用户名: 密码: 验证码:
多孔NiAl金属间化合物/陶瓷复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多孔材料具有质轻和比表面大等优异的物理性能,是一类集物理功能与结构一体化的新型材料,在催化、分离、离子交换等工业领域有着广泛的应用。本文以Ni、Al粉末为原料,通过不同的合成工艺制备了高孔隙率多孔Ni-Al金属间化合物材料:通过添加不同含量的(Al+TiO_2+B_2O_3)陶瓷体系,原位合成TiB_2+Al_2O_3增强相,制备了性能优良的多孔NiAl/(TiB_2+Al_2O_3)复合材料,并对其进行了组织和性能的检测分析。
     对制备工艺进行了探索和优化。分别采用松装震实和添加造孔剂、加压制坯工艺与燃烧合成技术相结合,制备了小孔径、大孔径三维连通型多孔材料,采用添加有机物,挤出成型与燃烧合成技术相结合的工艺制备了直通孔型多孔NiAl及其复合材料。
     X射线衍射分析结果表明,Ni与Al原子比为1:1时,反应产物为单一的NiAl相,添加尿素做造孔剂,对反应产物无影响。随着Ni含量的提高,相组成为NiAl+Ni_3Al以及少量的Al_2O_3。多孔NiAl/TiB_2+Al_2O_3复合材料的相组成为NiAl相和TiB_2+Al_2O_3陶瓷相。结合体系示差扫描热分析的热反应特征,分析了其反应过程。
     扫描电镜下观察并分析了三维连通型多孔NiAl及其复合材料的孔洞结构。反应生成的小孔,孔洞分布均匀,孔道曲折连通,孔壁粗糙,其上分布大量微孔,提高了孔洞的连通性。添加造孔剂尿素生成的大孔形貌与造孔剂基本一致,孔隙率可达85%。通过调整尿素粒径和含量可控制孔隙率和孔径分布。结合能谱和X射线衍射分析,孔壁上呈树枝状生长的为NiAl和Ni_3Al,孔洞内可见晶须状Al_2O_3,添加Al+TiO_2+B_2O_3体系后生成正方六面体或六棱柱TiB_2颗粒,尺寸小于5μm,Al_2O_3无规则外形,晶须更为粗壮。
     压缩性能测试结果表明:压缩应力—应变曲线由弹性区、平台区和致密化区三个区域组成,表现出典型的脆性断裂特征。抗压强度随孔隙率的增加而下降,孔径大小没有明显的影响,随TiB_2+Al_2O_3含量的增加抗压强度先增大后减小。
     腐蚀实验结果表明:多孔NiAl金属间化合物有较强的耐酸、碱腐蚀性能,但对酸和盐的混合溶液耐腐蚀性能较差。
Porous material is a new kind material of integrative physical function and structure, which offers excellent physical properties, such as low density and high specific surface, and has been extensively used in catalysis, separation and the ionic exchange domains. In this paper, high porosity NiAl intermetallics were prepared from Ni and Al powders by different technology. Porous NiAl/TiB_2+Al_2O_3 material were prepared by adding different ratio of (Al+TiO_2+B_2O_3). NiAl was reinforced by TiB_2+Al_2O_3 phases synthesized in situ. The structure and properties were analyzed.
     The preparation technology were explored and optimized. Porous NiAl and NiAl/TiB_2+Al_2O_3 with three-dimensional connectivity structure were prepared by different technology combined with Combustion synthesis. Porous material with small pore could be prepared by loose-packed ram-jolt technology and macropore could be prepared by pressure preforming technology. Porous NiAl and NiAl/TiB_2+Al_2O_3 material with through-hole structure were prepared by extrusion molding technology.
     The results of X-ray diffraction analysis showd that the reaction product of Ni and Al (atom ratio is 1:1) was single NiAl phase. There was no difference when urea was added as pore-forming agent. Phases were NiAl, Ni_3Al and a small quantity of Al_2O_3. The phases were NiAl, TiB_2 and Al_2O_3 of NiAl/TiB_2+Al_2O_3. According to the thermal reaction characters detected by Differential Scanning Calorimetry (DSC), the reaction process was analyzed.
     Three-dimensional connectivity structures of porous NiAl and NiAl/TiB_2+Al_2O_3 materials were observed under Scanning Electron Microscope (SEM). Small pores formed in the reaction process were uniform distribution with twisted channel and rough pore wall. There were large quantities micropores penetrating through the wall, so the connectivity of porous materials becomes better. The appearance of macropore formed by urea volatilization was similar to urea, and the porosity could reach 85% by adding pore-forming agent. So the porosity and pore size could be controlled by adjusting the urea content and size. According to EDS and XRD results, NiAl and Ni_3Al were dendritically formed in the pore wall and Al_2O_3 whisker were observed inside the pores. TiB_2 particles, less than 5μm, formed in regular hexahedron or hexagonal prism in the system with Al-TiO_2+B_2O_3. Al_2O_3 showed no regular shape, and the whisker showed stronger.
     Compressive performance tests showed that the stress-strain curve was separated into three ranges: elastic range, stress plateau range and densification range. It was the classic character of brittle fracture. Pressive strength declines with the porosity increased. The influence on pressive strength of pore size was unobvious. However, the pressive strength first increased, and then decreased with the increase of TiB_2+Al_2O_3 content.
     Corrosion test showed that porous NiAl intermetallic compounds had excellent corrosion resistance to acid and alkaline, but poor resistance to the solution of acid and salt.
引文
1.刘树信,霍冀川,李炜罡.多孔材料合成制备进展[J].化工新型材料,2004,32(4):13-17
    2.赵东元,朱海峰,金碧辉.多孔材料[J].中国基础科学,2005,40(3):19-20
    3.Changqing Hong,Xinghong Zhang,Jiecai Han.Fabrication and Mechanical Properties of Porous TiB_2 Ceramic[J].J Mater Sci,2006,41(5):4790-4794
    4.D.F.Heaney,J.D.Gurosik,C.Binet.Isotropic forming of Prous Structuresvia Metal Injection Molding[J].Journal of Materials Science,2005,40(4):973-981
    5.Qunli Liu,Ghatu Subhash,Xinlin Gao.A Parametric Study on Crushability of Open Cell Structural Polymeric Foams[J].Journal of Porous Materials,2005,12(6):233-248
    6.王耀明,薛友祥,李勇,等。高温烟气净化用多孔堇青石陶瓷支撑体材料的研制[J].硅酸盐学报,2005,33(10):1262-1265
    7.J.H.SHE,Z.Y.D.,J.DANIEL-DONI,et al.Oxidation Bonding of Porous Silicon Carbide Ceramics[J].Journal of Materials Science,2002,37:3615-3622
    8.刘岩,姚秀敏,黄政仁,等.金属过滤器用高性能碳化硅泡沫陶瓷的制备[J].硅酸盐学报,2004,32(2):107-112
    9.V.A.Solomonov,A.Y.V.d.High-Temperature Dedusting of Gases on Ceramic Filters[J].Chemical and Petroleum Engineering,1997,33(4):437-440
    10.金家敏,包伟芳,吴菊清,等。多孔金属材料用于废气净化贵金属催化剂载体的研究[J].材料导报,2008,3(4):1-3
    11.苏建华,田群,陈宏德,等。汽车排气催化净化用金属载体的生产工艺与设备[J]。环境污染治理技术与设备,2004,5(1):81-84
    12.LIU Pei-sheng,Y.B.,HU An-min,et al.Development in Applications of Porous Metals[J].Trans.Nonferrous Met.Soc.China,2001,11(5):629-638
    13.张健,汤慧萍,奚正平,等.高温气体净化用金属多孔材料的发展现状[J].稀有金属材料与工程,2006,35(Supp1.2):438-441
    14.Csilla K,Frantisek C,Zsuzsarma R,et al.Acoustic Emission Measurements on Metal Foams[J].Journal of Alloys and Compounds,2004,378(1-2):145-150
    15.Chunxi Hai,Hideo Watanabe,Takashi Shirai,et al.Modifying the Surface of Electrically Conductive Porous Alumina[J].Materials Letters,2009,63(15):1320-1322
    16.Xi Wang,Jian-Ming Ruan,Qiyuan Chen.Effects of Surfactants on the Mierostructure of Porous Ceramic Scaffolds Fabricated by Foaming for Bone Tissue Engineering[J].Materials Research Bulletin,2009,44(6):1275-1279
    17.Pia Kusgens,Marcus Rose,Irena Senkovska,et al.Characterization of Metal Organic Frameworks by Water Adsorption[J].Microporous and Mesoporous Materials,2009,120(3):325-330
    18.Gema Gonzalez,Maria E.Gomes,Gerardo Vitale,et al.Effect of Al Content on Phase Transitions of Zeolite MEL[J].Microporous and Mesoporous Materials,2009,121(3):26-33
    19.Avdhesh Kr.Sharma Modeling Fluid and Heat Transport in the Reactive,Porous Bed of Downdraft(biomass) Gasifier[J].International Journal of Heat and Fluid Flow,2007,28(6):1518-1530
    20.Michihisa Koyama,Ai Suzuki,Riadh Sahnoun,et al.Development of Porous Structure Simulator for Multiscale Simulation of Irregular Porous Catalysts[J].Applied Surface Science,2008,254(23):7774-7776
    21.Peixue Jiang,Zepei Ren.Numerical Investigation of Forced Convection Heat Transfer in Porous Media Using Thermal Non-equilibrium Model[J].International Journal of Heat and Fluid Flow,2001,22(1):102-110
    22.Binshan Ju,Tailiang Fan.Experimental Study and Mathematical Model of Nano-particle Transport in Porous Media[J].Owder Technology,2009,192(2):195-202
    23.J.H.She,T.Ohji.Porous Mullite Ceramics with High Strength[J].Journal of Materials Science Letters,2002,21(6):1833-1834
    24.江培秋,李素珍.高孔隙多孔陶瓷材料的制备工艺[J].现代技术陶瓷,2003,96(2):37-41
    25.罗钊明,王慧,刘平安,等.多孔陶瓷材料的制备及性能研究[J].陶瓷,2006,40(3):14-17
    26.江垚.Ti-Al金属间化合物多孔材料的研究[D].长沙:中南大学,2008
    27.M.S.A.Heikkinen,N.H.Harley.Experimental Investigation of Sintered Porousmetal Filters[J].Journal of Aerosol Science,2000,31(6):721-738
    28.V.V.Panichkina,V.V.Skorokhod,N.P.Pavlenko.Porous Structure of Sintered Tungsien[J].Soviet Powder Metallurgy and Metal Ceramics,1997,16(12):950-951
    29.A.G.Kostomov,Y.N.Podrezov,Y.G.Bezymyannyi,et al.Sintered Metals and Alloys Stainless-steel Porous-layered and Framework Fiber-powder Composites[J].Powder Metallurgy and Metal Ceramics,2006,45(12):35-39
    30.H T Wang,X Q Liu,G Y Meng.Porous Alpha-Al_2O_3 Ceramics Prepared by Gelcasting[J].Materials Research Bulletin,1997,32(12):1705-1712
    31.H.T.Wang,X.Q.Liu,F.L.Chen,et al.Kinetics and Mechanism of a Sintering Process for Macroporous Alumina Ceramics by Extrusion[J].Journal of the American Ceramic Society,1998,81(3):781-784
    32.Y.L.V,M.Li,H.Yang,et al.Porous Hydroxyapatite Bioceramics Preparedby Polymeric Sponge Impregnation Process[J].Key Engineering Materials,2007,336-338(04):1612-1614
    33.C.R.Rambo,E.De Sousa,A.P.N.De Oliveira,et al.Processingof Cellular Glass Ceramics[J].Journal of the American Ceramic Society,2006,89(11):3373- 3378
    34.E.Minor-Perez,R.Mendoza-Serna,J.Mendez-Vivar,et al.Preparation and Characterization of Multicomponent Porous Materials Prepared by the Sol-gel process[J].Journal of Porous Material,2006,13(1):13-19
    35.J.M.Qian,J.P.Wang,G.J.Qiao,etal.Preparation of Porous Sic Ceramic with a Woodlike Mierostructure by Sol-gel and Carbothermal Reduction Processing[J].Journal of the European Ceramic Society,2004,24(11):3251-3259
    36.Takiro tomita shinji kawasaki,Kiyoshi okada.A Novel Preparation Method for Foamed Silica Ceramics by Sol-gel Reaction and Mechanical Foaming[J].Journal of Porous Materials,2004,11(2):107-115
    37.Y.Saito,T.Takei,S.Hayashi,et al.Effects of Amorphous and Crystalline SiO2Additives on Gamma Al_2O_3 to Alpha Al_2O_3 Phase Transitions[J].Journal of the American Ceramic Society,1998,81(8):2197-2200
    38.邵怀启,钟顺和.挤出成型法制备莫来石-硅藻土陶瓷膜管的研究[J]。硅酸盐通报,2004,23(4):25-28
    39.Wang deqing,Xue weiwei,Meng xiangjun,et al.Cell Structure and Compressive Behavior of An Aluminum Foam[J].Journal of materials science,2005,40(4):3475-3480
    40.Ridgeway J.A.Cellarized Metal and Method of Producing the Same[P].US Patent,3297431,1967
    41.Akiyama S,Imagawa K,Kitahara A,et al.Foamed Metal and Method for Producing the Same[P].US Patent,4712277,1987
    42.赵增典,张勇,李杰.泡沫金属的研究与发展[J].铸造设备研究.2000,40(1):48-51
    43.Banhart J.Manufacture,Characterisation and Application of Cellular Metals and Metal Foams[J].Progress in Materials Science,2001,46(6):559-632
    44.李开华,罗江山,唐永建,等.泡沫镍制备中脉冲电沉积镍研究[J].稀有金属材料与工程,2008,37(8):1451-1555
    45.L.Montanaro,A.Bachiorrini.Durability of Ceramic Filters in the Presence of Some Diesel Soot Oxidation Additives[J].Ceram Inter,1994,20(3):169-173
    46.魏雄武,杜传进.柴油机微粒捕集器关键技术发展现状与分析[J]。柴油机设计与制造,2005,40(2):4-7
    47.龚金科,赖天贵,刘孟祥,等.柴油机微粒捕集器过滤材料与再生方法分析与研究[J].内燃机,2004,30(4):1-4
    48.侯来广,曾令可,王慧,等.陶瓷废料制备的吸音材料吸音性能影响因素的分析[J].陶瓷学报,2006,27(1):6-10
    49.宋婧,曾令可,税安泽,等.复合蓄热材料的研制与应用[J].硅酸盐通报,2007,26(1):173-198
    50.王圣威,金宗哲,黄丽容.多孔陶瓷材料的制备及应用研究进展[J].硅酸盐通报,2006,25(4):124-129
    51.张华,胡娟,周万城,等.堇青石质蜂窝陶瓷的制备[J].硅酸盐通报,2004,32(1):24-28
    52.刘智信,李东风.多孔金属在催化中的应用[J]。金属功能材料,2004,11(4):35-37
    53.E.P.Briggs,A.R.Walpole,P.R.Wilshaw,et al.Formation of Highly Adherent Nano-porous Alumina on Ti-based Substrates:A Novel Boneimplant Coating[J].Journal of Material Science:Materials in Medicine,2004,15(9):1021-1029
    54.姜淑文,齐民.生物医用多孔金属材料的研究进展[J].材料科学与工程,2002,20(4):597-600
    55.宝鸡有色金属研究所。粉末冶金多孔材料(下册)[M].北京:冶金工业出版社,1979,1-32
    56.黄培,邢卫红,徐南平,等.气体泡压法测定无机微滤膜孔径分布研究[J].水处理技术,1996,22(2):80-84
    57.周春晖,李庆伟,葛忠华,等。纳米孔硅铝层柱蒙脱石复合材料的制备和性能研究[J],复合材料学报,2004,21(1):19-25
    58.GeorgeR.Coates,Li zhixiao.NMR Principles&Applications[M].Texas:Gulf Publishing Company,1999
    59.Feigin L A,Severgun D I.Structure Analysis by Small-angle X-ray and Neutron Scattering[M].New York:Plenum Press,1987
    60.刘培生.多孔材料引论[M].北京:清华大学出版社,2004:300
    61.Montillet A,Comiti J,Legrand J.Determination of Structural Parameters of Metallic Foams from Permeametry Measurements[J].Journal of Materials Science,1992,27(5):4460-4464
    62.殷声.燃烧合成[M].北京:冶金工业出版社,2004,1-3
    63.Le-Chun Hsiunga,H.-H.S.A Comparison of the Phase Evolution in Ni,A1,and Ti Powder Mixtures Synthesized by SHS and MA Processes[J].Journal of Alloys and Compounds,2009,In Press
    64.Z.Y.Fu,H.W.,W.M.Wang,et al.Composites Fabricated by Self-propagating High-temperature Synthesis[J].Journal of Materials Processing Technology,2003,137:30-34
    65.孟庆森,安占军,陈大军,等。电场辅助自蔓延燃烧合成机制研究[J].中国稀土学报,2004,22(Spec.):214-217
    66.ZHANG Song,Z.C.-h.,MAN Hau-chung,et al.Laser Surface Alloying Fabricated Porous Coating on NiTi Shape Memory Alloy[J].Trans.Nonferrous Met.Soc.China,2007,17:228-231
    67.L.Wang.Review:Thermite Reactions:their Utilization in the Synthesis and Processing of Materials[J].Mater.Sei,1993,28(14):3693-3708
    68.M.A.Meyers,E.A.Olevsky,M.Jamet.Combustion Synthesis/Densification of An Al_2O_3-TiB_2 Composite[J].Mater.Sci.Eng.A,2001,31(1 ):83-99
    69.李文魁.自蔓燃合成氮化硅多孔陶瓷的研究[D]。上海:上海硅酸盐研究所,2004:10-11
    70.LI Qiang,YU Jing-yuan,LI Xiao-dong,et al.Porous NiTi Shape Memory Alloys Prepared by Thermal Explosion Method[J].Journal of Materials and Metallurgy,2006,5(4):280-282,287
    71.W.G.Zhou,H.P.Zhao,Y.L.Li.An Experimental Study on Combustion Synthesizing of Plane Ceramic Coating High-Performance Ceramics[J].Proceedings,2002,11(5):609-612
    72.王趣江,赵忠民,李俊寿,等.用自蔓燃铝热熔覆法制备陶瓷内衬复合钢管[J].材料保护,1997,30(10):15-18
    73.L.Z.Shi,S.L.Huang.Investigation of Al_2O_3 Coating with FGMs Structure by SHS[J].Functionally Graded Materials,2003,15(6):577-578
    74.穆柏春。陶瓷材料的强韧化[M].北京:冶金工业出版社,2002:23-28.
    75.Mao S X,Mc Minn N A,Wu N Q.Processing and Mechanical Behaveior of TiAl/NiAl Intermetallic Composites Produced by Cryogenic Mechanical Alloying[J].Mater Sci Eng A,2003,363(1-2):275-289
    76.Yeh C.L,Yeh C.C.Preparation of CoAl Intermetallic Compound by Combustion Synthesis in Self-propagating Mode[J].Journal of Alloy and Compounds,2005,388(10):241-249
    77.Haraguchi T,Kogachi M.Point Defect Behavior in B2-type Intermetallic Compounds[J].Mater Sci Eng A,2002,331(10):402-407
    78.山口正治,马越佑.金属间化合物[M].丁树深译。 北京:科学出版社,1991
    79.孙岩,刘瑞岩,张俊善,等。NiAl基金属间化合物的研究进展[J].材料导报,2003,17(7):10-13
    80.Ha Yong Lee,S.H.J.,Soo Yong Lee,et al.Alloying of Cold-sprayed Al-Ni Composite Coatings by Post-annealing[J].Applied Surface Science,2007,253:3496-3502
    81.Zhong Wang,A.L.F.,W.H.Tian,et al.Synthesis and Structural Features of Ni-Al Nanoparticles by Hydrogen Plasma-metal Reaction[J].Materials Letters,2006,60:2227-2231
    82.郭建亭.金属间化合物NiAl的研究进展[J]。中南大学学报(自然科学版),2007,38(6):1013-1027
    83.侯世香,刘东雨,刘宗德,等。NiAl金属间化合物的研究概述[J].金属热处理,2007,32(7):60-64
    84.Gorge E P,L.i.C.T.Brittle Fracture and Grain Boundary Chemistry of Microalloyed NiAI[J].J Mater Res,1990,(5):754-762
    85.Schulson EM,B.R.A Brittle to Ductile Transition in NiAl of A Critical Grain Size[J].Scr Metall Mater,1983,17:515-519
    86.Y.Y.Zhao,D.X.Sun.A Novel Sintering-dissolution Process for Manufacturing Al Foams[J].Scr.Mater,2001,44(03):105-108
    87.H.X.Zhu,R.Abbaschian.Reactive Processing of Nickel-Aluminide Intermetallic Compounds[J].Materials Science,2003,38(4):3861-3870
    88.Lebrat J P,Varma A,Miller A E.Combustion Synthesis of Ni_3Al and Ni_3Al-matrix Composite[J].J.Matall.Tran.,1992,A23(5):69-76
    89.王为民,傅正义,袁润章。NiAl/TiB_2复合材料的自蔓延燃烧合成[J].金属学报,1994,30(10):B446-B480
    90.王德尊,刘宗荣,姚忠凯,等.TiO_2/Al烧结反应生成的Al_2O_3/TixAly复合材料研究[J]。材料科学进展,1993,7(5):457-460
    91.郝刚领。镁基多孔材料的制备及其性能研究[D].合肥:中国科学院固体物理研究所,2007
    92.王学松.膜分离技术及其应用[M]。北京:科学出版社,1994.
    93.王建红。高铝多孔陶瓷支撑体耐腐蚀性能研究[D].南京:南京工业大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700