用户名: 密码: 验证码:
原位复合钙钛矿/钨青铜复相材料的形成及介电与热释电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热释电型非致冷焦平面阵列(Uncooled Focal Plane Array—UFPA)红外探测器件的特性直接与所用热释电材料相关,而热释电材料在居里温度点附近由于强介电峰的出现而具有最佳的热释电性能,可以获得较大的探测优值。因而,受热释电材料影响,这种探测器对使用环境温度有较高的要求。因此,开发一种复合热释电材料,使其在一定温度范围内具有多个强的介电峰,既可利用材料的复合效应,使材料具有高的热释电响应,又可拓宽其工作温度范围,降低探测器对使用环境温度的要求对热释电红外探测器,特别是红外热像仪性能的突破,具有重要意义。
     本论文的研究目的在于对两种本身具有高热释电性能的钛酸锶钡Ba_(l-x)Sr_xTiO_3(BST)和铌酸锶钡Sr_xBa_(1-x)Nb_2O_6(SBN)材料进行两相复合共存的制备研究,获得高性能两相共存复相体系,为开发新型高性能热释电探测器打下基础。本研究主要利用传统原位烧结合成方法,通过新的复相形成控制理念,进行特殊配方设计控制,以原位合成方法制备复相陶瓷B_(0.7)S_(0.3)T_(1-y)N_y并获得钙钛矿/钨青铜两相共存的高热释电性能复相体系;通过深入研究两相共存体系中两相间的影响机制,掌握体系介电性能、热释电性能与结构、晶相间的关系,实现对热释电性能的调整、控制和提高。
     本文全面回顾了UFPA,热释电材料以及复相陶瓷材料的研究进展,比较了各种UFPA的优缺点,总结了常用热释电材料及复相陶瓷材料的性能和制备方法。用XRD、SEM、EDXA、阻抗分析仪和热释电测试系统等分析了BST/SBN复相陶瓷B_(0.7)S_(0.3)T_(1-y)N_y的制备、微观结构、介电和热释电性能。对两相共存形成的机理,对复相陶瓷材料介电常数的混合法则在B_(0.7)S_(0.3)T_(1-y)N_y中的应用,对复相体系介电和热释电性能的产生和提高进行了详细研究。具体研究内容及研究结论如下:
     (1)对钙钛矿/钨青铜复相材料的形成和制备进行了研究。首次通过对组成的过量设计确定了B_(0.7)S_(0.3)T_(1-y)Ny组成配方体系,对体系中形成钙钛矿相BST或钨青铜相SBN的剩余物含量及第二相形成量进行了详细的对比计算,从理论上证明了第二相的形成直接与剩余物含量相等。发现了,复相陶瓷的形成,两相的存在关系,直接与系统组分的过量相关。在形成以钙钛矿为主相的B_(0.7)S_(0.3)T_(1-y)N-y体系中,控制Nb_2O_5的过量可以控制形成第二相钨青铜相;在形成以钨青铜为主相的B_(0.7)S_(0.3)T_(1-y)N_y体系中,控制BaO和SrO的过量可以控制形成第二相钙钛矿相。B_(0.7)S_(0.3)T_(1-y)N_y体系中组分变化在y值为
    
    浙江大学博士学位论文摘要
    0.1~0.8范围时可控制钙钦矿BsT相和钨青铜SBN相两相稳定共存,当y=0.3一0.4
    时,两相含量相当。
     (2)对复相陶瓷原位形成两相的晶相特性进行了研究。确定了复相陶瓷
    B0.7503TI.尹y同时具有钙钦矿BST相和钨青铜SBN相两相复合的特性,形成的钙钦矿
    相和钨青铜相可以是分别掺杂有一定量NbZOS和Tio:的BST/NbZos和sBN/TIOZ固溶
    体相,也可以固溶量极少。两相含量相当的B0.7s03TI一热复相体系中形成的钙钦矿相
    几乎不固溶Nb205,而形成的钨青铜相则固溶有一定量的TIOZ。钨青铜相的铁电顺电
    相转变温度与钨青铜相中固溶TIOZ量相关,TIO:固溶量增加,转变温度降低;同时受
    复合体系中钙钦矿相的影响,钙钦矿相含量增加,转变温度升高。复相体系中钨青铜
    相的最低铁电顺电相转变温度约在200oC,比纯SBN相下降约90oC。
     (3)对复相陶瓷B07S03TI.尹y的微观形貌进行了分析研究。研究表明,复相陶瓷
    BO.7SO.3TI令Ny体系明显由钙钦矿相和钨青铜相两相晶粒复合而成。钙钦矿相呈多边形小
    晶粒,而钨青铜相以长棒状大晶粒存在。钨青铜相晶粒的力学性能比钙钦矿相差,样
    品断裂时多为穿晶开裂。Nb介在钙钦矿相中固溶引起晶格较大畸变,阻碍钙钦矿相晶
    粒生长;较小晶粒的钙钦矿相存在及Ti4+在钨青铜相中固溶则抑制钨青铜相晶粒异常
    长大。与单相SBN陶瓷相比,小晶粒BST对大晶粒SBN空隙的填充,明显提高了复
    相陶瓷的致密度。
     (4)对原位复合形成的B07so.3TI一y两相共存复相材料的介电常数与复合两相特
    性的关系进行了研究。研究指出,原位复合形成的BO.7s03TI浏y两相共存复相材料,
    不能简单地用传统的复相材料介电常数计算时考虑的仅与复合各单相本身的介电常数
    及其各自在复相体系中的含量有关进行讨论,而必须同时考虑到由于在同一体系中两
    相分别形成相关联的固溶体,并随着固溶度的不同分别对各相介电常数产生的影响。
    以此首次推出了B07s03TI浏y两相共存复相材料的介电常数随组成变化的理论计算公
    式为:In6=“、sT
    、52阵她习」·、1啸一e--n(ltw)+c,与实验
     L几一al十戈昭r一踢£了」
    结果完全一致。
     (5)对复相陶瓷B07s03T0.7N住3的介电性能产生机理及过程进行了研究。揭示了钙
    钦矿、钨青铜复相陶瓷B07503T0.召仓3的形成反应机理及形成过程。发现了钙钦矿相含
    量增加及晶粒尺寸增大,束缚了钨青铜相的铁电/)l项电相变,钨青铜相居里点升高;反
    之,钨青铜相晶粒尺寸增大,阻碍钙钦矿相晶粒生长,束缚作用减弱,居里点略微降
    
    浙江大学博士学位论文摘要
    低。发现了体系内两相共存在晶界易引入缺陷,促使在电场作用下产生较多的极化子,
    低
The performance of IR imagers is dependent on the pyroelectric materials used in the uncooled focal plane arrays (UFPAs). As we known, the strongest responsivity of the pyroelectric materials is generated near the Curie point; so, the imagers request a curious operating temperature in order to obtain the strongest responsivity. Furthermore, a composite material having several dielectric peaks, i.e. Curie temperature points, around room temperature will possess both a stronger pyroelectric effect and a wider temperature range near the ambient through the "composite effect". Both higher performance and temperature stability of the IR imagers would be obtained without any temperature stabilizer. And it is significant for IR imaging.The aim in this paper is to prepare the composite materials with higher pyroelectric properties through the composite of Ba1-xSrxTiO3(BST) and SrxBa1-xNb2O6(SBN), and to provide the foundation for developing new IR imagers with higher performance. In the present study, the composite ceramics B0.7S0.3T1-yNy with both the perovskite and the tungsten bronze phases were successfully prepared in situ by controlling some excessivecontents of components and traditional ceramic process in 0.7BaO·0.3SrO·(1-y)TiO2·yNb2O5 composite system. The relationships between the dielectric/pyroelectric properties and the microstructures of the composites B0.7S0.3T1-yNy were investigated by XRD, SEM, EDXA, impedance analyzer and the testing system for measuring pyroelectric current. Some interesting results and conclusions obtained in the work are as flows:(1) The results, about the investigation on preparation and formation of the composites B0.7S0.3T1.yNy, show that the perovskite BST (Nb) system is not stable any longer and the second phase tungsten bronze SBN appears while the excessive content of Nb2O5 is above 6 mol%, similarly, the tungsten bronze SBN(Ti) system is not stable any longer either and the second phase perovskite BST appears while the excessive content of (BaO+SrO) is above 11mol%. In the composite ceramics B0.7S0.3T1-yNy in which the SBN phase and BST phase coexist, the tungsten bronze phase exists in the state of SBN (Ti) solid solution while the perovskite phase almost exists in the state of pure BST or BST (Nb) solid solution doped only with little Nb2O5.(2) The dielectric properties of the composite ceramics B0.7S0.3T1-yNy have both characteristics of the perovskite phase and the tungsten bronze phase. The r and tan of the
    
    B0.7S0.3T1.yNy depend on the relative content of the perovskite phase as well as the solubility of Nb5+ ions in it. The phase transition temperature of the tungsten bronze phase depends on the solubility of Ti4+ ions in the phase and the relative content of the perovskite phase. The lowest transition temperature is around 200°C and it is about 90°C lower than the pure tungsten bronze phase SBN.(3) The microstructure of the composite ceramics B0.7S0.3T1.yNy consisted of two kinds of grains. The smaller polygonal grains belonged to the BST phase, and the larger ones to the SBN phase. The coexistence of the two phases inhibited the growth of the BST crystal. The density of microstructure of the composite ceramic was higher than that of both the pure BST and SBN sintered at same temperature and for same time, due to the void among the larger SBN grains were filled with the smaller BST grains.(4) A new formula is firstlyput forward to calculate the dielectric constant of a composite material with two phases prepared in situ, according to the experimental results about the composite ceramics B0.7S0.3T1-yNy and considering the effects of solid solution between the two phases.(5) The formation mechanism of the composite ceramics B0.7S0.3T1-yNy is investigated. The results revealed that the phase transition of the tungsten bronze phase increased as the content or the grain size of the perovskite phase increased and decreased as the grain size of the tungsten bronze phase increased. The defects between the grain boundaries of different phase increased when the tw
引文
[1] R.J.凯斯 主编,董培芝 等译,光探测器与红外探测器.北京:科学出版社,1984年5月第一版.
    [2] 邵式平.非致冷长波红外焦平面列阵现状.红外与激光工程,1997,26(4):6-11.
    [3] Jim Kreider, et al. Uncooled infrared arrays sense image scenes. Laser Focus World, 1997, 8: 139-150.
    [4] Paul W Kruse. Thermal imager from military to marketplace. Photonics Spectra, 1995, 229(3): 104-108.
    [5] 詹劲峰,王广民,皮德富.非致冷红外焦平面阵列研究进展.半导体情报,1997,34(6):29-32.
    [6] R. E. Flannery, J. E. Miller, Status of Uncooled Infrared Images. SPIE, 1992, 1689: 379-395.
    [7] W. Radford, et al. 320×240 FPA for Microbolometer Applications. SPIE, 1996, 2685: 80-90.
    [8] Kennedy R McEwen. European Uncooled Thermal Imaging Technology. SPIE, 1997, 3061: 179-190.
    [9] Tanka, et al. Infrared Focal Plane Arrays Incorporating Silicon IC Process Compatible Bolometer. IEEE Trans Electron Devices, 1996, 43(11): 1844-1849.
    [1
    
    [10] 黄承彩.混合式非致冷焦平面器件芯片工艺研究.应用光学,1999,20(2):10—17.
    [11] 吴诚,苏君红,潘顺臣,冯生荣,金伟其,高稚允.非制冷红外焦平面技术述评(下),红外技术.1999,21(2):1-3
    [12] Kazuhiko Hashimoto, Huaping Xu, Tomonori Mukaigawa, Ryuichi Kubo, Hong Zhu, Minoru Noda, Masanori Okuyama, Si monolithic microbolometers of ferroelectrie BST thin film combined with readout FET for uncooled infrared image sensor, Sensors and Actuators A, 2001, 88: 10-19.
    [13] 蒋民华.晶体物理.济南:山东科学技术出版社.
    [14] 陈纲,廖理几.晶体物理基础.北京:科学出版社.
    [15] 钟维烈.铁电体物理学.北京:科学出版社,1998,p5,p532.
    [16] R. Watton. ECAPD-1/ISAF 1988, 1989, Ferroelectrics, 91: 87-108.
    [17] J. H. Yoo, W. Gao, K. H. Yoon. Pyroelectric and dielectric bolometer properties of Sr modified BaTiO_3 ceramics. Journal of Materials Science, 1999, 34: 5361-5369.
    [18] 邵式平.室温型热释电红外探测器焦平面列阵新进展.红外与激光工程,1998,27(2):33-36.
    [19] 刘少波,刘梅冬,曾亦可,夏冬林,黄焱球,李军,郭明金.非致冷热电型红外焦平面阵列用探测材料的研究进展.材料导报,2000,14(10):39—42.
    [20] R. W. Whatmore, A. Patel, N. M. Shorrocks, F. W. Ainger. Ferroelectric Materials for Thermal IR Sensors State-of-the-Art and Perspectives. Ferroelectrics, 1990, 104: 269-283.
    [21] P. L. Zhang, W. L. Zhong, C. S. Fang, H. S. Zhao, C. P. Li. Low temperature pyroelectric properties of modified TGS single crystals. Ferroelectrics, 1990, 101: 179-183.
    [22] 刘梅冬,许毓春.压电铁电材料与器件.武汉:华中理工大学出版社,1990,21—24.
    [23] A. M. Glass. Investigation of the Electrical Properties of Sr_(1-x)Ba_xNb_2O_6 with Special Reference to Pyroelectric Detection. J. Appl. Phys., 1969, 40: 4699-4713.
    [24] J. Lian, T. Shiosaki. Ferroelectrics, 1991, 118: 135.
    [25] Chen Shi, Liu Meidong, Li Churong, Zeng Yike, Joe Da Costa. Investigation of crystallographic and pyroelectric properties of lead-based perovskite-type structure ferroelectric thin films. Thin Solid Films, 2000, 375: 288-291.
    
    [26] M. Daglish, A. J. Moulson, ibid, 1992,126:215.
    [27] R.Watton. ibid, 1989, 91:87.
    [28] 刘瑞斌,林盛卫,瞿翠风,姚春华,金绮华,林猷慎,张毓荣.高性能PZNFTSI陶瓷热释电材料与小面积红外探测器的研制.无机材科学报,1993,8(4):461-465.
    [29] Takayama Ryoichi, Kamada Takeshi, Hayashi Shigenori, Fujii Satoru, Tomozawa Atsushi, Deguchi Takashi, Hirao Takashi. Pyroelectric properties of La-modified PbTiO_3 thin films and their applications. Ferroelectrics, 1997, 195(1-4): 311-316.
    [30] Chih-Ming Wang, Yao-Te Huang, Ying-Chung Chen, Maw-Shung Lee, Chien-Chuan Cheng, Ming-Cheng Kao, Jpn. J. Appl. Phys., 2000, 39: 4064.
    [31] Lirong Zheng, Pingxiong Yang, W.-Ping Xu, Chenglu Lin, Wenbiao Wu, Masanori Okuyama. Pulsed laser deposition of pyroelectric PCLT thin films using a ceramic/metal target. Integrated Ferroelectrics, 1998, 20(1-4):73-78.
    [32] K. G. Brooks, M. Kohli, D. V. Taylor, T. Maeder, I. Reaney, A. Kholkin, P. Muralt, N. Setter. Sol-gel deposition of PZT thin films on ceramic ZrO_2 substrates, IEEE International Symposium on Applications of Ferroelectrics(Piscataway, NJ, USA, 96CH35948), IEEE, 1996, 2: 611-614.
    [33] R. Kohler, N. Neumann, N. Hess, R. Bruchhaus, W. Wersing, M. Simon. Pyroelectric devices based on sputtered PZT thin films. Ferroelectrics, 1997, 201(1-4): 83-92.
    [34] Wensheng Wang, Zhiming Chen, Masatoshi Adaehi, Akira Kawabata. Preparation of Zr-rich PZT and La-doped PbTiO_3 thin films by RF magnetron sputtering and their properties for pyroeleetric applications, Integrated Ferroelectrics, 1996, 12(2-4): 251-261.
    [35] J. F. Roeder, I. S. Chen, P. C. Van Buskirk, H. R. Betatan, C. M. Hanson. Dielectric and pyroelectrie properties of thin film PZT. IEEE International Symposium on Applications of Ferroelectrics, 1998, 217-220.
    [36] Weiguo Liu, Jong Soo Ko, Weiguang Zhu. Preparation and properties of multiplayer Pb(Zr, Ti)O_3/PbTiO_3 thin films for pyroelectrie application. Thin Solid Films, 2000, 371: 254-258.
    [37] Masafumi KOBUNE, Haruo ISHITO, Atsushi MINESHIGE, Satoshi FUJI, Ryoichi TAKAYAMA, Atsushi TOMOZAWA. Jpn. J. Appl. Phys., 1998, 37: 5154.
    [38] A. Ignatiev, Y. Q. Xu, N. J. Wu, D. Liu. Pyroelectric, ferroelectric and dielectric properties of Mn and Sb-doped PZT thin films for uncooled IR detectors, Materials Science and Engineering, 1998, B56: 191-194.
    
    [39] Somnath Sengupta, Louis C.Sengupta, Jennifer Synowczynski, David A.Rees. Novel pyroelectric Sensor Materials, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998,45(6): 1444-1452.
    [40] Jae. Shin LEE, Jae-Seok PARK, Jin-Sup KIM, Jung-Hee LEE, Yong Hyun LEE, Suk-Ryong HAHN. Preparation of (Ba, Sr)TiO_3 thin films with high pyroelectric coefficients at ambient temperatures. Jpn. J. Appl. Phys., Part 2: Letters, 1999, 38:L574-L576.
    [41] F. James. Belcher, et al, Uncooled monolithic ferroelectric IRFPA technology. SPIE, 3436,1998:611-622
    [42] 孙志君.红外焦平面阵列技术的军用市场展望.传感器世界,1999,(5):1-8.
    [43] Rex Watton, Paul Manning, Ferroelectrics in uncooled thermal imaging. SPIE, 3436, 1998:541-554.
    [44] U.P.Spinola, E.N.Moreira, L.A.Bassora, J.A.Eiras, D.Garcia. Pyroelectric and Piezoelectric Properties of SBN Ceramics. IEEE Ultrasonics Symposium, 1996, 523-526.
    [45] 王茂样,孙彤,孙平.(Pb_(1-x)Sr_x)TiO_3系红外敏感铁电陶瓷的研究.应用科学学报,2000,18(4):365-367.
    [46] R. W. Whatmore. Ferroelectric materials for thermal IR detectors. Ferroelectrics, 1987, 76: 351-367.
    [47] M. Stafsud, M. Y. Pines. J. Opt. Soc. Am., 1971, 61:1153.
    [48] A. Basjamin, R. C. Devries, J. Am. Ceram. Soc., 1957, 40:373.
    [49] 王培英,王欣宇,刘梅冬,饶韫华,曾亦可.Ba_(1_x)Sr_xTiO_3薄膜的制备及特性研究.功能材料,1998,29(5):536-538.
    [50] D. Roy, B. S. Krupanidhi. J. Appl. Phys. Lett, 1993, 62(10): 1056-1058.
    [51] D. Dimos, H. C. Mueller. J. Annu. Rev. Mater Sci., 1998, 28: 397-419.
    [52] R. W. Whatmore, R. Watton. Pyroelectric ceramics and thin films for uncooled thermal imaging. Ferroelectrics, 2000, 236(1-4):259-279.
    [53] W. Zhu, C. C. Wang, S. A. Akbar, et al. Fast—sintcring of hydrotherrnally synthesized BaTiO_3 Powders and their dielectric Properties. J. Mater Sci., 1997, 32:4303-4307.
    [54] S. M. Rhim, H. Bak, S. Hong, et al. Effcct of heating rate on the sintering behavior and the dielectric Properties of ceramics Prepared by boron-containing liqud-Phase sintcring. J. Am. Ceram. Soc., 2000, 83(12): 3009-3013.
    [55] 栾伟玲,高濂,郭景坤.细晶粒BaTiO_3陶瓷的微结构及介电性能分析.无面材料学 报,2000,15(6):1043-1049.
    [5
    
    [56] A. I. Bykov, A. V. Polotai, A. V. Ragulya, et al. Theory and technology of sintering, heat, and chemical heat-treatment process. Powder Metallurgy and Metal Ceramics, 2000, 39(7-8): 395-402.
    [57] S. Derling, H.P. Abicht. Microwave sintering of BaTiO3-based ceramics. J. Microwave Powder and Electromagnetic Energy, 1996, 31 (4): 221-227.
    [58] H. Y. Chang, K. S. Liu. Conventional and microwave sintering studies of SrTiO3. J. Mater. Res., 1995, 10(8): 2052-2059.
    [59] 杨文,常爱民,杨邦朝.微波烧结法制备Ba_(0.65)Sr(0.35)TiO_3热释电陶瓷,红外与毫米波学报2002,21(3):171-174.
    [60] 曾华荣,瞿翠风,姚春华,金绮华,孙大志,林盛卫,无机材料学报,1999,14(1):101-106.
    [61] G.Arlt, D. Hennings, G. With. Dielectric properties of fine grained barium titanate ceramics. J. Appl. Phys., 1985, 58(4): 1619-1625.
    [62] A.S.Shaikh, R.W. Vest, G.M.Vest.Dielectric properties of ultra fine grained BaTiO_3, IEEE Trans on Ultras, Ferroelectric and Freq Cont, 1989, 36(4): 407-412.
    [63] A. J. Bell, A. J. Moulson, L. E. Cross. The effect of grain size on the permittvity of BaTiO_3. Ferroelectrics, 1984, 54:147-150.
    [64] B. Jaffe, et al. Piezoelectric Ceramics. Marietta, OH, R. A. N. Publisher, 1991.
    [65] S. Garcia, R. Font and J. Portelles, et.al., Effect of Nb Doping on (Sr,Ba)TiO_3 (BST) Ceramic Samples. Journal of Electroceramics, 2001,6(2): 101-108.
    [66] R. Varatharajan, S. Madeswaran, R. Jayavel, Nb:BST: Crystal growth and ferroelectric properties, Journal of Crystal Growth, 2001, 225: 484-488.
    [67] 孙平,王茂祥,孙彤,穆志纯.(Ba_(1-x)Sr_x)TiO_3系铁电陶瓷的制备和介电性能研究.电子器件,2000,23(2):85-89.
    [68] Schloss Lawrence F, Hailer Eugene E. Effect of growth temperature on pulsed laser deposited (Ba, Sr)TiO_3 thin films designed for pyroelectfic far-infrared detector applications, Integrated Ferroelectrics, 1999, 25(1): 103-112.
    [69] Tsuyoshi HORIKAWA, Noboru MIKAMI, Tetsuro MAKITA, Junji TANIMURA, Masayuki KATAOKA, Kazunao SATO, Masahiro NUNOSHITA, Dielectric Properties of (Ba, Sr)TiO_3 Thin Films Deposited by RF Sputtering, Jpn. J. Appl. Phys., 1993, 32: 4126-4130.
    [70] Tae Song Kim, Chong Hee Kim. Structural and electrical properties of rf magnetron-sputtered Ba_(1-x)Sr_xTiO_3 thin films on indium-tin-oxide-coated glass substrate. J. Appl. Phys., 1994, 75(12): 7998-8003.
    [7
    
    [71] 程建功,孟祥建,唐军,郭少令,褚君浩.溶胶—凝胶法制备Ba_(0.8)Sr_(0.2)TiO_3薄膜的结构及铁电性质研究.物理学报2000,49(5):1006-1008.
    [72] C.L.Jia, K.Urban, S.Hoffrnan, R.Waser, J.Mater.Res., 1998,13:2206.
    [73] M.C.Gust, N.D.Evans, L.A.Momoda, M.L.Mecartney. In-situ transmission elctron microscopy crystallization studies of sol-gel-derived barium titanate thin films. J. Am. Ceram. Soc., 1997, 80:2828.
    [74] 金承玉,丁永平,孟中岩.Sol-Gel法制备Ba_(1-x)Sr_xTiO_3铁电薄膜化学机制的探讨.无机材料学报2000,15(2):287-291.
    [75] 兰艳梅,刘明登,邓希敏.溶胶—凝胶法制备BST铁电薄膜材料的机理研究.厂西师范大学学报(自然科学版),1996,14(2):53-57.
    [76] C. J. Peng, S. B. Krupanidhi, Process/structure/property relations of barium strontium titanate thin films deposited by multi-ion-beam sputtering technique. IEEE, 1995,460-462.
    [77] Chen S.-Y., Wang H.-W., Huang L-C. Electrical properties of Mg/La, Mg/Nb co-doped (Ba0.7Sr0.3)TiO3 thin films prepared by metallo-organic deposition method. Jpn.J.Appl.Phys., Part 1: Regular Papers and Short Notes and Review Papers, 2001, 40(8): 4974-4978.
    [78] P.B. Jamiesion, S.C. Abrahams, J.L. Bemstein. Ferroelectric Tungsten Bronze-Type Crystal Structures.I.Barium Strontium Niobate Ba_(0.7)Sr_(0.75)Nb_2O_(5.78). J. Chem. Phys., 1968,48(11): 5048-5057.
    [79] Chao-An Jong, Jon-Yiew Gan. Crystallization of Sr_(0.5)Ba_(0.5)Nb_2O_6 Thin Films on LaNiO3 Electrodes by RF Magnetron Reactive Sputtering, Jpn.J.Appl.Phys.,2000, 39(2A):545-550.
    [80] Qing-Wei Huang, Pei-Ling Wang, Yi-Bing Cheng, Dong-Sheng Yan. XRD analysis of formation of strontium barium niobate phase. Materials Letters, 2002,56:915- 920.
    [81] Wen Jiung Lee,Tsang Tse Fang.Effect of the strontium:barium ratio and atmosphere on the sintering behavior of strontium barium niobate. J. Am. Ceram. Soc., 1998, 81(2):300-304.
    [82] 黄清伟,王佩玲,程一兵,严东生.原始粉料对Sr0.4Ba0.6Nb2O6烧结性能与显微结构的影响.无机材料学报,2003,18(1):175-179.
    [83] Wen Jiung Lee,Tsang Tse Fang. Densification and microstructural development of the reaction sintering of strontium barium niobate. J. Am. Ceram. Soc., 1998, 81(4):1019-1024.
    [8
    
    [84] Jiin-Jyh Shyu, Jenn-Rong Wang. Crystallization and dielectric properties of SrO-BaO-Nb_2O_5-SiO_2 tungsten-bronze glass-ceramics. J. Am. Ceram. Soc., 2000, 83(12):3135-3140.
    [85] S.T.Liu, R.B.Maciolek. Rare-earth-modified Sr(0.5)Ba_(0.5_Nb_2O_06 ferroelectric crystals and their application as infrared detectors. J. Electron. Maters., 1975, 4(1):91-100.
    [86] J.M.Marx, O.Eknoyan, H.F.Taylor, et.al. Electro-optic modulation and self-poling in strain-induced waveguides in barium strontium titanate niobate. J. Appl. Phys. Lett., 1995, 67(10):1381-1383.
    [87] H. Amorin, J. Portelles, F. Guerrero, et.al. Ferroelectric Properties of the La_(0.03)Sr_(0.255)Ba_(0.7)Nb_(2-y)Ti_yO_(6-y/2) Ceramic System, Journal of Electroceramics, 1999, 3(4):371-375
    [88] H. Amorin, J. Portelles, F. Guerrero, et.al. Formation of the La_(0.03)Sr_(0.255)Ba_(0.7)Nb_(2-y)Ti yO_(6-y/2) ferroelectric ceramic system, J. Mater. Sci., 2000, 35:4607 - 4613.
    [89] J.Takahashi, S.Nishiwaki, K.Kodaira. Ceram. Trans., 1994, 41:363-366.
    [90] S.Nishiwaki, J.Takahashi, K.Kodaira. Jpn. J. Appl. Phys., 1994, 33:5477-5481.
    [91] H.Y.Lee, R.Free. Effect of additives on microstructure development and ferroelectric Sr_(0.3)Ba_(0.7)Nb_2O_6 ceramics. J.Appl. Phys., 1997, 81 (1):376-382.
    [92] H.Y.Lee, R.Free. Abnormal grain growth and liquid sintering in Sr_(0.4)Ba_(0.6)Nb_2O_6(SBN40) ceramics. J. Mater. Sci., 1998, 33:1703-1708.
    [93] T.Kimura, S.Miyamoto,Yamaguchi. Microstructure development and dielectric properties of potassium strontium niobate ceramics. J.Am. Ceram.Soc., 1990, 127-130.
    [94] S.I.Lee,W.K.Choo. Modified ferroelectric high density strontium barium niobate ceramics for pyroelectric application. Ferroelectrics, 1988, 87:209.
    [95] Junmo Koo, Jae Hyeok Jang, Byeong-Soo Bae. Crystallization behavior of sol-gel-derived strontium barium niobate thin films. J. Am. Ceram. Soc., 2001, 84(1):193-199.
    [96] H.Xu, R.Kubo,Y.Yoshino. Preparation ofLa-modified Sr_(0.5)Ba_(0.5)Nb_2O_6 ferroelectric thin films for dielectric-bolometer-based infrared image sensor. Applications of ferroelectrics, 1998, ISAF 98, Proceedings of the eleventh IEEE international symposium on, 1998, p175-178.
    [97] Hsiu-Fung Cheng,Gong-Shing Chiou, Kou-Shung Liu, et al. Ferroelectric properties of (Sr_(0.5)Ba_(0.5))Nb_2O_6 thin films synthesized by pulsed laser deposition. Applied Surface Science, 1997, 113-114:217-221.
    [9
    
    [98] Te-Wei Chiu, Naoki Wakiya, Kazuo Shinozaki, Nobuyasu Mizutani. Growth of highly (001)-textured strontium barium niobate thin films on epitaxial LaNiO_3/CeO_2 /YSZ/Si(100). Thin Solid Films, 2003, 426:62-67.
    [99] 钱学森,力学与实践,1979.
    [100] 沃丁柱.复合材料大全.北京:化学工业出版社,2000:12.
    [101] J. K. Guo. The frontiers of research on ceramics science. J Solid State Chem, 1992, 69( 1):108-110.
    [102] 江东亮,中国机械工程学会材料学会第一届年会论文集,1986,p450.
    [103] 江东亮.兵器材料科学与工程,1989,(8):56.
    [104] R.J.Brook, Tailoring Multiphase. Composite Ceramics. Ed. by E.Richard,Tressler et al., Plenum Press, New York, 1986, p1.
    [105] J.Karch, H.Birringer, H.Gleiter. Ceramics ductile at low temperature. Nature, 1987, 330 (10):556-558.
    [106] P. Greil, G. Petzow, H. Tanaka. Ceramic International,1987,13:19.
    [107] R.E.Newnham. D.P.Skinner, L.E.Cross. Connectivity and Piezoelectric-pyroelectric composites. Mater. Res. Bull., 1978, 13:525—536.
    [108] K. Niihara. New design concept of structural ceramics-ceramic nanocomposites. J. Ceram. Soc. Japan, 1991,99(10):974-982.
    [109] HIRANO T, NIIHARA K. Microstructure and mechanical properties of Si_3N_4 / SiC composites. Mater. Lett., 1995, 22:249-254.
    [110] HIRANO T, NIIHARA K. Thermal shock resistance of Si_3N_4 / SiC nanocomposites fabricated from amorphous Si—C—N precursor powders. Mater. Lett, 1996, 26(6):285-289.
    [111] 郭景坤,诸培南.复相陶瓷材料的设计原则.硅酸盐学报 1996,24(1):7-12.
    [112] 王昕,谭训彦,尹衍升等.纳米复合陶瓷增韧机理分析.陶瓷学报,2000,21(2):107-111.
    [113] 焦绥隆,C.E.Borsa.氧化铝/碳化硅纳米复合陶瓷的力学性能和强化机理.材料导报,1996,10(增刊):89-93.
    [114] 郭景坤.关于先进结构陶瓷的研究.无机材料学报,1999,14(2):194-202.
    [115] 张志焜,崔作林.纳米技术与纳米材料.北京:国防工业出版社,2000.
    [116] J. G. Li, L. Gao, J. K. Guo, et al. J. Am. Ceram. Soc., 2002,85:724-726.
    
    [117] 李景国.TiN纳米粉体和TiN-Al_2O_3纳米复合材料的制备及性能研究[学位论文].上海:中国科学院上海硅酸盐研究所,2002.
    [118] S. Nonura, K. Uehino. Ferroelectrics, 1982, 41:117-132.
    [119] H.Takabara, K. Kiuchi. Adv. Ceram. Mater, 1986, 1(4):340-319.
    [120] J. L. Ruan, Z. L. Gui. J. Mater Sci., 1997, 16:1020-1022.
    [121] 李振荣,王晓莉,张良莹等.硅酸盐学报,1999,27(2):202-207.
    [122] 杨祖培,周欣山,高峰等.驰豫铁电陶瓷电致应变温度稳定性的研究进展.材料工程,1998,(8):43-45.
    [123] 杨祖培,屈绍波,崔斌,高峰,侯育冬,田长生.PMN和PZN基复相陶瓷的制备及其介电温度稳定性的研究.材料工程,2001,(4):22-24.
    [124] 阮立坚,李龙土,桂治轮.铌镁酸铅系低烧高介XR7瓷料的研究.功能材料,1997,28(2):140-142.
    [125] Y Yamashita.Am.Ceram.Soc.Bull.1994,73(8):74-80.
    [126] 李振荣,张良莹,姚熹.X7R型复相陶瓷的制备及介电性能研究.压电与声光,2001,23(1):56-58.
    [127] Xiaoyue Xiao.The role of ordered A_1 -site vacancies in belt nano-domains of Pb_xBa_(1-x)Nb_2O_6(PBN)solid solution. Materials Research Society, 1996,11 (3):650-656.
    [128] 吴顺华,李力.中温烧结PSBN系统铁电陶瓷结构和性能的研究,硅酸盐通报,1999,(2):24-28.
    [129] 张宁欣,李龙土,桂治轮.SBN复合对PLZT陶瓷电致疲劳特性的改善作用.In:2000年材料科学与工程新进展(中国材料研究学会主编,北京:冶金工业出版社,2001年)Ⅰ新型陶瓷及陶瓷基复合材料,p.822-825.
    [130] Van Den Boomgaard J, Van Run AMTG; Van Sunchtelen J. Magnetoelectricity in piezoelectric-magnetostfictive composites. Feeroelectrics, 1976,10:295.
    [131] Jungho Ryu, Alfredo Vazquez Carazo, Kenji Vchino, et al. Piezoelectric and magnetoelectric properties of lead zirconate titanate/Ni-ferfite particulate composites. J. Electroceramics (Netherlands), 2001, 7:17.
    [132] Jungho Ryu, Alfredo Vazquez Carazo, et al. Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn.J.Phys., 2001, 40:4948.
    [133] GRANQVIST C G. Electrochromic materials: metal oxide nanocomposites with variable optical properties. Mater Sci & Eng, 1993, A168:209-215.
    [134] KUNDU D, HONMAI, OSAWA T, et al. Preparation and optical nonlinear property of sol-gel-derived Cu-SiO_2 thin films. J.Am. Ceram.Soc., 1994, 77:1110-1112.
    
    [135] SHULL R D. Magnetocaloric effect of ferromagnetic properties. IEEE Trans Magn, 1993, 29(6) :2614-2615.
    [136] YAMAMOTO T, SHULL R D, BANDARU P R, et al. Superparamagnetic nanocomposite of silver / iron-oxide by inert gas condensation. Jpn. J. Appl. Phys., 1994, 33:L1301-L1303.
    [137] CHATTERJEE A, CHAKRAVORTY D. Electrical conduction in sol-gel-derived glass-metal nanocomposites. J. Phys. D: Appl. Phys., 1990, 23:1097-1102.
    [138] SAWAGUCHI A, TODA K, NIIHARA K. Mechanical and electrical properties of alumina / silicon carbide nano-composites. J. Ceram. Soc. Japan. (Japanese), 1991, 99(6):523-526.
    [139] T.O. Sung, M. Sando, N. Koichi. J. Mater. Sci., 2001, 36:1817-1821.
    [140] T.Sekino, T.Nakajima, S.Ueda, et al. Reduction and sintering of a nickel-dispersed-alumina composite and its properties. J. Am. Ceram. Soc., 1997, 80:1139-1143.
    [141] T.Nakayama, Y.H.Choa, T.Sekino, et al. J. Ceram. Soc. Jpn., 2000, 108:781-784.
    [?] T.Kusunose, T.Sekino, Y.H.Choa, et al. Fabrication and microstructure of silicon nitride/boron nitride nanocomposites. J. Am. Ceram. Soc., 2002, 85:2678-2688.
    [143] T.Kusunose, T.Sekino, Y.H.Choa, et al. Machinability of silicon nitride/boron nitride nanocomposites. J. Am. Ceram. Soc., 2002, 85:2689-2695.
    [144] 张志杰,苏达根.纳米—纳米复相陶瓷的制备.中国陶瓷,2003,39(1):12-14.
    [145] 靳喜海,高濂.纳米复相陶瓷.化工进展,2003,22(6):553-558.
    [146] S. Bhaduri, S. B. Bhaduri. Nanostruct. Mater., 1997, 8(6):755.
    [147] J.Freim, J.Mckittrick, J.Katz, K.Sickafus. Nanostruct. Mater., 1994, 4:371.
    [148] 高濂,宫本大树.放电等离子烧结技术.无机材料学报,1997,12(2):129-133.
    [149] 袁润章.自蔓延高温合成技术研究进展.武汉:武汉工业大学出版社.1994.
    [150] Dae-Seok Kang, Myung-Soo Han, Sung-Gap Lee, Seong-Hae Song, Dielectric and pyroelectric properties of barium strontium calcium titanate ceramics. Journal of the European Ceramic Society. 2003, 23:515-518.
    [151] 唐军,程建功,褚军浩,郁启华.BST铁电薄膜非制冷红外探测器热成像应用.红外技术,2002,24(5):21-33.
    [152] H. E Cheng. J. Appl. Phys., 1993, 32:5656.
    [153] H. F. Cheng. Structural and electrical properties of excimer laser deposited PLZT thin films. Appl. Surf Sci., 1996, 92:378.
    
    [154] 张福学,孙慷.压电学(下),北京:国防工业出版社,1984.p189-190.
    [155] A.M.Glass. Appl. Phys. Let., 1968, 13:147-149.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700