用户名: 密码: 验证码:
海底原位地球化学传感器的研制与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
国际海底区域蕴藏着丰富的战略金属、能源和生物资源,是人类生命维系和社会持续发展的重要支持系统。海底热液体系不仅具有潜在的巨大经济价值而且对研究地球深部物质运动过程、构造活动、板块运动及生命起源也有积极意义,因此对它的勘查研究是当代海洋科学、地质学及生物学等众多学科共同面临的使命。在国家“863”项目的大力支持下,本论文研制一套具有自主知识产权、适用于海底原位探测的多参数地球化学传感器,它集成了参比电极、pH电极、硫化氢电极以及溶解氧电极,能直接获取热液体系的原位探测数据,它不仅对从地学、化学、生物学、深部地球物质等方面广泛研究热液体系具有重要意义,此外还将极大地促进海洋资源的探测、海洋环境的监测和保护、海洋科学的研究。
     通过分析国内外现有的原位地球化学传感器技术及各电极的制作方法,本文采用贵金属丝作为电极的基材,实现探测电极的固体化和微型化;采用熔融法制作Ag/AgCl参比电极,提高其使用寿命;采用以含超细银粉环氧树脂为中间层的方法制作Ag/Ag_2S电极,提高其检测下限;采用熔融过氧化钠法以及外覆质子半透膜技术制作Ir/IrO_2电极,提高其抗干扰能力;以及采用在金丝表面镀DePeX膜提高溶解氧电极的使用寿命及探测能力。在实验过程中,通过不断的标定及反复测试,根据反馈结果进一步完善电极性能。
     浙江大学有关课题组和美国明尼苏达大学合作研制的原位地球化学传感器成功应用于对东太平洋海隆Tica热液区生物栖息地为期12天的连续测试,在该地区首次实现了化学量原位长期观测。探测数据显示Tica热液区海水温度变化范围介于10℃至20.5℃,总溶解H_2S的浓度介于7.4~27.3μmol/L。原位探测数据分析结果表明,潮汐作用引起扩散流温度和化学成分的周期变化。
     海底原位地球化学传感器是一个可扩展的、通用性较强的技术平台,具有广泛的应用前途,尤其在天然气水合物探测以及海底长期观测系统等方面都具有巨大的潜在应用前景。本文研究成果可缩短我国与世界发达国家在深海海底资源调查技术上的差距。为今后我国深海矿产资源调查、勘探和开采打下良好基础。
There are abundant strategic metal resources, energy sources and biological resources in International seabed area. It is an important supporting system for human life maintaining and sustainable social development. Seafloor hydrothermal system no only have potential tremendous economic value but also have the active significance for research in physical movement in deep earth, tectonic activities, plate movement and origin of life. Nowadays, subjects of marine science, geology and biology face the same mission of investigation of seafloor hydrothermal system. Upon the support of State 863 Program, a set of geochemical sensor with independent intellectual property containing reference electrode, pH electrode, H_2S electrode and dissoloved oxygen electrode is prepared for in-situ detecting on seafloor. It is useful to help people study hydrothermal system from geological, chemical, biological and other aspects, and thus greatly promote research in the field of sea resources detecting, sea environment observation and protection, and marine science.
     After studying in existing geochemical sensor and comparing previous preparation methods of these electrodes at home and aboard, the methods are taken as following: using noble metal as basic material, realizing the solidification and micromation of detecting electrodes; using AgCl melt to make reference electrode, enhancing its lifetime; using epoxy resin with ultra thin silver power as the middle layer to prepare Ag/Ag_2S electrode, enhancing its detecting limit; using Na_2O_2 melt to prepare Ir/IrO_2 electrode coated with Nafion, a kind of proton selective substance produced by DuPon, enhancing its resistance ability; using Au coated with DePeX membrane as DO electrode, enhancing its liftime and detecting ability. Constantly improve the electrodes performance by experimental calibrations according to the feedback.
     As a collaboration project between Zhejiang University and the University of Minnesota, a joint team has been working together on in-situ geochemical sensors for seafloor hydrothermal system. The device had been working continuously in a microbial cluster near TICA-vent for about 12 days and realized long-term chemical compositon monitoring for the first time in this area. Time-series records show that temperature fluctuates between 10°C and 20.5°C, and total dissolved varies from 7.4 to 27.3μmol/L. Through the analysing results of detecting data, it is found that temperature and chemical component concentration change periodically could be refered to tide influence.
     As a universal technical platform, in-situ geochemical sensor can be used widely. It has great potential applications in natural gas hydrate detecting, seabed observation system and other fields. Research results in this paper can reduce the gap in deep seafloor resources investigation technology between China and western countries and lay a sound foundation for deep-sea mineral resources investigation, exploration and exploitation.
引文
范宏斌.金属铱/氧化铱pH电极的研制[J].化学传感器,1996,16(2):99-102
    方银霞,金翔龙,黎明碧.天然气水合物的勘探与开发技术[J].中国海洋平台,2002,17(2):11-15
    丰达明,李海涛,赖心,等.钛基钛钌铱三元氧化物涂层pH电极的研究[J].广东有色金属学报,1998,8(1):62-66
    冯雅丽,李浩然.深海矿产资源开发与利用[M].北京:海洋出版社,2006.30-31
    黄德培,沈子琛,吴国梁.离子选择电极的原理及应用[M].北京:新时代出版社,1982.150-166
    黄霞,邬黛黛,杨灿军,等.海底pH的原位探测:镀nation膜的Ir/IrO_2电极[J].传感技术学报,2006,19(6):2505-2508
    姜和.聚合物膜与高纯金属pH电极的研制[J].表面技术,2003,32(3):34-37
    《科技兴海丛书》编委会.海洋探查与资源开发技术[M].北京:海洋出版社,200 1.77-79
    赖心,丰达明.pH及其测量:从20世纪到21世纪[J].化学传感器,2002,20(3):1-5
    李清文,罗国安,舒友琴,等.丝网印刷纳米金属氧化物型固态pH电极的研制[J].高等学校化学学报,2000,2l(9):1380-1382
    李建平,彭图治,方成.基于溶胶一凝胶及印制技术制备复合陶瓷碳pH电极[J].分析化学研究报告,2002,20(5):531-535
    鲁勖琳,袁红雁,肖丹.基于氧化钛的全固态碱性pH电极的研制[J].高等学校化学学报,2003,24(8):1400-1402
    莫杰,李缁全.地球科学探索[M].北京:海洋出版社,2007.262-263
    潘振声,朱建育,徐芳,等.二氧化铱/铱传感器的研制及应用[J].化学传感器,1999,19(2):28-31
    彭晓彤,周怀阳.溶解氧传感器探测技术及应用中的若干问题[J].海洋科学,2003,27(8):30-33
    彭晓彤,周怀阳,陈光谦,等.论天然气水合物与海底地质灾害、气象灾害和生物灾害的关系[J].自然灾害学报,2002,11(4):18-22
    人民网.中国“大洋一号”科学考察船胜利返航圆满完成调查任务[EB/OL].http://tech.southcn.com/news/tpxw/200312220131.htm,2003-12-22
    宋金明.中国近海沉积物--海水界面化学[M].北京:海洋出版社,1997.1-222
    汪品先.走向深海大洋:即开地球的隐秘档案[J].科技潮,2005,1:24-27
    王晓媛,曾志刚,刘长华,等.东太平洋海隆(EPR)13°N附近热液柱的地球化学异常[J].中国 科学D辑:地球科学.2007,37(7):974-989
    王晓红,王毅民,张学华.中国海洋地球化学探测技术的现状与发展[J].地球学报,2002,23(1):7-10
    吴国琳.阴极溶出法测定海洋沉积物中硫化物[J].海洋环境科学,1994,13(1):64-68
    厦门晚报.297天环球,探寻大洋深处的秘密[EB/OL].http://yc.jxcn.cn/xwzx/bwtg/sfx/2006_3_6/132398.shtml,2006-3-6
    谢声洛.离子选择电极分析技术[M].北京:化学工业出版社.1985:1-3,113-126
    谢声洛译.离子选择性电极分析方法指南[M].江苏科学技术出版社,1980.1-15
    徐义贤,王家映.基于连续小波变换的大地电磁信号谱估计方法[J].地球物理学报,2000,43(5):677-683
    姚伯初.南海北部陆缘天然气水合物初探[J].海洋地质与第四纪地质.1998,18(4):11-18
    叶瑛,邬黛黛,黄霞,等.固态pH探测电极的制备及其性能表征[J].传感技术学报,2003,16(4):487-490
    叶瑛,陈鹰,杨灿军,等.适用于深海极端环境的全固态电化学传感器的研究进展[J].自然科学进展,2004,14(2):141-144
    叶瑛,黄霞,韩沉花,等.海底热液扩散流溶解硫化物的原位观测:电极的制备与性能标定[J].传感技术学报,2008,21(1):5-8
    殷学博,刘长华,曾志刚,等.东太平洋海隆(EPR)13°N 热液区附近沉积物粒度特征[J].海洋科学,2007,31(1):49-54
    俞汝勤.离子选择性电极分析法[M].北京:人民教育出版社,1980.1-5
    袁春伟,曾志刚,殷学博,等.东太平洋海隆(EPR)13°N附近沉积物岩心地球化学特征[J].海洋地质与第四纪地质.2007,27(4):45-53
    张建民,杨长春,石秋芝,等.电极/溶液界面pH值的现场测量[J].高等学校化学学报,2001,22(11):1901-1903
    张雪彤,张荣华,胡书敏,等.大洋中脊热水探测与新型传感器[J].地质评论,2006,52(6):843-847
    赵卫东,宋金明.海洋化学传感器研制的动态评述[J].海洋与湖沼,2000,31(4):453-459
    赵一刚,鄢明才.冲绳海槽海底沉积物汞异常--现代海底热水效应的“指示剂”[J].地球化学,1994,23(2):132-138
    赵一阳,翟世奎,李水植,等.中国矿物岩石地球化学研究新进展[M].兰州大学出版社,1994.390-391
    曾繁彩,吴琳,何拥军.国外天气水合物调查研究综述海洋地质动态[J].2003,19(11):19-23
    曾蓉,黄文迎,庞志成,等.全氟磺酸膜的离子选择性[J].分析化学,1999,27(8):965-968
    曾志刚,王晓媛,张国良,等.东太平洋海隆(EPR)13°N附近Fe-氧羟化物的形成:矿物和地球化学证据[J].中国科学D辑:地球科学.2007,37(10):1349-1357
    中国地学网.海底矿产[EB/OL].http://www.geonet.cn/Html/Article/jishu/dxkp/kczs/62_8398.ht ml.2007-3-18
    中国网.中国科学家首次在印度洋找到热液硫化物[EB/OL].http://hxtc.china.cn/zhuanti2005/t xt/2005-12/18/content_6064548.html,2005-12-18
    周怀阳,彭晓彤.海洋原位化学探测核心技术的研究应用[J].海洋环境科学,2002,21(4):70-75
    周怀阳,彭晓彤,叶瑛.天然气水合物勘探开发技术研究进展[J].地质与勘探,2002,38(1):70-73
    朱笑青,王中刚.矿床地球化学研究[M].地震出版社,1994.108-112
    朱元保,崔立民,何双娥.简易型pH复合电极的研制[J].传感技术学报,1991,3:25-31
    Abe F,Horikoshi K.The biotechnological potential of piezophiles[J].Trends in Biotechnology,2001,19(3):102-108
    Baker E T.Patterns of event and chronic hydrothermal venting following a magmatic intrusion:new perspectives from the 1996 Gorda Ridge eruption[J].Deep-Sea Research Ⅱ,1998,45(12):2599-2618
    Bougault H,Aballea M,Radfor-Knoery J,et al.Famous and Amar segment on the Mid-Atlantic Ridge:ubiquitous hydrothermal Mn,CH_4,δ3He signals along the rift valley wallsand rift offsets[J].Earth and Planetary Science Letters,1998,161(1-4):1-17
    Bris N L,Govenar B,Gall C L,et al.Variability of physico-chemical conditions in 9°50'N EPRdiffuse flow vent habitats[J].Marine Chemistry,2006,98(2-4):167-182
    Bris N L,Sarradin P M,Caprais J C.Contrasted sulphide chemistries in the environment of 13°N EPR vent fauna[J].Deep Sea research Ⅰ,2003,50(6):737-747
    Bris N L,Sarrandin P M,Pennec S.A new deep-sea probe for in-situ pH measurement in the environment of hydrothermal vent biological communities[J].Deep-Sea Research Ⅰ,2001,48(8):1941-1951
    Cai W J,Zhao P,Wang Y.pH and pCO_2 microelectrode measurement and diffusive behavior of carbon dioxide species in coastal marine sediments[J].Marine Chemistry,2000,70(1-3):133-148
    Chevaldonné P,Desbruyèes D,Haitre M L.Time-series of temperature from three deep-sea hydrothermal vent sites[J],Deep-Sea Research Part A,1991,38(11):1417-1430
    Childress J J,Fisher C R.The biology of hydrothermal vent animals:physiology,biochemistry and autotrophic symbioses[A].Oceanography and Marine Biology Annual Review[C].Lo-ndon:UCL Press,1992.337-441
    Desbruyeres D,Biscoito M,Caprais J C,et al.Variations in deep-sea hydrothermal vent communities on the mid-Atlantic Ridge near the Azores Plateau[J].Deep-Sea Research Ⅰ,2001,48(5):1325-1346
    Deming J W,Baross J A.Deep-sea smokers:windows to a subsurface biosphere[J].Geochimica et Comochimica Acta, 1993, 57 (14): 3219-3230
    Ding K, Seyfried W E. In-situ measurement of dissolved H_2 in aqueous fluid at elevated temperatures and pressures[J]. Geochemica et Cosmochimica Acta, 1995, 59 (22): 4769-4773
    Ding K, Seyfried W E. measurement of NaCl-bearing fluid with an in situ sensor at 400 degrees C and 40 megapascals[J]. Science, 1996, 272 (5268): 1634-1636
    Ding K, Seyfried W E, Tivey M K, et al. In-situ measurement of dissolved H_2 and H_2S in high temperature hydrothermal vent fluids at the Main Endeavour field, Juan de Fuca Ridge[J]. Earth and Planetary Science Letters, 2001, 186 (3-4): 417-425
    Ding K, Seyfried W E, Zhang Z, et al. The in situ pH of hydrothermal fluids at mid-ocean ridges[J]. Earth and planetary Science Letters, 2005, 237(1-2): 167-174
    Embley R W, Lupton J E, Massoth G., et al. Geological, chemical, and biological evidence for recent volcanism at 17. 5°S: East Pacific Rise[J]. Earth and Planetary Science Letters, 1998, 163(1-4): 131-147
    Glasby G P, Kasahara J. Influence of tidal effects on the periodicity of earthquake acitivity in diverse geological settings with particular emphasis on submarine hydrothermal systems[J]. Earth-Science Reviews, 2001, 52(4): 261-297
    Haymon R M, Fornari D J, Edwards M H, et al. Hydrothermal vent distribution along the East Pacific Rise crest 9°09'~54'N and its relationship to magmatic and tectonic processes on fast spreading mid-ocean ridges[J]. Earth and Planetary Science Letters, 1991, 104(2-4): 513-34
    Haymon R M, Fornari D J, Von Damm K. L, et al. Volcanic eruption of the mid-ocean ridge along the east Pacific Rise crest at 9°09~54°N:direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991 [J]. Earth and Planetary Science Letters, 1993, 119(1-2): 85-101
    Hunt H L, Metaxas A, Jennings R M, et al. Testing biological control of colonization by vestimentiferan tubeworms at deep-sea hydrothermal vents (East Pacific Rise, 9°50'N) [J]. Deep sea research I . 2004, 51(2): 225-234
    Hessler R R, Kaharl V A. The deep-sea hydrothermal vent community: an overview[A]. Seafloor Hydrothermal Systems[C], Washington DC: American Geophysical Union, 1995. 72-84
    Huber H, Stetter K O. Hyperthermophiles and their possible potential in biotechnology [J]. Journal of Biotechnology, 1998, 64(1): 39-52
    Ishibashi J, Sato M, Sano Y, et al. Helium and carbon gas geochemistry of pore fluids from the sediment-rich hydrothermal system in Escanaba Trough[J]. Applied Geochemistry, 2002,17(11): 1457-1466
    Inda Y, Yamashita K, Umegaki T, et al. High temperature pH sensitivities of stabilized zirconia films and ceria ceramics[J]. Solid State Ionics, 1996, 86-88(2): 1121-1124
    Ito S, Hachiya H, Baba K, et al. Improvement of the silver/silver chloride reference electrode and its application to pH measurement[J]. Talanta, 1995, 42(11): 1685-1690
    Katsube T, Lauks L, Zemel J N. pH-sensitive sputtered iridium oxide films[J]. Sensors and Actuators, 1981-1982, 2: 399-410
    Kelley D S, Baross J A, Delaney J R. Volcanoes, fluids and life at mid-ocean ridge spreading centers[J]. Annuual Review of Earth Planetary Sciences, 2002, 30(1): 385-491
    Kinlen P J, Heider J E, Hubbard D E. A solid-state pH sensor based on a Nafion-coated iridium oxide indicator electrode and polymer-based silver chloride reference electrode[J]. Sensors and Actuators B, 1994, 22(1): 13-25
    Kinoshita M, Von Herzen R P, Matsubayashi O, et al. Tidally-driven effluent detected by long-term temperature monitoring at the TAG hydrothermal mound, Mid-Atlantic Ridge[J]. Physics of the Earth and Planetary Interiors, 1998, 108(2): 143-154
    Kounaves S P, Deng W, Hallock P R, et al. Iridium-based ultramicroelectrode array fabricated by microlithography[J]. Analytical Chemistry, 1994, 66(3): 418-423
    Kreider K G, Tarlov M J, Cline J P. Sputtered thin-film pH electrodes of platinum, palladium, ruthenium, and iridium oxides[J]. Sensors and Actuators B, 1995, 28(3): 167-172
    Legin E, Ladrat C, Godfrey A, et al. Thermostable amylolytic enzymes of thermophilic microorganisms from deep-sea hydrothermal vents[J]. Life Sciences, 1997, 320(11): 893-898
    Lide D R, Frederikse(Eds). CRC Handbook of Chemistry and Physics[M]. CRC Press, 1999. 8-21, 8-58
    Luther G W, Rozan T F, Taillefert M, et al. Chemical speciation drives hydrothermal vent ecology[J]. Nature, 2001,410(6830): 813-816
    Massoth G J, Baker E T, Feely R A, et al. Manganese and iron in hydrothermal plumes resulting from the 1996 Gorda Ridge Event[J]. Deep-Sea Research II, 1998,45 (12): 2683-2712
    McCollom T M, Shock E L. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems[J]. Geochimica et Comochimica Acta, 1997,61(20): 4375-4391
    Murphy B, Nance D. Earth Science Today[M]. CA USA: Brooks/Cole Publishing Company, 1999. 231-260.
    Muller B, Stierli R. In situ determination of sulfide profiles in sediment porewaters with a miniaturized Ag/Ag_2S electrode[J]. Analytica Chimica Acta, 1999,401(1-2): 257-264
    Moussy F, Harrison D J. Prevention of the rapid degradation of subcutaneously implanted Ag/AgCl reference electrodes using polymer coatings[J]. Anal Chem, 1994, 66(5): 674-679
    Nolan M A, Tan S H, Kounaves S P. Fabrication and characterization of a solid state reference electrode for electroanalysis of natural waters with ultramicroelectrodes[J]. Analytical Chemistry, 1997, 69(6): 1244-1247
    NOAA. Vent Fluid Chemistry [EB/OL]. http://www.pmel.noaa.gov/vents/chemistry/fluid.html. 2008-04-23
    Powell M A, Vetter R D, Somero G N. Sulfide detoxification and energy exploitation by marine animals[A]. Comparative Physiology: Life in Water and on Land[C]. Padova: IX-Liviana Press,1987. 241-250
    Prieur D. Microbiology of deep-sea hydrothermal vents[J]. Trends in Biotechnology, 1997, 15(7): 242-244
    Pruis M J, Johnson H P. Tapping into the sub-seafloor: examining diffuse flow and temperature from an active seamount on the Juan de Fuca Ridge[J]. Earth and Planetary Science Letters, 2004, 217(3-4): 379-388
    Ramondenc P, Germanovich L N, Von Damm K L, et al. The first measurements of hydrothermal heat output at 9°50'N, East Pacific Rise[J]. Earth and Planetary Science Letters, 2006, 245(3-4): 487-497.
    Reimers C E, Fischer K M, Merewether R, et al. Oxygen microprofiles measured in situ in deep ocean sediments[J]. Nature, 1986, 320: 741-744
    Reimers C E, Glud R N. In situ chemical sensor measurements at the sediment-water interface[M]. In: Vamey M S(eds). Chemical sensors in oceanography. Singaproe: Glodon and Breach Science Publishers, 2000. 249-282
    Revsbech N P, Blackburn T H, Cohen Y. Microelectrode studies of the photosynthesis and O_2, H_2S and pH profiles of a microbial mat[J]. Limnol Oceanogr, 1983, 28: 1062-1074
    Revsbech N P. An oxygen microelectrode with a guard cathode[J]. Limnol Oceanogr, 1989,34: 474-478
    Rubin K. Degassing of metals and metalloids from erupting seamount and mid-ocean ridge volcanoes: Observation and predictions[J]. Geochemica et Cosmochimica Acta, 1997, 61(17): 3525-3542
    Scearce C. Hydrothermal Vent Communities[EB/OL]. http://www.csa.com/discoveryguides/ve nt/review.pdf, 2006-05
    Seewald J, Cruse A, Saccocia P. Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity[J]. Earth and Planetary Science Letters, 2003, 216(4): 575-590
    Shank T M, Fornari D J, Von Damm K L, et al. Temporal and spatial patterns of biological community development at nascent deep-sea hydrothermal vents (9°50'N, East Pacific Rise)[J]. Deep-Sea Research II, 1998, 45(1-3): 465-515
    Slobodkin A, Campbell B, Cary S C, et al. Evidence for the presence of thermophilic Fe(III)-reducing microorganisms in deep-sea hydrothermal vents at 13°N (East Pacific Rise)[J]. FEMs Microbiology Ecology, 2001, 36(2-3): 235-243
    Suzuki H, Hiratsuka A, Sasaki S, et al. Problems associated with the thin-film Ag/AgCl reference electrode and a novel structure with improved durability[J]. Sensors and Actuators B:Chemical, 1998,46(2): 104-113
    Tivey M K, Bradley A M, Joyce T M, et al. Insights into tide-related variability at seafloor hydrothermal vents from time-series temperature measurements [J]. Earth and Planetary Science Letters, 2002, 202(3-4): 693-707
    Toulmond A, Lallier F H, Frescheville J D, et al. Unusual carbon dioxide-combining properties of body fluids in the hydrothermal vent tubeworm Riftia pachyptila[J]. Deep-Sea Research I ,1994,41 (10): 1447-1456
    USGS. Gas Hydrates[EB/OL]. http://energy.usgs.gov/other/gashydrates/. 2008-04-23
    USGS. Gas Hydrates-------A Possible Future Energy Resource? [EB/OL]. http://walrus.wr.us gs.gov/resources/hydrate.html, 2005-01-10
    
    Urcuyo I A, Massoth G J, Julian D, et al. Habitat, growth and physiological ecology of a basaltic community of Ridgeia piscesae from the Juan de Fuca Ridge[J]. Deep Sea Research I ,2003, 50(6): 763-780
    Van Dover C L, Humphris S E, Fornari D, et al. Biogeography and Ecological Setting of Indian Ocean Hydrothermal Vents[J]. Science, 2001, 294 (5543): 818-823
    Van Dover C L, German C R, Speer K G, et al. Evolution and Biogeography of Deep-Sea Vent andSeep Invertebrates[J]. Science, 2002, 295 (5558): 1253-1257
    Visscher P T, Beukema J, Gemerden H, et al. In-situ characterization of sediments measurement of oxygen and sulfide profiles with novel combined needle electrode[J]. Limnol Oceanogr, 1991,36(7): 1476-1480
    Wang M, Yao S, Madou M. A long-term stable iridium oxide pH electrode[J]. Sensors and Actuators B, 2002, 81(2-3): 313-315
    Wallace D W R, Wirrick C D. Large air-sea gas fluxes associated with breaking waves[J]. Nature, 1992, 356(6371): 694-696
    Weber A , Jorgensen B B. Bacterial sulfate reduction in hydrothermal sediments of the Guaymas Basin, Gulf of California, Mexico[J]. Deep-Sea Research I , 2002, 49(5): 827-841
    Ye Y, Huang X, Yang C J, et al. A novel solid Ag/Ag_2S electrode for in-situ sensors and itsapplication at biological cluster near TICA-vent, 9°50'N EPR[C]. Proceedings of the Sixteeth International Offshore and Polar Engineering Conference, Ocean Mining Symposium(China), 2005. 28-30
    Ye Y, Huang X, Yang C J, et al. Resolution for in situ pH sensing on seafloor: Ir/IrO_2 electrode with Nafion shielding membrane[C]. Proceedings of the Sixteeth International Offshore and Polar Engineering Conference, 2006. 304-306
    Zhang W, Charles E A. A thermodynamic approach to calculate the yttria-atabilized zirconia pH Sensor potential [J]. Journal of Applied Electrochemistry, 2003, 33: 1025-1033

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700