用户名: 密码: 验证码:
原位烧结仿生单元体对摩擦磨损性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从前人研究的成果来看,激光融凝单元体仿生耦合试样与激光熔覆单元体仿生耦合试样均能明显提高材料的耐磨性能。仿生试样和未处理试样相比,能有效的减少材料在服役时的磨损损耗,延长使用寿命。但是受限于工艺方法的特点,采用激光熔凝和激光熔覆工艺方法所制备的仿生耦合单元体均不能获得很深的深度,从而限制了材料使用寿命的进一步提高。并且激光熔凝仿生单元体与激光熔覆仿生单元体随着单元体深度的不同也表现出不同的组织和性能,而采用本文原位烧结的方法制备的仿生耦合单元体不仅能制备足够深度的单元体,而其单元体的各个部位组织性能均相同。
     因此,本文采用原位烧结的方法,将WC陶瓷颗粒与Cu粉混合融入蠕墨铸铁基体表面,形成被Cu包覆的WC耐磨结构单元,构成仿生耦合表面,从而提高材料的耐磨性能,进一步延长材料的使用寿命。同样采用原位烧结的方法将Cu与石墨粉融入45#钢基体表面,形成仿生耦合单元,构成仿生耦合表面。考察石墨作为具有润滑作用的软相在45#钢的摩擦磨损过程中是否能起到自润滑效果,从而起到延缓磨损过程,降低磨损剥落,提高45#钢使用寿命的作用。
On the basis of previous research,biomimetic coupling unit body by laser meltingand biomimetic coupling unit body by laser cladding all can obviously increase thewear-resisting performance of the materials.Compared with the untreated sample,thebionic sample can reduce the wear loss of materials in the army effectively,extend theservice life.But limited by the characteristics of this process method,these twomethods of preparation of biomimetic coupling unit cell can not get the depth of thedeep,thus limiting the service life of materials to further improve.And biomimetic cellbody of laser melting and laser cladding the bionic unit body with the different depthof unit cell showed a different microstructure and properties.In this paper in situsintering method of preparation of biomimetic coupling unit body not only can beprepared a sufficient depth of the unit, all parts of the microstructure and properties ofits cell body is the same.
     Therefore,using the method of in situ sintering of WC ceramic particles and theCu powder mixed into the vermicular graphite cast iron substrate surface,formed byCu-coated WC wear-resistant structural unit,constitute a bionic surface,in order toimprove the wear resistance of materials,and further extend the service life ofmaterials.The same method of in situ sintering Cu and graphite into the45#steelsubstrate surface,the formation of biomimetic coupling unit,constitute the bionicsurface.Investigated graphite as lubrication soft,can play in the process of friction andwear of the45#steel self-lubricating effect, thereby delaying the wearprocess,reducing wear and tear peeling and improve the role of the service life of45#steel.
引文
[1]薛群基,党鸿幸.国内润滑材料和摩擦化学的研究[J].固体润滑,1988,8(2):65-69.
    [2]何奖爱,王玉玮.材料磨损与耐磨材料[M].辽宁:东北大学出版社,2001.
    [3]张剑锋,周志芳,魏宝利,王磊.镶嵌固体润滑剂轴承的研究与应用[J].纺织学报,1994,20:68.
    [4] Julian F. V. Vincent. Making Biological Materials[J].ournal ofBionics Engineering,2005,2(4):209-237.
    [5]薛群基,刘惠文等.金属摩擦学[J].摩擦学学报,1995;10.
    [6]张清.金属磨损和金属耐磨材料手册[M].北京:冶金工业出版社1991.
    [7] Bharat Bhushan. Handbook of Micro/Nano-tribology[M].Ohio:CRC-Press, Second Edition,1999.
    [8]刘家浚.材料的磨料磨损[M].机械工业出版社,1990,第一版:163-166.
    [9] H.J.Kimetal.Assessment of wear Performance of flame sprayed andfused Ni-based coatings[J].Surface and Coatjng Technology,2003(172):262-269.
    [10]任露泉,徐德生,邱小明,赵宇光.仿生非光滑耐磨复合层的研究[J].农业工程学报,2001,17(3):7-9.
    [11] Tong Jin,RenLuquan, Li Jianqiao and Chen Bingehong.Abrasive wearbehaviour of bamboo[J].Tribology International,1995,28(5)323-327.
    [12]王洪发.金属耐磨材料的现状与展望[M].铸造2000,(49)增刊,577.
    [13]全建民.耐磨钢研究进展[M].水利电力机械,2003,25(2):29-32.
    [14]李宏兴.球墨铸铁在耐磨材料领域的应用及发展[M].铸造设备研究,2001.1:39-41.
    [15]王荣国,武卫莉,谷万里.复合材料概论[M].哈尔滨工业大学出版社,1999,第一版:1-3.
    [16]朴东学.铸造金属基复合材料现状及发展动向[J].铸造2000,(49)增刊:601.
    [17]林丽华.金属表面渗层与覆盖层金相组织图谱[M].机械工业出版社,1998,第一版:1-3.
    [18]宋仁国,陈光南,张坤.激光和电子束表面强化技术的发展及其应用[M].物理,2000,7:411-415.
    [19] T.S.SUDARSHAN著,范玉殿等译.表面改性技术工程师指南[M].清华大学出版社.1992,第一版:436.
    [20]潘蕾.WC增强Cu-Mn-Ni复合涂层的磨损性能研究[J].摩擦学学报.2002,22(1):10-13.
    [21]李力军,杨瑞林,新型铸造WC颗粒复合耐磨材料的研究[J].硬质合金.1998,15(4):208-212.
    [22] Arnim von Gleich, Christian Pade, Ulrich Petschow, EugenPissarskoi.Potentials and Trends in Biomimetics[M].Berlin:Springer-Verlag,2010,78-83.
    [23]郭公喜,仿生学研究概述[M].科学文化出版社,27(2001):47-48.
    [24]孙久荣,戴振东,仿生学的现状和未来[J].生物物理学报,2007,23(3):110-115.
    [25] J.F.V. Vincent. Making biological materials [J]. Journal of BionicsEngineering,2005,2(4):209-237.
    [26] J.M. Benyus, Biomimicry: Innovation Inspired by Nature [M]. New York:William Morrow and Company,1998.
    [27]洪筠,钱志辉,任露泉,多元耦合仿生可拓模型及其耦元分析[J].吉林大学学报(工学版),2009,39(3):726-731.
    [28]贾贤.土壤动物体表及仿生复合涂层的润湿性[J].材料研究学报,1996,10(5):556-560.
    [29] Q.Cong,L.Q.Ren etc.Taxonomic research on geometric non-Smoothsurface shapes[J].Trans.Chinese Soc.Agr.Eng,1992,8(2):7-12.
    [30] L.Q.Ren,S.Q.Deng etc.Design PrinciPles of the non-smooth Surfacebionic Plow moldboard[J].Bionics Eng.,2004,1(1):9-19.
    [31] L.Q.Ren,Z.W.Han etc.Effect of non-smooth characteristics on bioniculldozer blades in resistance reduction againstsoil[J].erramechanics,2003,39:221-230.
    [32] L.Q.Ren,Q,Cong etc.Reducing adhesion of soil against loading shovelusing bionic electro-osmosis method[J].Terramechanics,2001,38:211-219.
    [33] L.Q.Ren, J.Tong etc.Reducing sliding resistance of soil agajnstbulldozing Plates by unsmoothed bionics surfaces[J].Terramechanics1995,32:303-309.
    [34] Ren Luquan,Li Jianqiao,Chen Bingcong.Unsmoothed surface on reducingresistance by bionics[J].Chinese Science Bulletin,1995,40(13):1077-1088.
    [35]任露泉.激光处理非光滑凹坑表面耐磨实验的均匀设计研究[J].材料科学与工程,2002,20(2):93-95.
    [36]任露泉.仿生非光滑耐磨复合层的研究[J].农业工程学报,2001,17(3):7-9
    [37]工再宙等.激光处理非光滑凸包表面的耐磨性试验[J].吉林大学学报(工学版),2002,32(2):45-48.
    [38]任露泉.生物非光滑耐磨表面仿生应用研究展望[J].农业机械学报,2005,36(7):144-147.
    [39]齐彦昌.轧辊表面激光雕刻仿生非光滑形态耐磨性研究[J].应用激光,2006,26(1):1-4.
    [40] Hill, Brend. Fundmentals and modeling of a constionbionics[J].Bionik2004,2004:23-30.
    [41] W. Barthlott, C. Neinhuis, D. Boil. The lotus-effect: Non-adhesivebiological and biomimetic technical surfaces[J].Bionik2004,2004:211-214.
    [42]江雷.从自然到仿生的超疏水纳米界材料[M].科技导.1997(28).
    [43] Xuefeng Gan,Lei Jiang. Biophysics: Water-repellent legs of waterstrides[J].Nature,2004(432):36-39.
    [44] Xinjian Feng, Lin Feng, Meihua Jin, Jin Zhai, Lei Jiang, Daoben Zhu.Reversible Super-hydrophobicity to Super-hydrophobicity Transitionof Aligned ZnO Nanorod Films[J].Am.Chem.Soc.,2004(126):62-63.
    [45] Gu Z-Z, Uetsuka H, Takahashi K. Structure color and the lotuseffect.[J]Angew Chem Int Ed,2003,42(8):894-897.
    [46]郑黎俊,乌学东,楼增等.表面微细结构制备超疏水表面[J].科学通报,2004,49(17):1961-1969.
    [47] RenLuquan,TongJin,ZhangShujun.Reducing sliding resistance of soilagainst bull dozing plates by unsmoothed bionic surface[J].Journalof Terra mechanics,1995,32(6):303-309.
    [48] Zhang K.Biomimetic study on helical fiber composites[J].Mater SciTechnol,1997,13:1-4.
    [49] Hong Zhou, Na Sun, Hongyu Shan, Dianyi Ma, Xin Tong, Luquan Ren,Bio-inspired wearable characteristic surface: Wear behavior of castiron with biomimetic units processed by laser[J]. Surface Science2007,28950:7-9.
    [50] H. Zhou, L. Chen, W. Wang, L.Q. Ren, H.Y. Shan, Z.H. Zhang. Abrasiveparticle wear behavior of3Cr2W8V steel processed tobionicnon-smooth surface by laser[J]. Materials Science and EngineeringA2005(412)323–327.
    [51] Hornbogen. E. Microstructure and Wear[J]. Elsever,1981.
    [52] Ramachandra.P.,Rao.Biomimetics[M]. Sadhana2003,28(3&4):657-676.
    [53]杜家纬.生命科学与仿生学[J].生命科学,2004,16(5):317-323.
    [54] Benyus J.M.Biomimicry:Innovation Inspired by Nature[J]. NewYork:Willianm Morrowand Company,1998,15:1-2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700