工艺. 1999,5:10-11.
    [133]甄子胜,赵爱民,毛卫民,等.喷射沉积高硅合金显微组织及形成机理[J].中国有色金属学报,2000,10(6):813-818.
    [134]崔忠忻.金属学与热处理[M].机械工业出版社,1994.
    [135]许长林.变质对过共晶铝硅合金中初生硅的影响及其作用机制[D].长春:吉林大学材料科学与工程学院,2007.
    [136]欧阳志英.稀土在铝硅合金变质处理过程中的行为[D].上海大学:2003.
    [137] K.F. KOBAYASHI, L.M. HOGAN. The crystal growth of silicon in Al-Si alloys [J]. Journal of Materials Science, 1985, 20:1961-1975.
    [138] A. HELLAWELL. Growth and structure of eutectics with silicon andgermanium [J]. Progress in Materials Science, 1970, 15:3-8.
    [139] W.M. WANG, X.F. BIAN, J.Y. QIN, S.I. SYLIUSARENKO. Atomic-structure changes in Al-16pct Si alloy above the liquidus [J]. Metallurgical and Materials Transactions, 2000,A31:2163-2168.
    [140] X.F. BIAN, W.M. WANG. Thermal-rate treatment and structure transformation of Al-13wt.%Si alloy melt [J]. Materials Letters, 2000,44:54-58.
    [141] M.J. SINGH, R. KUMAR. Structure of liquid aluminum-silicon alloys [J]. Journal of Materials Science, 1973,8:317-323.
    [142] K. KOBAYASHI, L.M. HOGAN. Fivefold twinned silicon crystals grown in an Al-16wt.%Si melt [J]. Philosophical Magazine, 1979,A40:399-407.
    [143] F.C. ROBLES HERN′ANDEZ, J.H. SOKOLOWSKI. Thermal analysis and microscopical characterization of Al–Si hypereutectic alloys [J]. Journal of Alloys and Compounds, 2006,419:180-190.
    [144] F.C. ROBLES HERN′ANDEZ, J.H. SOKOLOWSKI. Identification of silicon agglomerates in quenched Al-Si hypereutectic alloys from liquid state [J]. Advanced Engineering Materials, 2005,7:1037-1043
    [145]桂满昌,贾均,李庆春.液态过热对高硅Al-Si合金组织和性能的影响[J].航空材料学报,1996,16(1):26-31.
    [146] K.F. KOBAYASHI, L.M. HOGAN. The crystal growth of silicon in Al-Si alloys [J]. Journal of material science, 1985, 20:1061-1975.
    [147]桂满昌,贾均,李庆春,五瓣星状初晶硅形核机制[J].金属学报,1996,32(11):1177-1183.
    [148] HAIKUO FENG, SIRONG YU, YINGLONG LI, LIYAN GONG. Effects of ultrasoic treatment on microstructures of hypereutectic Al-23%Si alloy [C]. The symposium Aluminum Alloys: Fabrication, Characterization and Applications. 2009 TMS Annual Meeting & Exhibition.
    [149] K. KOBAYASHI, P.H. SHINGU, R. OZAKI. Crystal growth of the primary silicon in an Al-16wt.%Si alloy [J]. Journal of Materials Science, 1975,10:290-299.
    [150] M.M. MAKHLOUF, H.V. GUTHY. The aluminum-silicon eutectic reaction: mechanisms and crystallography [J]. Journal of Light Metals, 2001; 1: 199-218.
    [151] S.Z. LU, A. HELLAWELL. Growth mechanisms of silicon in Al-Si alloys [J]. Journal of Crystal Growth, 1985,73:316-328.
    [152] P.H. SHINGU, J.I. TAKAMURA. Grain-size refining of primary crystals in hypereutectic Al-Si and Al-Ge alloys [J]. Metallurgical Transactions, 1970,1:2339-2340.
    [153] D.H. LU, Y.H. JIANG, G.S. GUAN, R.F. ZHOU, Z.H. LI, R. ZHOU. Refinement of primary Si in hypereutectic Al-Si alloy by electromagneticstirring [J]. Journal of Materials Processing Technology, 2007,189:13-18.
    [154] BENJAMIN W. VAN DE WAAL. Cross-twinning model of fcc crystal growth [J]. Journal of Crystal Growth, 1996,158:153-165.
    [155]姚书芳,毛卫民,赵爱民等.过共晶铝硅合金细化变质剂的研究[J].特种铸造及有色合金,2000,5:1-3.
    [156]刘政,刘小梅,朱应禄,陈慈诰.氧化铝铝硅合金中共晶硅变质机理探讨[J].兵器材料科学与工程,1998,21(1):27-31.
    [157]刘玉先,刘相法,张刚,肖莉美.快速凝固铝-硅合金微粒中共晶硅生长形态的研究[J].物理测试,1995,1:6-9.
    [158] A.J. CRIADO, J.A. MARTíNEZ, R. CALABRéS. Growth of eutectic silicon from primary silicon crystals in aluminium-silicon alloys [J]. Scripta Materialia, 1997,36(1):47-54.
    [159]王强,王春江,宠雪君,赫冀成.利用强磁场控制过共晶铝硅合金的凝固组织[J].材料研究学报,2004,18(6):568-576.
    [160] V.O. ABRAMOV, O.V. ABRAMOV, B.B. STRAUMAL, W. GUSTA. Hypereutectic Al–Si based alloys with a thixotropic microstructure produced by ultrasonic treatment [J]. Materials & Design, 1997,18:323-326.
    [161]李忠范,高文森.数理统计与随机过程[M].长春:吉林大学出版社,2000.
    [162]冯海阔,于思荣,李英龙,宫丽彦.超声对过共晶铝硅合金组织和性能的影响.吉林大学学报(工学版)(ISSN: 1671-5497 CN: 22-1341/T)
    [163]王渠东,金俊泽.离心铸造Al-20wt%Si合金自生表面复合材料的组织与性能[J].航空材料学报,1997,17(2):7-13.
    [164]于思荣,张新平,何镇明,刘耀辉.初始Si含量对离心法制备过共晶Al-Si合金FGM中初晶硅分布的影响[J].复合材料学报,2003,20(6):16-20.
    [165] LIAO HENGCHENG, SUN YU, GUOXIONG SUN. Correlation between mechanical properties and amount of dendriticα-Al phase in as-cast near-eutectic Al–11.6% Si alloys modified with strontium [J]. Materials Science and Engineering A, 2002, 335: 62-66.
    [166] NUMAN ABU-DHEIR, MARWAN KHRAISHEH, KOZO SAITO, et al. Silicon morphology modification in the eutectic Al–Si alloy using mechanical mold vibration [J]. Materials Science and Engineering A, 2005,393(1-2):109-117.
    [167]李应龙,高彩茹,王玉贵.铝硅合金的振动变质研究[J].轻合金加工技术,1999,27(11):8-18.
    [168]连峰,李廷举,胡国兵,金俊泽.强磁场对亚共晶-铝硅合金变质处理的影响[J].轻合金加工技术,2005,33:9-12.
    [169]董光明,孙国雄,廖恒成.共晶硅的变质[J].铸造,2005,54(1):1-5.
    [170]古秀莲.共晶铝硅合金的变质处理[J].铝加工,1998,21(5):1-2.
    [171] A.K. DAHLE, K. NOGITA, S.D. MCDONALD, C. DINNIS, L. LU. Eutectic modification and microstructure development in Al–Si Alloys [J]. Materials Science and Engineering: A, 2005,413-414(15):243-248.
    [172] S.D. MCDONALD, K. NOGITA, A.K. DAHLE. Eutectic nucleation in Al–Si alloys [J]. Acta Materialia. 2004,52(14):4273-4280.
    [173] P.L. SCHAFFER, L. ARNBERG, A.K. DAHLE. Segregation of particles and its influence on the morphology of the eutectic silicon phase in Al-7wt.% Si alloys [J]. Scripta Materialia, 2006,54(4):677-682.
    [174]金俊泽,张永安,曹志强.电磁搅拌自生表面复合材料的组织与性能[J].材料研究学报,1998,12(4):446-448.
    [175]李新,刘卫,余先涛. ZL108的激光表面合金化[J].武汉理工大学学报,2006,28(4):38-40.
    [176]王定国,郭谓.铝-硅共晶活塞合金的Na、P变质[J].内燃机配件,2000,5:4-6.
    [177]薛亚军,柳秉毅.热处理工艺对铝硅合金共晶硅粒化的影响[J].南京工程学院学报(自然科学版),2006,4(2):22-27.
    [178]姚明,王庆平,陈刚,苗乃明.低温铸造法制备亚共晶铝硅合金半固态成形坯料的研究[J].热加工工艺,2004,1:40-41.
    [179]刘永刚,张良明,陈光,廖恒成,孙国雄. Sr和RE变质对Al-Si铸造合金枝晶α的影响[J].有色金属,2005,57(2):15-19.
    [180] H.K. FENG, S.R. YU, Y.L. LI, L.Y. GONG. Microstructure and properties of Sip/Al-Si surface composites prepared by ultrasonic method. Materials and Design, DOI:10.1016/j.matdes.2008.10.016 (In press).
    [181]曹丽云,刘兴江,杨晓平,等.冷却速度对共晶铝硅合金凝固组织形态的影响[J].辽宁工学院学报,2001,21(4):40-42.
    [182]刘玉先,刘相法,张刚,肖莉美. Al-Si合金中共晶硅生长形态的研究[J].山东工业大学学报,1995,25:306-311.
    [183] N. AL-AQEELI, G. MENDOZA-SUAREZ, C. SURYANARAYANA, R.A.L. DREW. Development of new Al-based nanocomposites by mechanical alloying [J]. Materials Science and Engineering A, 2008,480:392-396.
    [184]廖乃镘,张先菊,李伟. Al-Ti-C添加剂对亚共晶铝硅合金组织和性能的影响[J].铸造技术,2005,26(3):196-198.
    [185]王渠东,金俊泽.离心铸造Al-Cr合金自生梯度复合材料[J].铸造,1996,4:8-12.
    [186]吴年强,王广欣,李志章.机械合金化Al-Al3Ti复合材料的研究进展[J].材料科学与工程,1994,12(4):39-42.
    [187]李志强,韩杰才,赫晓东,张幸红.燃烧合成TiAl金属间化合物的反应机制[J].稀有金属材料与工程,2002,31(1):4-7.
    [188]金俊泽,朴龙云,曹志强.用分离共晶法制备表面复合材料[J].材料研究学报,2000,14(5):489-492.
    [189]王芬,范志康,吕臣敬.原位自生氧化铝纤维增强tial金属间化合物的制备[J].稀有金属材料与工程,2006,35(5):791-794.
    [190]杨霓虹.原位生成增强体金属基复合材料及其应用前景[J].材料导报,1993,7(1):53-55.
    [191]张国军,金宗哲,岳雪梅.材料的原位合成技术[J].材料导报,1997,11(1):1-4.
    [192]赵玉厚,严文,苗瑞霞,李建平,董晟全.原位增强体Al3Ti形成热力学及合金元素对其形貌影响[J].铸造技术,2005,26(6):481-485.
    [193]张俊善,汪涛,祝美丽,刘瑞岩.燃烧合成TiAl3化学反应动力学研究[J].金属学报,2002,38(10):1027-1030.
    [194]殷声.燃烧合成[M].北京:冶金工业出版社,1999.
    [195]王渠东,丁文江,翟春泉,徐小平,金俊泽.固液反应合成铝基自生复合材料[J].特种铸造及有色合金,1998,6:11-13.
    [196] P.S. GRANT. Spray forming [J]. Progress in Materials Science, 1995,39:497-545.
    [197] C.F. FENG, F. ROYEN. Formation of Al3Ti from an Al-TiO2 system for preparing in situ aluminium matrix composites [J]. Composites, 2000,31A:385-390.
    [198]王自东,李庆春,李春玉.原位TiC粒子增强Al-Si合金的组织及性能[J].金属学报,1994,1:B39-B44.
    [199]郭永春,李建平,李高宏,董晟全,赵玉厚,杨忠.原位自生纳米Al3Ti/LY12复合材料的组织及性能[J].热加工工艺,2002,2:28-29.
    [200]长崎诚三,平林真编著,刘安生译.二元合金状态图集[M].冶金工业出版社,北京:2004.
    [201] Y.G. ZhAO, Q.D. QIN, Y.Q. ZhAO, Y.H. LIANG, Q.C. JIANG. In situ Mg2Si/Al–Si composite modified by K2TiF6 [J]. Materials Letters, 2004,58:2192-2194.
    [202]李英龙,曹富荣,石路,温景林. Al-Ti-C晶粒细化剂的细化机理试验研究[J].特种铸造及有色合金,2005,25(8):451-453.
    [203]张淑英,陈玉勇,范洪波,陈子勇等.喷射沉积Al-5.5Cu/TiAl3自生复合材料的微观组织及界面结构[J].中国有色金属学报,1999,9(1):8-14.
    [204]赵玉厚,严文,周敬恩.原位Al3Ti粒子增强ZL101铝基复合材料[J].中国有色金属学报,2000,10:214-217.
    [205]阴瑜娟,赵玉厚,夏永喜.原位生成铝基复合材料增强相的研究现状[J].热加工工艺,2006,35(17):69-73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700