用户名: 密码: 验证码:
超支化聚合物纳米材料的制备及对纺织品的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超支化聚合物由于其丰富的末端官能团、近似球形的三维立体结构、内部大量空腔、高溶解性、低粘度、高反应活性等物理、化学特征,在涂料工业、流变学改性剂、纳米技术、超分子化学、膜材料、生物医用材料、光学及电学材料等多个领域有着广泛的应用前景。基于超支化聚合物内部的空腔结构,利用其作为模板可以有效控制制备纳米材料。本研究以二乙烯三胺和丙烯酸甲酯为原料,通过缩聚法合成制备了端基为氨基的超支化聚酰胺HB-PA,并在HB-PA的合成制备过程中添加一定量的丁二酸酐,使得HB-PA支链间发生交联,制备了具有三维网络结构的改性端氨基超支化聚合物PNP。利用HB-PA和PNP在溶液中控制制备了纳米银和纳米ZnO,比较研究了两者对控制纳米材料粒径大小和稳定性的作用。同时,将超支化聚合物控制制备纳米材料的特性与纺织品的功能化整理相结合,利用控制制备的纳米银和纳米ZnO整理织物,以赋予织物优异的抗菌、抗紫外性能。
     研究结果表明,HB-PA控制制备的纳米银水溶液稳定性较差,所制备的纳米银在放置7h后就发生了团聚变色现象。而利用PNP控制制备的纳米银,不仅可以控制纳米银的大小,而且能够最大程度的保护所制备的纳米银。通过调节氨基和银离子的摩尔比为1:1和5:1,分别在水溶液中制得了平均粒径为13.23nm和4.34nm的纳米银,其放置6个月后平均粒径变为18.83nm和8.99nm,无变色和沉淀现象。各种表征手段证明所制得的纳米银为具有较好结晶性的单质银纳米颗粒,其具有优异的抗菌性能,对金黄色葡萄球菌和大肠杆菌的最小抑菌浓度均为2ppm。
     以HB-PA和PNP做为保护剂和分散剂,在乙醇溶液中采用溶胶-凝胶法制备了纳米ZnO,实验表明HB-PA和PNP可以有效控制纳米ZnO的粒径,所制备的纳米ZnO粒径分别为3.84nm和1.89nm,且具有较好的稳定性,放置一个月后无明显变化。而在无聚合物条件下制备的纳米ZnO粒径为5.60nm,放置一周后即变浑浊并沉淀。通过调节反应中碱试剂的量,制备了不同粒径大小,具有从深蓝色到黄色荧光颜色的纳米ZnO溶液。
     由于HB-PA和PNP中均含有大量的氨基,其在水溶液中质子化后显碱性,利用其作为碱试剂可与Zn(NO3)2在水溶液中直接反应制备纳米ZnO。在反应中HB-PA和PNP不仅作为反应试剂直接参加反应,而且作为保护和控制性聚合物对纳米ZnO的生成起控制作用,以制备具有一定粒径大小和稳定性的纳米ZnO水溶液。同制备纳米银相似,PNP能够控制生成更小的纳米ZnO,在最优条件下HB-PA可以控制制备100nm左右的纳米ZnO,而PNP能够控制制备出平均粒径为5.9nm的纳米ZnO,并且在水溶液中保持一周以上的稳定性。制备得到的纳米ZnO具有一定的抗菌性能,其对金黄色葡萄球菌的抑菌性优于对大肠杆菌的抑菌性。
     利用PNP对真丝织物进行纳米银抗菌整理,比较研究了浸渍法和汽蒸原位生成法整理真丝织物的效果。结果表明,原位生成法整理能够获得更高的纳米银含量,且整理后纳米银具有更好的牢度。整理的真丝织物纤维表面均匀分布了粒径大约为50nm左右的纳米颗粒,XPS测试表明其为单质纳米银。当整理液中Ag+浓度仅为0.05mM时,整理的真丝织物对金黄色葡萄球菌和大肠杆菌的抑菌率就分别达到了99.87%和99.52%,且此时织物的白度仅从90.47下降到86.49,影响不大,30次洗涤后其抑菌率仍能保持在98%以上。
     利用HB-PA或PNP和Zn(NO3)2为原料在棉织物上原位生成沉积纳米ZnO整理棉织物,通过优化整理工艺得到了不同纳米ZnO含量的棉织物,整理棉织物的UPF值从几十到一百多不等。经原位生成沉积纳米ZnO整理的棉织物不仅具有优异的紫外线防护性能,而且具有很好的抗菌性能,其对金黄色葡萄球菌的抑菌率均在99%左右,而对大肠杆菌的抑菌率只有在其ZnO含量达到一定值时才能达到90%以上。原位生成沉积纳米ZnO整理的棉织物具有一定的耐洗牢度,经30次洗涤后其UPF值能够保持在30左右。
     利用微波法可以方便、快捷地将纳米ZnO整理到棉织物中,通过调节反应物浓度,整理出具有不同ZnO含量和UPF值的棉织物。其具有较原位生成沉积法纳米ZnO整理的棉织物好的耐洗牢度,30次洗涤后其UPF值从99.65下降到37.45。另外,通过微波法可一步原位生成纳米Ag-ZnO复合整理棉织物,经纳米Ag-ZnO复合整理的棉织物不仅具有优异的紫外线防护性能,同时还具有优异的抗菌性能,对金黄色葡萄球菌和大肠杆菌的抑菌率均能达到99.99%。
Hyperbranched polymers have widely potential applications in painting, additives,film, nanotechnology, supramolecular science, biomaterials, optical and electrical materials,due to their special structure, unique chemical and physical properties, such as abundant ofterminal functional groups, three-dimensional architecture, numerous interior cavities, highsolubility, low viscosity, and high reactivity. With numerous interior cavities, they can beused as templates to control synthesize nanoparticles. In this research, an amino terminatedhyperbranched polyamide polymer (HB-PA) was synthesized by polycondensation usingdiethylenetriamine and methyl acrylate as reagents. Meanwhile, a modified hyperbranchedpolymer with three-dimentional network structure (PNP) was also fabricated by addingsuccinic anhydride in the synthesis process of HB-PA to make the branches crosslinked.Based on the outstanding advantage of hyperbranched polymers on the control synthesis ofnano materials, Ag and ZnO nanoparticles were prepared in the solutions by HB-PA andPNP. On another hand, the prepared nanoparticles polymeric hybrids were applied to thefunctional finishing of textile to provide them with excellent antibacterial activities and UVprotective properties.
     The results indicated that Ag nanoparticles prepared by HB-PA were not stable inaqueous solutions which shown color change within7h after generation. However, PNPcan not only controlled the size of Ag nanoparticles, but also protected them to keep stable.When controlled the molar ratio between amino groups in the PNP and silver ions at1:1and5:1, the average size of synthesized Ag nanoparticles were13.23nm and4.34nm,respectively. After6months storage, the average size of them changed to18.83nm and8.99nm, and no color change and deposit could be observed. The prepared Agnanoparticles were confirmed as Ag0with well crystalline and have excellent antibacterialactivities. The Minimum inhibitory concentrations (MIC) of them were2ppm againstStaphylococcus aureus and Escherichia coli.
     With HB-PA and PNP as protect agents, ZnO nanoparticles were prepared in ethanolsolution by sol-gel method. The ZnO nanoparticles have average size at3.84nm and1.89 nm synthesized by HB-PA and PNP respectively, and have good stability. However, theZnO nanoparticles prepared without polymer have an average size at5.6nm and showndeposit after one week storage. The ZnO nanoparticles with different size and fluorescencecolor were prepared by adjust the quantity of alkaline reagent.
     The HB-PA and PNP aqueous solutions were alkali due to the protonation of aminogroups which located in the structure of them. They can reacted with Zn(NO3)2directly togenerate ZnO nanoparticles in aqueous medium. During the process, HB-PA and PNP notonly acted as the reagents to produce ZnO nanoparticles but also played an import role tocontrol the particle size and protect them for their stability. It is similar to the fabrication ofAg nanoparticles, ZnO nanoparticles prepared by PNP is smaller than that prepared byHB-PA. At the optimal reaction condition, HB-PA can get the ZnO nanoparticles with thesize around100nm. However, the PNP can control synthesize ZnO nanoparticles with anaverage size at5.9nm and keep stable in aqueous solution more than one week.
     PNP was applied to generate Ag nanoparticles for the antibacterial finishing of silkfabrics via immersion method and in situ synthesis method. The results demonstrated thatthe silk fabrics treated with Ag nanoparticles via in situ synthesis method have highersilver content and better durability than the treatment via immersion method. Then thetreated silk fabrics via in situ method were characterized and their antibacterial activitieswere measured. SEM image shown Ag nanoparticles well dispersed on the surface oftreated silk fibers at around50nm. XPS tests confirmed that the nanoparticles on the silkfibers are Ag0particles. The quantitative bacterial tests showed the bacterial reduction ratesof Staphylococcus aureus and Escherichia coli were able to reach above99%with nomore than0.05mmol/L of AgNO3. The whiteness of silk fabric only changed from90.47to86.49. The antibacterial activity of the treated silk fabric was maintained at98.86%reduction even after being exposed to30consecutive home laundering conditions.
     HB-PA and PNP were ultilized to react with zinc nitrate to in situ generate and depositZnO nanoparticles on cotton fabrics for their functional finishing. The treated cottonfabrics have different ZnO contents and UPF values. They not only shown excellent UVprotective properties but also have good antibacterial activities. The bacterial reductionrates of Staphylococcus aureus of all samples are around99%. However, only when thecontent of ZnO in the fabric reached a certain quantity, the bacterial reduction rates ofEscherichia coli can reached above90%. The UPF of treated cotton fabric was maintainedaround30after being exposed to30consecutive home laundering conditions which indicated in situ generated and deposited ZnO treated cotton fabrics has durability.
     Microwave treatment is a facile method to generate ZnO nanoparticles in cotton fabric.Treated cotton fabrics with different ZnO contents and UPF values can fabricated by adjustthe concentration of reagents which have better laundering durability than in situgeneration and deposition ZnO treated cotton fabrics. After being exposed to30consecutive home laundering conditions, the UPF value decreased from99.65to37.45.Otherwise, microwave method can also fabricate Ag nanoparticles and ZnO nanoparticlesin fabric by one-step treatment. The treated cotton fabrics got both excellent UV protectiveproperty and antibacterial activity. The bacterial reduction rates of Staphylococcus aureusand Escherichia coli both exceeded99.99%.
引文
[1] P. J. Flory. Molecular size distribution in three dimensional polymers.6. branched polymerscontaining A—R—Bf-1type units [J]. Journal of the American Chemical Society,1952,74(11):2718-2723.
    [2] Y. H. Kim and O. W. Webster. Hyperbranched polyphenylenes [J]. Polymeric Preprints,1988,29(2):310-311.
    [3] C. Gao and D. Yan. Hyperbranched polymers: From synthesis to applications [J]. Progress inPolymer Science,2004,29(3):183-275.
    [4] N. Nishiyama, Y. Morimoto, W. D. Jang, et al. Design and development of dendrimerphotosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy [J].Advanced Drug Delivery Reviews,2009,61(4):327-338.
    [5] Y. Zhou, W. Huang, J. Liu, et al. Self-assembly of hyperbranched polymers and its biomedicalapplications [J]. Advanced Materials,2010,22(41):4567-4590.
    [6] M. Jikei and M. A. Kakimoto. Hyperbranched polymers: A promising new class of materials [J].Progress in Polymer Science,2001,26(8):1233-1285.
    [7] Y. Hong, S. Coombs, J. Cooper-White, et al. Film blowing of linear low-density polyethyleneblended with a novel hyperbranched polymer processing aid [J]. Polymer,2000,41(21):7705-7713.
    [8] Q. Wang, L. Zhu, G. Li, et al. Doubly hydrophilic multiarm hyperbranched polymers withacylhydrazone linkages as acid-sensitive drug carriers [J]. Macromolecular Bioscience,2011,11(11):1553-1562.
    [9] Q. Miao, D. Xu, Z. Wang, et al. Amphiphilic hyper-branched co-polymer nanoparticles for thecontrolled delivery of anti-tumor agents [J]. Biomaterials,2010,31(28):7364-7375.
    [10] D. E. Bergbreiter, G. Tao, J. G. Franchina, et al. Polyvalent hydrogen-bonding functionalization ofultrathin hyperbranched films on polyethylene and gold [J]. Macromolecules,2001,34(9):3018-3023.
    [11] T. Satoh. Unimolecular micelles based on hyperbranched polycarbohydrate cores [J]. Soft Matter,2009,5(10):1972.
    [12] M. Jikei, S. H. Chon, M. A. Kakimoto, et al. Synthesis of hyperbranched aromatic polyamidefrom aromatic diamines and trimesic acid [J]. Macromolecules,1999,32(6):2061-2064.
    [13] T. Emrick, H. T. Chang, and J. M. J. Fréchet. An A2+B3approach to hyperbranched aliphaticpolyethers containing chain end epoxy substituents [J]. Macromolecules,1999,32(19):6380-6382.
    [14] J. Fréchet, M. Henmi, I. Gitsov, et al. Self-condensing vinyl polymerization-an approach todendritic materials [J]. Science,1995,269(5227):1080-1083.
    [15] J. S. Wang and K. Matyjaszewski. Controlled living radical polymerization-atom-transfer radicalpolymerization in the presence of transition-metal complexes [J]. Journal of the AmericanChemical Society,1995,117(20):5614-5615.
    [16] X. L. Jiang, Y. L. Zhong, D. Y. Yan, et al. Hyperbranched copolymers of p-(chloromethyl)styreneand N-cyclohexylmaleimide synthesized by atom transfer radical polymerization [J]. Journal ofApplied Polymer Science,2000,78(11):1992-1997.
    [17] H. T. Chang and J. M. J. Fréchet. Proton transfer polymerization: a new approach tohyperbranched polymers [J]. Journal of the American Chemical Society,1999,121(10):2313-2314.
    [18] J. Lv, Y. Meng, L. He, et al. Synthesis of a hyperbranched polyether epoxy through one-stepproton transfer polymerization and its application as a toughener for epoxy resin DGEBA [J].Chinese Journal of Polymer Science,2012,30(4):493-502.
    [19] J. Kadokawa, Y. Kaneko, and S. Yamada. Synthesis of hyperbranched polymers viaproton-transfer polymerization of acrylate monomer containing two hydroxy groups [J].Macromolecular Rapid Communications,2000,21(7):362-368.
    [20] J. K. Paulasaari and W. P. Weber. Synthesis of hyperbranched polysiloxanes by base-catalyzedproton-transfer polymerization: Comparison of hyperbranched polymer microstructure andproperties to those of linear analogues prepared by cationic or anionic ring-openingpolymerization [J]. Macromolecules,2000,33(6):2005-2010.
    [21] D. Yan, J. Hou, X. Zhu, et al. A new approach to control crystallinity of resulting polymersself-condensing ring opening polymerization [J]. Macromolecular Rapid Communications,2000,21(9):557-561.
    [22] M. Suzuki, S. Yoshida, K. Shiraga, et al. New ring-opening polymerization via a π-allylpalladiumcomplex.5. Multibranching polymerization of cyclic carbamate to produce hyperbrancheddendritic polyamine [J]. Macromolecules,1998,31(6):1716-1719.
    [23] H. Magnusson, E. Malmstr m, and A. Hult. Synthesis of hyperbranched aliphatic polyethers viacationic ring-opening polymerization of3-ethyl-3-(hydroxymethyl)oxetane [J]. MacromolecularRapid Communications,1999,20(8):453-457.
    [24] A. Asif, C. Huang, and W. Shi. UV curing behaviors and hydrophilic characteristics of UVcurable waterborne hyperbranched aliphatic polyesters [J]. Polymers for Advanced Technologies,2003,14(9):609-615.
    [25] H. Claesson, E. Malmstrom, M. Johansson, et al. Rheological behaviour during UV-curing of astar-branched polyester [J]. Progress in Organic Coatings,2002,44(1):63-67.
    [26] A. Sidorenko, X. W. Zhai, F. Simon, et al. Hyperbranched molecules with epoxy-functionalizedterminal branches: Grafting to a solid surface [J]. Macromolecules,2002,35(13):5131-5139.
    [27] T. Mulkern and N. Tan. Processing and characterization of reactive polystyrene/hyperbranchedpolyester blends [J]. Polymer,2000,41(9):3193-3203.
    [28] H. Liu and K. Uhrich. Drug release characteristics of munimolecular polymeric miclles [J].Journal of Controlled Release,2000,68:167-174.
    [29] M. Prabaharan, J. Grailer, S. Pilla, et al. Folate-conjugated amphiphilic hyperbranched blockcopolymers based on Boltorn (R) H40, poly(L-lactide) and poly(ethylene glycol) fortumor-targeted drug delivery [J]. Biomaterials,2009,30(16):3009-3019.
    [30] Q. He, F. Bai, J. Yang, et al. Synthesis and properties of high efficiency light emittinghyperbranched conjugated polymers [J]. Thin Solid Films,2002,417(1-2):183-187.
    [31] Z. Jia, H. Chen, X. Zhu, et al. Backbone-thermoresponsive hyperbranched polyethers [J]. Journalof the American Chemical Society,2006,128(25):8144-8145.
    [32] M. Ornatska, S. Peleshanko, K. L. Genson, et al. Assembling of amphiphilic highly branchedmolecules in supramolecular nanofibers [J]. Journal of the American Chemical Society,2004,126(31):9675-9684.
    [33] C. Liu, C. Gao, and D. Yan. Honeycomb-patterned photoluminescent films fabricated byself-assembly of hyperbranched polymers [J]. Angewandte Chemie International Edition,2007,46(22):4128-4131.
    [34] M. Gladitz, S. Reinemann, and H. J. Radusch. Preparation of silver nanoparticle dispersions via adendritic-polymer template approach and their use for antibacterial surface treatment [J].Macromolecular Materials and Engineering,2009,294(3):178-189.
    [35] Q. Tang, F. Cheng, X. L. Lou, et al. Comparative study of thiol-free amphiphilic hyperbranchedand linear polymers for the stabilization of large gold nanoparticles in organic solvent [J]. Journalof Colloid and Interface Science,2009,337(2):485-491.
    [36] M. Baars, P. Froehling, and E. Meijer. Liquid-liquid extractions using poly(propylene imine)dendrimers with an apolar periphery [J]. Chemical Communications,1997,(20):11959-11960.
    [37] H. Liu, Y. Chen, D. Zhu, et al. Hyperbranched polyethylenimines as versatile precursors for thepreparation of different type of unimolecular micelles [J]. Reactive and Functional Polymers,2007,67(5):383-395.
    [38] S. M. Burkinshaw, P. Froehling, and M. Mignanelli. The effect of hyperbranched polymers on thedyeing of polypropylene fibres [J]. Dyes and Pigments,2002,53(3):229-235.
    [39] F. Zhang, Y. Y. Chen, H. Lin, et al. Synthesis of an amino-terminated hyperbranched polymer andits application in reactive dyeing on cotton as a salt-free dyeing auxiliary [J]. ColorationTechnology,2007,123(6):351-357.
    [40] H. J. Lee, S. Y. Yeo, and S. H. Jeong. Antibacterial effect of nanosized silver colloidal solution ontextile fabrics [J]. Journal of Materials Science,2003,38(10):2199-2204.
    [41] Y. G. Sun and Y. N. Xia. Gold and silver nanoparticles: A class of chromophores with colorstunable in the range from400to750nm [J]. Analyst,2003,128(6):686-691.
    [42] M. Y. Ghotbi. Synthesis and characterization of nano-sized Zn(OH)2and its decomposed product,nano-zinc oxide [J]. Journal of Alloys and Compounds,2010,491(1-2):420-422.
    [43] D. P. Macwan, P. N. Dave, and S. Chaturvedi. A review on nano-TiO2sol-gel type syntheses andits applications [J]. Journal of Materials Science,2011,46(11):3669-3686.
    [44] L. Zhang, H. Yang, and L. Li. Synthesis and characterization of core/shell-type ZnOnanorod/ZnSe nanoparticle composites by a one-step hydrothermal route [J]. Materials Chemistryand Physics,2010,120(2-3):526-531.
    [45] L. Balogh, D. R. Swanson, D. A. Tomalia, et al. Dendrimer silver complexes andnanocomposites as antimicrobial agents [J]. Nano Letters,2001,1(1):18-21.
    [46] J. L. Li, X. Y. Liu, X. G. Wang, et al. Controlling nanoparticle formation via sizable cages ofsupramolecular soft materials [J]. Langmuir,2011,27(12):7820-7827.
    [47] S. S. Mahapatra and N. Karak. Silver nanoparticle in hyperbranched polyamine: Synthesis,characterization and antibacterial activity [J]. Materials Chemistry and Physics,2008,112(3):1114-1119.
    [48] N. Kakati, S. S. Mahapatra, and N. Karak. Silver nanoparticles in polyacrylamide andhyperbranched polyamine matrix [J]. Journal of Macromolecular Science, Part A,2008,45(8):658-663.
    [49] S. Moisan, V. Martinez, P. Weisbecker, et al. General approach for the synthesis oforganic-inorganic hybrid nanoparticles mediated by supercritical CO2[J]. Journal of theAmerican Chemical Society,2007,129(34):10602-10606.
    [50] C. Aymonier, U. Schlotterbeck, L. Antonietti, et al. Hybrids of silver nanoparticles withamphiphilic hyperbranched macromolecules exhibiting antimicrobial properties [J]. ChemicalCommunications,2002,(24):3018-3019.
    [51] M. Kavitha, M. R. Parida, E. Prasad, et al. Generation of Ag nanoparticles by PAMAMdendrimers and their size dependence on the aggregation behavior of dendrimers [J].Macromolecular Chemistry and Physics,2009,210(16):1310-1318.
    [52] A. Sutton, G. Franc, and A. Kakkar. Silver metal nanoparticles: Facile dendrimer-assistedsize-controlled synthesis and selective catalytic reduction of chloronitrobenzenes [J]. Journal ofPolymer Science Part A: Polymer Chemistry,2009,47(18):4482-4493.
    [53] L. Jin, S. P. Yang, H. X. Wu, et al. Preparation and characterization of silver nanoparticles withdendrimers as templates [J]. Journal of Applied Polymer Science,2008,108(6):4023-4028.
    [54] D. Wan, Q. Fu, and J. Huang. Synthesis of amphiphilic hyperbranched polyglycerol polymers andtheir application as template for size control of gold nanoparticles [J]. Journal of Applied PolymerScience,2006,101(1):509-514.
    [55] H. Lin, Q. He, W. Wang, et al. Preparation and photophysical properties of a hyperbranchedconjugated polymer-bound gold nanoassembly [J]. Research on Chemical Intermediates,2004,30(4-5):527-536.
    [56] N. Pérignon, J. D. Marty, A. F. Mingotaud, et al. Hyperbranched polymers analogous to PAMAMdendrimers for the formation and stabilization of gold nanoparticles [J]. Macromolecules,2007,40(9):3034-3041.
    [57] X. Shi, T. R. Ganser, K. Sun, et al. Characterization of crystalline dendrimer-stabilized goldnanoparticles [J]. Nanotechnology,2006,17(4):1072-1078.
    [58] X. P. Sun, X. Jiang, S. J. Dong, et al. One-step synthesis and size control of dendrimer-protectedgold nanoparticles: A heat-treatment-based strategy [J]. Macromolecular Rapid Communications,2003,24(17):1024-1028.
    [59] S. Saliba, C. Valverde Serrano, J. Keilitz, et al. Hyperbranched polymers for the formation andstabilization of ZnO nanoparticles [J]. Chemistry of Materials,2010,22(23):6301-6309.
    [60] T. V. Richter, F. Schüler, R. Thomann, et al. Nanocomposites of size-tunable ZnO-nanoparticlesand amphiphilic hyperbranched polymers [J]. Macromolecular Rapid Communications,2009,30(8):579-583.
    [61] O. Monticelli and A. Chincarini. On the use of hyperbranched aramids as support of Ptnanoparticles [J]. E-Polymers,2007, No.024.
    [62] M. Hassan and A. Ali. Synthesis of nanostructured cadmium and zinc sulfides in aqueoussolutions of hyperbranched polyethyleneimine [J]. Journal of Crystal Growth,2008,310(24):5252-5258.
    [63] W. Huang, J. N. Kuhn, C. K. Tsung, et al. Dendrimer templated synthesis of one nanometer Rhand Pt particles supported on mesoporous silica: Catalytic activity for ethylene and pyrrolehydrogenation [J]. Nano Letters,2008,8(7):2027-2034.
    [64] V. Juttukonda, R. L. Paddock, J. E. Raymond, et al. Facile synthesis of Tin oxide nanoparticlesstabilized by dendritic polymers [J]. Journal of the American Chemical Society,2006,128(2):420-421.
    [65] O. M. Wilson, R. W. J. Scott, J. C. Garcia-Martinez, et al. Synthesis, characterization, andstructure-selective extraction of13nm diameter AuAg dendrimer-encapsulated bimetallicnanoparticles [J]. Journal of the American Chemical Society,2005,127(3):1015-1024.
    [66] T. Jiang, L. Liu, and J. Yao. In situ deposition of silver nanoparticles on the cotton fabrics [J].Fibers and Polymers,2011,12(5):620-625.
    [67] Y. Li, Y. Y. Hou, and Y. L. Zou. Microwave assisted fabrication of Nano-ZnO assembled cottonfibers with excellent UV blocking property and water-wash durability [J]. Fibers and Polymers,2012,13(2):185-190.
    [68] W. Sricharussin, P. Threepopnatkul, and N. Neamjan. Effect of various shapes of zinc oxidenanoparticles on cotton fabric for UV-blocking and anti-bacterial properties [J]. Fibers andPolymers,2011,12(8):1037-1041.
    [69] S. Tarimala, N. Kothari, N. Abidi, et al. New approach to antibacterial treatment of cotton fabricwith silver nanoparticle-doped silica using sol-gel process [J]. Journal of Applied PolymerScience,2006,101(5):2938-2943.
    [70] Y. A. Liao, Y. Q. Wang, X. X. Feng, et al. Antibacterial surfaces through dopaminefunctionalization and silver nanoparticle immobilization [J]. Materials Chemistry and Physics,2010,121(3):534-540.
    [71] M. Montazer and S. Seifollahzadeh. Enhanced self-cleaning, antibacterial and UV protectionproperties of nano TiO2treated textile through enzymatic pretreatment [J]. Photochemistry andPhotobiology,2011,87(4):877-883.
    [72] H. F. Moafi, A. F. Shojaie, and M. A. Zanjanchi. The comparison of photocatalytic activity ofsynthesized TiO2and ZrO2nanosize onto wool fibers [J]. Applied Surface Science,2010,256(13):4310-4316.
    [73] A. Erdem. Nanomaterial-based electrochemical DNA sensing strategies [J]. Talanta,2007,74(3):318-325.
    [74] G. Q. Wang, Y. Q. Wang, L. X. Chen, et al. Nanomaterial-assisted aptamers for optical sensing [J].Biosensors&Bioelectronics,2010,25(8):1859-1868.
    [75] P. Alexandridis. Gold nanoparticle synthesis, morphology control, and stabilization facilitated byfunctional polymers [J]. Chemical Engineering&Technology,2011,34(1):15-28.
    [76] D. G. Shchukin and G. B. Sukhorukov. Nanoparticle synthesis in engineered organic nanoscalereactors [J]. Advanced Materials,2004,16(8):671-682.
    [77] J. Eastoe, M. J. Hollamby, and L. Hudson. Recent advances in nanoparticle synthesis withreversed micelles [J]. Advances in Colloid and Interface Science,2006,128:5-15.
    [78] I. Pastoriza-Santos and L. M. Liz-Marzán. N,N-dimethylformamide as a reaction medium formetal nanoparticle synthesis [J]. Advanced Functional Materials,2009,19(5):679-688.
    [79] M. F. Ottaviani. Internal structure of silver-poly(amidoamine) dendrimer complexes andnanocomposites [J]. Macromolecules,2002,35:5105-5115.
    [80] R. M. Crooks, M. Q. Zhao, L. Sun, et al. Dendrimer-encapsulated metal nanoparticles synthesis,characterization, and applications to catalysis [J]. Accounts of Chemical Research,2001,34(3):181-190.
    [81] R. M. Crooks, V. S. Myers, M. G. Weir, et al. Dendrimer-encapsulated nanoparticles: Newsynthetic and characterization methods and catalytic applications [J]. Chemical Science,2011,2(9):1632-1646.
    [82] N. Kakati, S. S. Mahapatra, and N. Karak. Silver nanoparticles in polyacrylamide andhyperbranched polyamine matrix [J]. Journal of Macromolecular Science, part A: Pure andApplied Chemistry,2008,45(8):658-663.
    [83] V. M. Garamus, T. Maksimova, and W. Richtering. Solution structure of metal particles preparedin unimolecular reactors of amphiphilic hyperbranched macromolecules [J]. Macromolecules,2004,37(21):7893-7900.
    [84] F. Zhang, Y. Chen, H. Lin, et al. HBP-NH2grafted cotton fiber: Preparation and salt-free dyeingproperties [J]. Carbohydrate Polymers,2008,74(2):250-256.
    [85] F. Zhang, D. S. Zhang, Y. Y. Chen, et al. The antimicrobial activity of the cotton fabric graftedwith an amino-terminated hyperbranched polymer [J]. Cellulose,2008,16(2):281-288.
    [86] F. Zhang, X. L. Wu, Y. Y. Chen, et al. Application of silver nanoparticles to cotton fabric as anantibacterial textile finish [J]. Fibers and Polymers,2009,10(4):496-501.
    [87] Y. Chen, Z. Shen, L. Pastor-Perez, et al. Role of topology and amphiphilicity for guestencapsulation in functionalized hyperbranched poly(ethylenimine)s [J]. Macromolecules,2005,38(2):227-229.
    [88] Y. Chen, Z. Shen, H. Frey, et al. Synergistic assembly of hyperbranched polyethylenimine andfatty acids leading to unusual supramolecular nanocapsules [J]. Chemical Communications,2005,(6):755-757.
    [89] K. Vasilev, V. R. Sah, R. V. Goreham, et al. Antibacterial surfaces by adsorptive binding ofpolyvinyl-sulphonate-stabilized silver nanoparticles [J]. Nanotechnology,2010,21(21):215102.
    [90] B. Chudasama, A. K. Vala, N. Andhariya, et al. Highly bacterial resistant silver nanoparticles:synthesis and antibacterial activities [J]. Journal of Nanoparticle Research,2010,12(5):1677-1685.
    [91] J. Zhu, S. Liu, O. Palchik, et al. Shape-controlled synthesis of silver nanoparticles by pulsesonoelectrochemical methods [J]. Langmuir,2000,16(16):6396-6399.
    [92] A. Callegari, D. Tonti, and M. Chergui. Photochemically grown silver nanoparticles withwavelength-controlled size and shape [J]. Nano Letters,2003,3(11):1565-1568.
    [93] A. A. Farah, R. A. Alvarez-Puebla, and H. Fenniri. Chemically stable silvernanoparticle-crosslinked polymer microspheres [J]. Journal of Colloid and Interface Science,2008,319(2):572-576.
    [94] K. A. Bogle, S. D. Dhole, and V. N. Bhoraskar. Silver nanoparticles: synthesis and size control byelectron irradiation [J]. Nanotechnology,2006,17(13):3204-3208.
    [95] D. Spadaro, E. Barletta, F. Barreca, et al. Synthesis of PMA stabilized silver nanoparticles bychemical reduction process under a two-step UV irradiation [J]. Applied Surface Science,2010,256(12):3812-3816.
    [96] T. Zhao, J. B. Fan, J. Cui, et al. Microwave-controlled ultrafast synthesis of uniform silvernanocubes and nanowires [J]. Chemical Physics Letters,2011,501(4-6):414-418.
    [97] A. Moazami, M. Montazer, A. Rashidi, et al. Antibacterial properties of raw and degummed silkwith nanosilver in various conditions [J]. Journal of Applied Polymer Science,2010,118(1):253-258.
    [98] S. T. Dubas, P. Kumlangdudsana, and P. Potiyaraj. Layer-by-layer deposition of antimicrobialsilver nanoparticles on textile fibers [J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2006,289(1-3):105-109.
    [99] B. Mahltig, D. Fiedler, and H. Bottcher. Antimicrobial sol-gel coatings [J]. Journal of Sol-GelScience and Technology,2004,32(1-3):219-222.
    [100] E. Falletta, M. Bonini, E. Fratini, et al. Clusters of poly(acrylates) and silver nanoparticles:Structure and applications for antimicrobial fabrics [J]. Journal of Physical Chemistry C,2008,112(31):11758-11766.
    [101] S. D. Gittard, D. Hojo, G. K. Hyde, et al. Antifungal textiles formed using silver deposition insupercritical carbon dioxide [J]. Journal of Materials Engineering and Performance,2009,19(3):368-373.
    [102] N. Vigneshwaran, R. P. Nachane, R. H. Balasubramanya, et al. A novel one-pot 'green' synthesisof stable silver nanoparticles using soluble starch [J]. Carbohydrate Research,2006,341(12):2012-2018.
    [103] S. Kéki, J. T r k, G. Deák, et al. Silver nanoparticles by PAMAM-assisted photochemicalreduction of Ag+[J]. Journal of Colloid and Interface Science,2000,229(2):550-553.
    [104] M. Popa, T. Pradell, D. Crespo, et al. Stable silver colloidal dispersions using short chainpolyethylene glycol [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,303(3):184-190.
    [105] A. Manna, T. Imae, K. Aoi, et al. Synthesis of dendrimer-passivated noble metal nanoparticles in apolar medium comparison of size between silver and gold particles [J]. Chemistry of Materials,2001,13(5):1674-1681.
    [106] A. J. Kora, R. B. Sashidhar, and J. Arunachalam. Gum kondagogu (Cochlospermum gossypium):A template for the green synthesis and stabilization of silver nanoparticles with antibacterialapplication [J]. Carbohydrate Polymers,2010,82(3):670-679.
    [107] T. C. Kaspar, T. Droubay, S. A. Chambers, et al. Spectroscopic evidence for Ag(III) in highlyoxidized silver films by X-ray photoelectron spectroscopy [J]. Journal of Physics and ChemistryC,2010,114(49):21562-21571.
    [108] Y. Liao, Y. Q. Wang, X. X. Feng, et al. Antibacterial surfaces through dopamine functionalizationand silver nanoparticle immobilization [J]. Materials Chemistry and Physics,2010,121(3):534-540.
    [109] F. M. Kelly and J. H. Johnston. Colored and functional silver nanoparticle wool fiber composites[J]. ACS Applied Materials&Interfaces,2011,3(4):1083-1092.
    [110] C. Lizandara-Pueyo, M. W. E. Van den Berg, A. De Toni, et al. Nucleation and Growth of ZnO inOrganic Solvents-an in Situ Study [J]. Journal of the American Chemical Society,2008,130:16601-16610.
    [111] A. Moezzi, A. M. McDonagh, and M. B. Cortie. Zinc oxide particles: Synthesis, properties andapplications [J]. Chemical Engineering Journal,2012,185:1-22.
    [112] H. M. Xiong, R. Z. Ma, S. F. Wang, et al. Photoluminescent ZnO nanoparticles synthesized at theinterface between air and triethylene glycol [J]. Journal of Materials Chemistry,2011,21(9):3178.
    [113] R. O. Moussodia, L. Balan, C. Merlin, et al. Biocompatible and stable ZnO quantum dotsgenerated by functionalization with siloxane-core PAMAM dendrons [J]. Journal of MaterialsChemistry,2010,20(6):1147.
    [114] H. M. Xiong. Photoluminescent ZnO nanoparticles modified by polymers [J]. Journal ofMaterials Chemistry,2010,20(21):4251-4262.
    [115] S. Sakohara and M. Ishida. Visible luminescence and surface properties of nanosized ZnO colloidsprepared by hydrolyzing zinc acetate [J]. Journal of Physical Chemistry B,1998,102(50):10169-10175.
    [116] L. Spanhel and M. A. Anderson. Semiconductor clusters in the sol-gel process: quantizedaggregation, gelation, and crystal growth in concentrated ZnO colloids [J]. Journal of theAmerican Chemical Society,1991,113(8):2826-2833.
    [117] T. V. Richter, F. Stelzl, J. Schulz-Gericke, et al. Room temperature vacuum-induced ligandremoval and patterning of ZnO nanoparticles: from semiconducting films towards printedelectronics [J]. Journal of Materials Chemistry,2010,20(5):874.
    [118]. S. U ur, M. Sar k, A. H. Akta, et al. Modifying of cotton fabric surface with nano-ZnOmultilayer films by layer-by-layer deposition method [J]. Nanoscale Research Letters,2010,5(7):1204-1210.
    [119] L. Jiang, G. C. Li, Q. M. Ji, et al. Morphological control of flower-like ZnO nanostructures [J].Materials Letters,2007,61(10):1964-1967.
    [120] C. Wu, X. Qiao, J. Chen, et al. A novel chemical route to prepare ZnO nanoparticles [J]. MaterialsLetters,2006,60(15):1828-1832.
    [121] M. Harunar Rashid, M. Raula, R. R. Bhattacharjee, et al. Low-temperature polymer-assistedsynthesis of shape-tunable zinc oxide nanostructures dispersible in both aqueous and non-aqueousmedia [J]. Journal of Colloid and Interface Science,2009,339(1):249-258.
    [122] M. H. Fallah, S. A. Fallah, and M. A. Zanjanchi. Synthesis and characterization of nano-sized zincoxide coating on cellulosic fibers: Photoactivity and flame-retardancy study [J]. Chinese Journalof Chemistry,2011,29(6):1239-1245.
    [123] A. Yadav, V. Prasad, A. A. Kathe, et al. Functional finishing in cotton fabrics using zinc oxidenanoparticles [J]. Bulletin of Materials Science,2006,29(6):641-645.
    [124] I. Perelshtein, G. Applerot, N. Perkas, et al. Antibacterial properties of an in situ generated andsimultaneously deposited nanocrystalline ZnO on fabrics [J]. ACS Applied Materials&Interfaces,2009,1(2):361-366.
    [125] H. Wang, A. Zakirov, S. U. Yuldashev, et al. ZnO films grown on cotton fibers surface at lowtemperature by a simple two-step process [J]. Materials Letters,2011,65(9):1316-1318.
    [126] Z. Mao, Q. Shi, L. Zhang, et al. The formation and UV-blocking property of needle-shaped ZnOnanorod on cotton fabric [J]. Thin Solid Films,2009,517(8):2681-2686.
    [127] X. J. Jiang, M. P. Tong, H. Y. Li, et al. Deposition kinetics of zinc oxide nanoparticles on naturalorganic matter coated silica surfaces [J]. Journal of Colloid and Interface Science,2010,350(2):427-434.
    [128] R. Gonzalez-Hernandez, A. I. Martinez, C. Falcony, et al. Study of the properties of undoped andfluorine doped zinc oxide nanoparticles [J]. Materials Letters,2010,64(13):1493-1495.
    [129] S. Z. Kang, T. Wu, X. Li, et al. A facile gelatin-assisted preparation and photocatalytic activity ofzinc oxide nanosheets [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2010,369(1-3):268-271.
    [130] X. Peng, Y. Chen, F. Li, et al. Preparation and optical properties of ZnO@PPEGMA nanoparticles[J]. Applied Surface Science,2009,255(16):7158-7163.
    [131] H. Lin, L. R. Yao, Y. Y. Chen, et al. Structure and properties of silk fibroin modified cotton [J].Fibers and Polymers,2008,9(2):113-120.
    [132] O. Yamamoto. Influence of particle size on the antibacterial activity of zinc oxide [J].International Journal of Inorganic Materials,2001,3(7):643-646.
    [133] A. Kazemi, M. Abadyan, and S. A. Ketabi. Controlled structural and optical properties of ZnOnano-particles [J]. Physica Scripta,2010,82(3):035801.
    [134] S. Khanjani, A. Morsali, and S. W. Joo. In situ formation deposited ZnO nanoparticles on silkfabrics under ultrasound irradiation [J]. Ultrasonics Sonochemistry,2013,20(2):734-739.
    [135] A. Pal, S. Shah, and S. Devi. Microwave-assisted synthesis of silver nanoparticles using ethanolas a reducing agent [J]. Materials Chemistry and Physics,2009,114(2-3):530-532.
    [136] K. D. Bhatte, D. N. Sawant, R. A. Watile, et al. A rapid, one step microwave assisted synthesis ofnanosize zinc oxide [J]. Materials Letters,2012,69:66-68.
    [137] L. C. Nehru, V. Swaminathan, and C. Sanjeeviraja. Rapid synthesis of nanocrystalline ZnO by amicrowave-assisted combustion method [J]. Powder Technology,2012,226:29-33.
    [138] D. Sharma, S. Sharma, B. S. Kaith, et al. Synthesis of ZnO nanoparticles using surfactant freein-air and microwave method [J]. Applied Surface Science,2011,257(22):9661-9672.
    [139] H. Yin, T. Yamamoto, Y. Wada, et al. Large-scale and size-controlled synthesis of silvernanoparticles under microwave irradiation [J]. Materials Chemistry and Physics,2004,83(1):66-70.
    [140] T. Darmanin, P. Nativo, D. Gilliland, et al. Microwave-assisted synthesis of silvernanoprisms/nanoplates using a “modified polyol process”[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2012,395:145-151.
    [141] N. M. Bahadur, T. Furusawa, M. Sato, et al. Fast and facile synthesis of silica coated silvernanoparticles by microwave irradiation [J]. Journal of Colloid and Interface Science,2011,355(2):312-320.
    [142] F. Sun, X. Qiao, F. Tan, et al. One-step microwave synthesis of Ag/ZnO nanocomposites withenhanced photocatalytic performance [J]. Journal of Materials Science,2012,47(20):7262-7268.
    [143] X. Cao, B. Ding, J. Yu, et al. In situ growth of silver nanoparticles on TEMPO-oxidized jute fibersby microwave heating [J]. Carbohydrate Polymers,2013,92(1):571-576.
    [144] K. Kolá ová, V. Vosmanská, S. Rimpelová, et al. Effect of plasma treatment on cellulose fiber [J].Cellulose,2013,20(2):953-961.
    [145] C. Bressy, V. G. Ngo, F. Ziarelli, et al. New Insights into the Adsorption of3-(Trimethoxysilyl)propylmethacrylate on Hydroxylated ZnO Nanopowders [J]. Langmuir,2012,28(6):3290-3297.
    [146] F. Ahmed, S. Kumar, N. Arshi, et al. Preparation and characterizations of polyaniline (PANI)/ZnOnanocomposites film using solution casting method [J]. Thin Solid Films,2011,519(23):8375-8378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700