用户名: 密码: 验证码:
犬肺肿瘤模型的建立及经支气管动脉化疗的药代动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     肺癌是最常见的恶性肿瘤之一,根据世卫组织(WHO)报道,每年有超过100万人死于肺癌(WHO,2002)。在我国城市人群中,肺癌是所有癌症死因中的头号杀手,而且,其发病率和死亡率在城乡仍在逐年递增。以手术、放疗及化疗为主体的治疗方式尚不令人满意,尤其是对中晚期肺癌。上世纪70年代发展起来的经支气管动脉化疗灌注术(Bronchial Artery Infusion Chemotherapy, BAI是针对中晚期患者疗效较好的方法之一。BAI是经导管支气管动脉内给予化学药物来治疗肿瘤的一种微创介入治疗方法,其目的是为了提高肿瘤内的药物浓度,并延长药物与病灶的接触时间,而同时并不增加外周血药浓度,从而提高疗效和减少毒副作用。但是由于目前对于动脉内给药的临床药物代谢动力学研究还不成熟,有关BAI的药动学的研究文献非常少,有代表性的几篇文献通过检测化疗药的血药浓度来计算药代动力学参数,存在较大局限性。究其原因之一在于稳定、可利用的、适合临床研究的大动物肺肿瘤模型难于建立;之二在于如何实时测定介入治疗过程中肿块内的化疗药物浓度。
     犬传染性性病肿瘤(Canine transmissible venereal tumor, CTVT)是一种犬类动物生殖系统自然发生的圆细胞类肿瘤,文献报道其具有可靠的稳定性、原位移植的多样性和良好的模拟性,为犬肺肿瘤模型的建立提供了良好的瘤株。
     微透析(Microdialysis)是上世纪70年代发展起来的一种在不破坏生物体内环境的前提下,对生物体细胞间液的内源性或外源性物质进行连续取样和分析的微量生物化学检测技术,微透析的原理与普通透析原理相同,即可透过膜的物质顺着浓度梯度通过半透膜进行扩散,只是取样装置小巧,可以置入各种组织中。微透析对组织损伤较小,可以最大程度的获取代表机体生理或病理生理情况下的样本,可应用于心肝、肺、肾、脑等几乎机体所有的器官和组织,并可实现多个位点同时取样不间断的实时监测。目前自然科学的众多基础领域应用广泛。
     本课题即为更好地指导临床BAI用药,探讨建立适合临床研究的大动物(犬)·CTVT同种移植性肺癌模型的最优方法,并在此基础上,借助微透析技术精确取样,联合质谱(MC)和高效液相(HPLC)测定CTVT肺肿瘤、正常肺组织内的游离药物浓度,并测定血药浓度,计算BAI的各项药代动力学参数,同时对比研究常规静脉化疗的变化趋势,分析药物-时间曲线,归纳房室模型,阐述可能存在的不同作用机制和原因,更好的指导临床BAI应用化疗药物,提供理论参考依据。同时拟建立一套经血管介入治疗药物代谢研究的方法,为今后科研工作提供参考。
     研究目的
     1、探讨建立犬传染性性病肿瘤(CTVT)移植性肺癌模型的理想方法。
     2、研究犬传染性性病肿瘤(CTVT)同种移植性肺癌模型的血供来源。
     3、基于微透析技术,在犬传染性性病肿瘤移植性肺癌模型上研究经支气管动脉灌注化疗的药代动力学。
     4、探索建立一套经血管介入治疗中活体内肿瘤药物代谢动力学的研究方法。
     研究方法
     1、Beagle犬18只分为2组,A组(细胞悬液接种组)12只,CT引导下经皮肺穿刺注射CTVT细胞悬液(活细胞浓度为108/ml);B组(组织块接种组)6只,CT引导下经皮肺穿刺植入CTVT组织块(1.5mm至2.0mm)2~3枚。分别于接种后即刻、第4周、第6周、第8周、第10周行胸部CT平扫,观察有无肿瘤、肿瘤生长及转移情况;每日观察记录动物的一般情况,有肿瘤生长的动物待其自然死亡或于第10周后续研究后处死,行尸检和病理学检查,观察肿瘤有无坏死及微观病理学变化。重复测量数据分析方法分析各时间段肿瘤大小,研究两组间的差别,评判其优劣。
     2、犬传染性性病肿瘤同种移植性肺癌模型动物12只,分别行犬支气管动脉数字减影血管造影(Bronchial arterial digital subtraction angiography, BA-DSA)、肺动脉数字减影血管造影(Pulmonary artery DSA, PA-DSA)、经支气管动脉增强多排CT扫描(Trans-bronchial arterial contrast enhanced multi-slice compute tomography, BA-MSCT)、经肺动脉增强多排CT扫描(trans-pulmonary arterialcontrast enhanced multi-slice compute tomography, PA-MSCT)。分析所获图像,测量肺内结节的强化程度,并与肺动脉碘油栓塞CT扫描相结合,判断CTVT移植性肺癌模型的血供来源。
     3、CTVT同种移植性肺肿瘤模型犬6只,随机分为两组:BAI给药组(B组,n=3); Venous组(V组,n=3)。实验犬先在DSA下行经皮支气管动脉或体循环动脉造影,明确肺移植瘤血供,再于CT下以20G Chiba针行经皮肺肿瘤穿刺术,及肺实质穿刺术,分别于肿瘤内和肺实质内植入MD-2000 LM-5医用微透析探针(BASI公司,美国)各1枚。BAI组以卡铂按16.5mg/kg剂量溶于250ml 5%GS中,推注泵辅助下1小时内经动脉导管末端匀速滴完。静脉组经后肢外侧小隐静脉给药,给药剂量、给药时间同BAI组。自给药时起在微透析探针出口处收集透析液,并定时抽取静脉血。质谱及高效液相(HPLC)测定分析透析液内及血浆内的卡铂浓度。制作标准曲线,换算药物浓度,绘制化疗药在肿瘤组织内、正常肺组织及血浆内随时间变化的动态图谱,并以动力学程序处理数据,计算药代参数,以方差分析法行两组间及组内药代参数比较。
     研究结果
     1、细胞悬液及组织块两组肺内接种技术成功率均为100%,接种后并发症(气胸、血胸、肺出血、咯血等)发生数相当。无需特殊处理。组织块接种组成瘤率100%(12/12),明显高于细胞悬液接种组66.67%(9/15),两组差别有统计学意义(P=0.023<0.05)。细胞悬液组6、8、10周肿瘤的最大均径(最大层面垂径的平均值,cm)分别为1.059±0.113、1.827±0.084、2.189±0.153;组织块接种组6、8、10周肿瘤的最大均径(最大层面垂径的平均值,cm)分别为1.716±0.102、2.392±0.076、2.734±0.138;两组间6、8、10周肿瘤均径行重复测量分析得,总F=11.791,P<0.05,组织块组各时间段均径大于细胞悬液组之均径,差异有显著性意义。细胞悬液组6只犬可见胸壁及皮下种植,第7周起可出现胸腔积液,至第9周所有成瘤犬均发现中-大量胸腔积液及纵隔淋巴结肿大,犬呈恶病质状态,2只犬分别于第9、10周因呼吸衰竭死亡:组织块接种组胸壁种植2处,肺内转移2例,观察至第10周未见胸腔积液及纵隔淋巴结肿大,犬生长良好,未出现恶液质现象,两组犬均未见胸部外其它脏器转移发生。两组犬病理学检查肿瘤中心无坏死现象发生。
     2、14个直径大于2cm的结节中,12个(12/14)在BA-DSA上可见增粗的支气管动脉向肿瘤方向走行;5个直径在1~2cm的结节行支气管动脉造影,4个在DSA上染色明显;共8只犬行PA-DSA造影,未见结节内部或边缘肿瘤染色。14个大于2cm肿瘤中,12个BA-MSCTA上可见肿瘤内部杂乱无章的肿瘤血管影,以及造影剂渗入肿块内部所致的肿瘤染色。8只犬14个结节行碘油栓塞后CT扫描,2个小于1cm病灶内可见碘油沉积(2/5)。1个大于2cm结节,内部可见1油滴状碘油沉积;2个大于2cm结节内部可见散在点状碘油沉积;余病灶内部未见明显碘油沉积征象。
     3、BAI及静脉组滴注给药后,CBP在血浆中的浓度呈规律性变化,两组间的药代参数差异显著。BAI组及静脉给药组AUC值分别为58.66±4.768和76.992±8.873(mg/L*h),MRT值为5.093±0.064和2.141±0.928(h);Cmax值为28.833±3.711和81.3±9.839(mg/L);Vz值为10.613±3.225和2.09±2.688(L/kg);t1/2z值为51.471±22.165和9.188±12.687(h),各组间t值分别为tAUC=-3.15216,tMRT=5.496557,tCmax=-8.64219,tVz=3.516387,差异均有统计学意义(p<0.05)。两种不同方式给药后肿瘤及正常肺组织内的药物浓度呈规律性变化。不同给药方式肿瘤内的药代参数:BAI组及静脉给药组AUC值分别为1660.76±339.77和459.49±49.99(mg/L*min),Cmax值分别为21500.39±4359.91和4627.27±722.676(mg/L)。MRT值分别为74.322±8.048和98.23±3.934(min),方差分析结果FAUC=17.336,P=0.001;FCmax=33.556,P=0;FMRT=9.091,P=0.006;差异均有统计学意义(p<0.05)。
     结论
     1、以经皮穿刺种植CTVT的方式建立犬同种肺移植瘤模型是可行的;组织块接种法较细胞悬液接种法简便、高效、成瘤率高、并发症少,是CTVT犬移植性肺癌模型制作的理想模式。
     2、CTVT同种移植性肺肿瘤的主要由支气管动脉供血,血供与肿瘤的大小相关,肿瘤越大,支气管动脉供血可能性越大;尚不能排除肺动脉参与该移植瘤的少量供血,特别在小于1cm的转移肿瘤。肺动脉可能参与供血。
     3、与静脉给药相比,BAI可明显提高肿块内的峰浓度,增加肿瘤局部药物的生物利用度,增强对肿瘤细胞杀伤;同时降低外周血药浓度,减轻全身毒副作用。
     4、卡铂经BAI给药可使药物的平均滞留时间有所延长,短时间内重复给药较静脉给药更容易发生药物蓄积,增加药物毒性。
     5、以经皮植入的方法建立犬CTVT肺肿瘤模型,结合CT引导下穿刺,微透析探针植入的方式,研究血管介入治疗的药物代谢动力学,是一套行之有效的方法,实践上切实可行。
Background
     Lung cancer is one of the most common malignant tumors. According to WHO statistics, more than 1 million people die from lung cancer every year (WHO,2002). In China, lung cancer is the No.1 leading cause of death among all types of malignancies. in the cities, and the morbidity and mortality have increased significantly in both urban and rural areas. Developed in the late 1970(?), (?)al arterial infusion chemotherapy (BAI) one of the effactive treatment modalities for patients with advanced lung cancer. BAI is a minimally invasive interventional therapy which delivers chemical drugs directly to the tumor via bronchial, with the aim to increase intratumoral drug concentration and prolong drug stasis within lesions while maintain the blood drug concentration at low level. Therefore, the advantages of BAI are higher efficacy and less side effects. But the clinical pharmacokinetic studies of BAI are not mature, with few papers in the literature. Some representative studies calculate the pharmacokinetic parameters by detecting the blood concentration of several chemotherapeutic drugs. There are main reaseons for this limitation. Firstly, it is difficult to establish a suitable large animal model of lung cancer. Secondly, it is also difficult to measure the real-time concentration of chemical durgs inside mass in the course of interventional treatment.
     Canine transmissible venereal tumor (CTVT) is a naturally occurring tumor, which has many characteristic such as stability, reliability and diversity in in-situ transplantation, is a good tumor strain for the canine lung cancer model.
     Microdialysis was developed in the 1970s. This technique provides a means of continuously sampling substances in the interstitial space fluid on the premise of not destroying environment in the organ. Principle of microdialysis is the same as conventional dialysis, with the exception that its sampling equipment (probe) is tiny which can be put into various kinds of organs and tissues. Since microdialysis has many advantages such as little damage, high authenticity and small deviation, it has been extensively applied in numerous fields of natural science.
     The aims of this study are:to explore the optimal method for the establishment of cTVT allograft lung cancer model, then try to discover the blood supply of the model, and finally to determine the intra-tumoral pharmacokinetics of BAI using microdialysis in order to better guide clinical BAI protocol and provide a theoretical frame of reference. By acompishing these work, we also hope to establish a set of mature methods to study drug metabolism after various vascular interventions in the futrue.
     Objective
     1. To explore the optimal method for the establishment of CTVT lung cancer model.
     2. To study the blood supply of CTVT lung cancer.
     3. To determine the intra-tumoral pharmacokinetics of BAI using microdialysis technique.
     4. To explore one series of pharmacokinetics study methods on vascular interventional treatment in vivo tumor.
     Methods
     1.18 beagle dogs were divided into 2 groups. Group A, cell suspension inoculation group, in which 12 dogs underwent percutaneous CT-guided puncture of lungs and innoculation of CTVT cell suspension (live cell concentration of 108/ml) into dog lungs. Group B, fresh tumor fragments inoculation group, in which 6 dogs underwent percutaneous CT-guided puncture of lungs and innoculation of 2~3 fresh tumor fragments (1.5~2.0mm). Chest CT was performed immediately after inoculation, and 4,6,,8 and 10 weeks after innoculation in order to observe the tumor growth and metastasis. Animals were observed daily for general state of health. Autopsy and pathological examinations were performed to observe whether tumor necrosis and micro-pathological changes until their natural death or at 10 weeks after furthur experiment. Repeated measure method was performed to analyse the tumor growth state, and determine the differences between the two groups.
     2. In 12 dogs with CTVT lung cancer, bronchial artery digital subtraction angiography (BA-DSA), pulmonary digital subtraction angiography (PA-DSA), trans-bronchial arterial contrast enhanced multi-slice CT angiography (BA-MSCTA) and trans-pulmonary arterial contrast enhaced multi-slice CT angiography (PA-MSCTA) were performed. Images were analyzed and enhancement of lung nodules were determined. CT after pulmonary arterial lipiodol injection was also performed. Finally, blood supply of CTVT lung cancer model was judged.
     3. Experimental dogs were divided into two groups:BAI treatment group (group B, n=3); Venous groups (group V, n=3). After the dogs were anaesthetized, percutaneous bronchial arterial angiography or other systemic arterial angiography was performed to clarify the blood supply to the lung tumors. Then chest CT scan was performed to decide puncture point, angle and route. Two 20G chiba needles were inserted to cross the semi-chest, one through the tumor and one through the adjacent lung parenchyma. A linear microdialysis probes were threaded through the canula, making sure the membrane (samping part) was within the tumor and the lung parenchyma of interest. For group B, carboplatin 16.5mg/kg dissolved in 250ml 5% GS was infused into the bronchial artery slowly within an hour using a micro-pomp. In groupⅤ, same dosage of carboplatin was administered through saphenous vein using the miaro-pump. Then dialysate samples were collected at the outlet. The drug concentration was determined by Mass Spectrometry Instrument. The time-curves of the drug concentration in extracellular fluid of tumor and lung tissue were drawn. Data were processed with Microsoft Excel and DAS2.0 software. Pharmacokinetic parameters were calculated.
     Results
     1. The technical success rates of both groups were 100%. Complications (pneumothorax, hemothorax, pulmonary hemorrhage, hemoptysis, etc.) after inoculation were almost equal. Tumor formation rate of group B (tumor fragment inoculation,100%,12/12) was significantly higher than group A(cell suspension inoculation,66.67%,9/15) (P=0.037<0.05). The mean largest diameter of Group A was 1.059±0.113,1.827±0.084 and 2.189±0.153cm at 6th,8th,10th week; while in Group B 1.716±0.102、2.392±0.076、2.734±0.138cm, respectively (p<0.05). Chest wall and subcutaneous plantings were found in 6 dogs in Group A, with pleural effusion appeared at 7th week and severe pleural effusion and mediastinal lymph node enlargement at 9th week in all dogs. All dogs in Group B showed cachexia status. In Group B, chest wall inoculatation occurred in 2 dogs, and lung metastasis was observed at 10th week. There were no pleural effusion and mediastinal lymph node enlargement. No metastases outside the chest were observed. Two dogs underwent pathological examination and no ecrosis was found.
     2. For 14 nodules larger than 2cm, hyperplastic bronchial arteries leading to the tumor were found in 12 nodules on BA-DSA. For 5 nodules 1~2cm in diameter, tumor staining were obvious in 2 nodules on BA-DSA. No tumor staining was observed in four dogs on PA-DSA. In 12 nodules more than 2cm, BA-MSCTA diaplayed chaotic tumor blood vessels and tumor staining within tumors. Chest CT scan was performed in 8 experimental dogs after pulmonary artery was embolized with lipiodol. Two lesions (less than 1cm) were shown to have lipiodol deposition (2/5). A droplet of lipiodol deposition was seen in one nodule larger than 2cm. Scattered dotted lipiodol deposits were found in two nodules larger than 2cm.
     3. Plasma carboplatin concentrations changed regularly after administration via both BAI or venous route. Some pharmacokinetic parameters between the two groups were significantly different. AUC values in BAI group and intravenous group were 58.66±4.768 and 76.992±8.873(mg/L*h), respectively. And Tmax value 1.053±0.046 and 1±0 (h), Cmax values 28.833±3.711 and 81.3±9.839 (mg/L), tl/2z values 51.471±22.165 and 9.188±12.687 (h), respectively, (p<0.05, for all). In both groups, drug concentrations in tumor and normal lung tissue changed regularly. The tumor pharmacokinetic parameters in two groups were:AUC values 1660.76±339.77 and 459.49±49.99 (mg/L* min), Cmax values 21500.39±4359.91 and 4627.27±722.676 (mg/L), MRT values 74.322±8.048 and 98.23±3.934 (min), in BAI groups andⅣgroup, respectively. Analysis of variance FAUC=17.336, P=0.001, FCmax=33.556, P=0, FMRT=9.091, P=0.006. (p<0.05).
     Conclusions
     1. It is feasible to establish a CTVT lung cancer model by percutaneous puncture. Tissue fragments inoculation method is simple, efficient, with few complications compared with cell suspension inoculation method. It is the ideal method to establish lung cancer model with CTVT.
     2. CTVT allograft lung tumor was mainly supplied by the bronchial artery.Tumor blood supply was related to tumor size, and the greater the tumor size was, the greater the likelihood of bronchial arterial supply was; Pulmonary artery may supply the tumor, especially in tumors smaller than 1cm. For larger tumors, blood supply was from the bronchial artery exclusively.
     3. Compared with intravenous administration, BAI could significantly increase the peak concentration within the tumor, prolong the local action time, increase drug bioavailability in local tumor and enhance tumor cell killing, while decreasing the blood concentration and reducing systemic side effects.
     4. The average residual time of carboplatin can be prolonged after dministered by BAI. But drug accumulation is prone to take place if administration is repeated in a short time compared with intravenous administration. 5. It is an effective way to study vascular interventional pharmacokinetics by establishing CTVT lung cancer model by percutaneous implantation, combined with microdialysis probe implanted by CT-guided puncture.
引文
[1]Kerr KM. Pulmonary preinvasive neoplasia. Journal of Clinical Pathology 2001;54:257-71.
    [2]Li LD, Lu F,Zhang S,Mu R,Sun X. Analysis on the trend on mortality of malignant tumors in recent 20 years in China and the estimation for the near future. Chin J Oncol 1997;19(1):3-9[in Chinese].
    [3]Zhou MQWang LJ,Yang GH.Impacts of population aging and risk factors changing on mortality of lung cancer.Chin J Health Stat 2002;19(3):161-2[in Chinese].
    [4]Yang GH.China built up the database of population mortality and related risk factors. Chin J Epidemiol 2004;25(7):642-3 [in Chinese].
    [5]Livingood LE. Tumors in the mouse. Johns Hopkins Bulletin 1986;66/67:177.
    [6]Hook, R.R.,J.Berkelhammer, and R.W.Oxenhandler.1982.Melanoma:Sinclair swine melanoma.Am.J.Pathol.108:130-133.
    [7]Rivera B, Ahrar K, Marko M, et al. Canine transmissible venereal tumor:a large-animal transplantable tumor model. Comp Med,2005.55:335-343.
    [8]Ahrar K, Madof DC, Gupta S, et al. Development of a large animal model for lung tumors. J Vase Interv Radiol,2002,13:923-928.
    [9]Jubb,K.V.F.,P.C.Kennedy,and N.Palmer.1985.The female genital system.In Pathology of domestic animals,3rd ed.,vol.3.Academic Press,Inc.,New York.
    [10]Nielsen,S.W. and P.C.Kennedy.1990.Tumors of the genital systems,p.479-517.In J.E.Moulton (ed.),Tumors in domestic animals,3rd ed.University of California Press,Berkeley,Calif.
    [11]Yang,T.J. and J.B.Jones.1973.Canine transmissible venereal sarcoma:transplantation studies in neonatal and adult dogs.J.Natl.Cancer Inst.51:1915-1918.
    [12]Adams,E.W. and L.J.Slaughter.1970.A canine venereal tumor with metastasis to the brain.Vet.Pathol.7:498-502.
    [13]Johnson,D.,E.hagen,A.Aksnes,N.Fetrow,P.Losco,M.Harris,C.Crewell,K.Johnson,F.Forsberg,D .Merton,J.Liu, and B.Goldberg.1999.Canine parenchymal transplantable tumor model.Lab Anim.Sci.49:442
    [14]Miller, W., R.A.Alber, and T.R. Boosinger.2000.Ocular metastasis of a transmissible venereal tumor.Canine Prac.15:19-24.)
    [15]Rogers,K.S.,M.A.Walker, and H.B.Dillon.1998.Transmissible venereal tumor:a retrospective study of 29 cases.J.Am.Anim.Hosp.Assoc.34:463-470.
    [16]Cohen,D.1985.The canine transmissible venereal trmor:a unique result of tumor progression. Adv. Cancer Res.43:75-112.
    [17]Johnson, D, E. hagen, A. Aksnes, N. Fetrow, P.Losco, M.Harris, C.Crewell,K..Canine parenchymal transplantable tumor model.Lab Anim.Sci.1999:49:442.
    [18]Hill, D.L., T. J. Yang, and A. Wachtel.1984. Canine transmissible venereal sarcoma:tumor cell and infiltrating leukocyte ultrastructure at different growth stages. Vet. Pathol.21:39-45.
    [19 Holmes JM. Measurement of the rate of death of canine transmissible venereal turnout cells transplanted into dogs and nude mice. Res Vet Sci,1981,30(2):248—250.
    [20]黄瑛,胡兵犬传染性肉瘤与原位移植性动物肿瘤模型.中国实验动物学报2007(15):317-320.
    [1]Milne EN. Circulation of primary and metastatic pulmonary neoplasm:a postmortem microarteriographic study. AJR,1967,100:603-619.
    [2]Hellekant C. Bronchial angiography and intraarterial chemotherapy with mitomycin-C in bronchogenic carcinoma:anatomy, technique, complications. Acta Radiol Diagn(Stockh),1979, 20:478-496.
    [3]韩铭钧,冯敢生,杨建勇,等.肺动脉不参与肺癌血供?实验和DSA研究.中华放射学杂志,2000,34:802-804.
    [4]滕皋军,蔡锡类,高广如,等.支气管肺癌的双重供血(肺癌标本的微血管造影及临床x线研究).中华放射学杂志,1991,25:80.83.
    [5]肖湘生,欧阳强,韩希年,等.肺癌血供的DSA研究及临床意义.中华放射学杂志,1997,31:446-448.
    [6]董伟华,肖湘生,李惠民,等.支气管动脉和肺动脉多层螺旋CT血管造影对肺癌血供的研究.中华放射学杂志,2003,37:612-614.
    [7]吴安乐,颜志平,周康荣等,兔VX2瘤转移性肺癌动物模型的建立和生物学特性研究.中华放射学杂志.2003,37,166-170
    [8]Ahrar K, Madof DC, Gupta S, et al. Development of a large animal model for lung tumors. J Vase Interv Radiol,2002,13:923-928.
    [9]Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ. Cancer statistics 2003. CA Cancer J Clin.2003;53:5-26.
    [10]Hislop A, Reid L. Normal structure and dimensions of the pulmonary arteries in the rat. J Anat.1978;125:71-83.
    [11]Baile EM. The anatomy and physiology of the bronchial circulation. J Aerosol Med. 1996;9:1-6.
    [12]Ad hoc Statement Committee:American Thoracic Society. Mechanisms and limits of induced postnatal lung growth. Am J Respir Crit Care Med.2004; 170:319-343.
    [13]Mitzner W, Lee W, Georgakopoulos D, Wagner E. Angiogenesis in the mouse lung. Am J Pathol.2000;157:93-101.
    [14]Muller KM, Meyer-Schwickerath M. Bronchial arteries in various stages of bronchogenic carcinoma. Pathol Res Pract.1978;163:34-46.
    [15]Ferreira PG, Silva AC, Aguas AP, Pereira AS, Grande NR. Detailed arrangement of the bronchial arteries in the Wistar rat:a study using vascular injection and scanning electron microscopy. Eur J Anat.2001;5:67-76.
    [16]Milne EN, Zerhouni EA. Blood supply of pulmonary metastases. J Thorac Imaging. 1987;2:15-23.
    [17]Shijubo N, Kojima H, Nagata M, Ohchi T, Suzuki A, Abe S, Sato N. Tumor angiogenesis of non-small cell lung cancer. Microsc Res Tech.2003;60:186-198.
    [18]Yano S, Nishioka Y, Goto H, Sone S. Molecular mechanisms of angiogenesis in non-small cell lung cancer, and therapeutics targeting related molecules. Cancer Sci.2003;94:479-485.
    [19]Ley S, Kreitner KF, Morgenstern I, Thelen M, Kauczor HU. Bronchopulmonary shunts in patients with chronic thromboembolic pulmonary hypertension:evaluation with helical CT and MR imaging. Am J Roentgenol.2002;179:1209-1215.
    [20]Jonas AM, Carrington CB. Vascular patterns in primary and secondary pulmonary tumors in the dog. Am J Pathol.1969;56:79-95.
    [21]Bernard SL, Glenny RW, Polissar NL, Luchtel DL, Lakshminarayan S. Distribution of pulmonary and bronchial blood supply to airways measured by fluorescent microspheres. J Appl Physiol.1996;80:430-436.
    [22]安潇,肖湘生.基于微透析技术的支气管动脉灌注卡铂的药物代谢动力学研究.2007,28(6),737-742.
    [23]Maniwa Y,Okada M, Ishii N et al. Vascular endothelial growth factor increased by pulmonary surgery accelerates the growth of micrometastases in metastatic lung cancer. Chest, 1998,114:1668-1675.
    [24]Shweiki D, Itin A, Soffer D et al. Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature,1992,359:843-845.
    [25]Savai R, Wolf J.C, Greschus S, et al.Analysis of tumor vessel supply in lewis lung carcinoma in mice by fluorescent microsphere distribution and imaging with micro- and flat-panel computed tomography. Am J Pathol.2005,167:937-946.
    [1]Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ. Cancer statistics 2003. CA Cancer J Clin.2003;53:5-26.
    [2]Osaki T, Hanagiri T, Nakanishi R, et al. Bronchial arterial infusion is an effective therapeutic modality for centrally located early-stage lung cancer:results of a pilot study. Chest,1999,115(5): 1424-1428.
    [3]Takahashi H, Gi H, Tamachi Y, et al. Targeting therapy for lung cancer. Gan To Kagaku Ryoho, 1994,21(6):749-754.
    [4]Watanabe Y, Shimizu J, Murakami S, et al. Reappraisal of bronchial arterial infusion therapy for advanced lung cancer. Jpn J Surg,1990,20(1):27-35.
    [5]Tanaka N, Kuramitsu T, Uchisako H, et al. Clinical evaluation of bronchial artery infusion (BAI) in lung cancer. Gan To Kagaku Ryoho.1991,18(4):613-618.
    [6]Osaki T. Bronchial arterial infusion is an effective therapeutic modality for centrally located early-stage lung callcer. Chest,1999,115:1424.
    [7]陈方满,张东生,侯书法,等.介入治疗中晚期肺癌的疗效分析.放射学实践,2000,11:425.
    [8]Teng GJ, Chai XL, Gao GR. Intraarterial digital subtraction angiography in bronchogenic carcinoma treated with bronchial artery infusion. Eur J Radiol,1991,12:91.
    [9]Lee KS, Shim YM, Han J, et al. Primary tumors and mediastinal lymphnodes after neoadjuvant concurrent chemotherapy of lung cancer:Serial CT findings with pathological correlation. J Comput Assist Tomogr,2000,24:35.
    [10]苑静波,史金英,啜振华.中中晚期肺癌的介入治疗与全身静脉化疗疗效观察.实用肿瘤杂志,2005,20(4):339-341.
    [11]韩忠.中晚期肺癌两种不同化疗法治疗效果评价.中国热带医学,2006,6(8):1426-1427.
    [12 Shimizu E, Nakaura Y, Mukai J,et al. Pharmacokinetics of bronchial artery infusion of mitomycin in patients with non-small cell lung cancer.Eur J Cancer,1991,27:1046-1048.]
    [13]顾仰葵,吴沛宏,赵明,等.DDP在肺癌介入化疗和静脉化疗中药动学和毒副反应的比较研究.影像诊断与介入放射学,2003,12(1):30-32.
    [14]刘德忠,王德昌,李槐,等.施铂锭支气管动脉灌注的药代动力学研究.中华实用医学,2001,3(20):22-24.
    [15]隋因,刘宝庆,夏东亚,等.肺癌病人动脉灌注和静滴环磷酰胺、阿霉素及顺铂联合用药的药物动力学比较.中国医院药学杂志,1994,14(4):150-152.
    [16]王田蔚,杨海山,王华,等.原发性肺癌支气管动脉灌注阿霉素灌注化疗的药代动力学研究.中华肿瘤杂志,2001,23(5):395-398.
    [17]Hocht C, Opezzo JA, Taira CA. Microdialysis in drug discovery. Curr Drug Discov Technol, 2004,1(4):269-285.
    [18]Elmquist WF, Sawcuk RJ. Application of microdialysis in pharmacokinetic studies. Pharmaceutical Res,1997,1414(3):267-288.
    [19]Harald Herkner, Michael Rolf Muller, Nicole Kreischitz, et al. Closed-chest microdialysis to measure antibiotic penetration into human lung tissue. Am J Respir Crit Care Med,2002, 165;273-276.
    [20]Viamot MJr. Selective bronchial arteriography in man. Radiology,1964,83:830.
    [21]刘子江,许绍雄,韩希年,等.选择性支气管动脉灌注顺铂治疗不能手术的肺癌.中华放射学杂志,1987:4-7.
    [22]刘子江,周文群,袁建华,等.支气管动脉灌注抗癌药物治疗中晚期肺癌227例疗效观察.中华放射学杂志(增刊),1990,24:1-3.
    [23]Okada K, Suda T , Kito F, et al.The efficacy of semiselective intraarterial infusion therapy in advanced or recurrent gastric cancer.Gan To Kagaku Ryoho,1993,20(11):1661-1664.
    [24]Shimizu E, Nakaura Y, Mukai J, et al. Pharmacokinetics of bronchial artery infusion of mitomycin in patients with non-small cell lung cancer. Eur J Cancer,1991,27:1046-1048.
    [25]Hocht C, Opezzo JA, Taira CA. Microdialysis in drug discovery.Curr Drug Discov Technol, 2004,1(4):269-285.
    [26]De Lange E C, De Boer A G, Breimer D D. Methodological issues in microdialysis sampling for pharmacokinetic studies. Adv Drug Del Rev,2000,45:125-148.
    [27]Muller M, Mader RM, Steiner B, et al.5-Fluorouracil kinetics in the interstitial tumor space: clinical response in breast cancer patients. Cancer Res,1997,57:2598-2601.
    [28]Bahlmann L, Misfeld M, Klaus S, et al.Myocardial redox state during coronary artery bypass grafting assessed with microdialysis.Intensive Care Med,2004,30:889-894.
    [29]Nowak G, Ungerstedt J, Wernerman J, et al.Clinical experience in continuous graft monitoring with microdialysis early after liver transplantation.Br J Surg,2002,89:1169-1175.
    [30]Markus Zeitlinger, Markus Muller, Christian Joukhadar.Lung Microdialysis--A Powerful Tool for the Determination of Exogenous and Endogenous Compounds in the Lower Respiratory Tract (Mini-Review).The AAPS Journal,2005,7(3):600-608.
    [31]B.R.Grubb, J.H.Jones, R.C.Boucher.Mucociliary transport determined by in vivo microdialysis in the airways of normal and CF mice.Am J Physiol Lung Cell Mol Physiol,2004, 286:L588-L595.
    [32]Rittenhouse KD, Pollack GM. Microdialysis and drug delivery to the eye. Adv Drug Deliv Rev,2000,45(2-3):229-241.
    [33]Lunte CE, Scott DO.Sampling living system using microdialysis probe.Anal Chem,1991, 63(15):773A-780A.
    [34]张玉勤,张国玲,孙敏.介入化疗在阴道恶性肿瘤中的应用.肿瘤,2001,21:384—385.
    [35]Madajewicz S, Chowhan N, Tfayli A, et al. Therapy for patients with high grade astrocytoma using intraarterial chemotherapy and radiation therapy. Cancer,2000.88: 2350-2356.
    [36]Stefanini GF, Amorati P. Biselli M. et al. Efficacy of transarterial targeted treatments on Survival of patients with hepatocellular carcinoma. Cancer.1995,75:2427.2434.
    [37]Ishikawa H, Kikkawa F. Tamakoshi K, et al. Distribution of platinum in human gynecologic tissues and lymph nodes after intravenous and Intraarterial neoadjuvant chemo therapy. Anticancer Res,1996.16 (6B):3849—3853.
    [38]真炳攸,张云鹏,张留保,等.成人肺微血管研究.解剖学报,1990,21(3):233-238.
    [39]Clive Page. Principles of cell proliferation and chemotherapy. Integrated Pharmacology,2nd ed. London:Mosby,2002:167.
    [40]张玉勤,葛勇前,蔡树模等,动脉及静脉给药注射化疗药物的血浆及组织药物浓度变化特征.中华肿瘤杂志.2002,24:344-347.
    [41]曾峥,黄永文,李苏.卡铂经不同给药方式后在家犬体内药物浓度的实验研究.实用肿瘤杂志.2008,23:432-434;
    [1]Rose SC, Thistlethwaite PA, Sewell PE, et al. Lung cancer and radiofrequency ablation.J Vasc interv Radiol.2006; 17(6):927-51; quiz 951.
    [2]Dupuy DE,Zagoria RJ,Akerley W,et al.Percutaneous radiofrequency ablation of malignancies in the lung.AJR,2000;174:57-59.
    [3]程庆书,CT引导下锚状电极高温射频治疗肺部肿瘤.第四军医大学学报,2000;21(8):988.
    [4]Miao Y, Ni Y, Bosmans H, Yu J, et al. Radiofrequency ablation for eradication of renal tumor in a rabbit model by using a cooled—tip electrod e technique. Ann Surg Oncol,2001;8:651-657.
    [5]Nomori H, Imazu Y, Watanabe K. Radiofrequency Ablation of Pulmonary Tumors and Normal Lung Tissue in Swine and Rabbits.Chest.,2005;127:973-977
    [6]Lee JM, Kim SW, Li CA.Saline-Enhanced Radiofrequency Thermal Ablation of the Lung:A Feasibility Study in Rabbits. Korean J Radiol,2002;3:245-253.
    [7]Lee JM, Han JK,Chang JM,et al. Radiofrequency ablation in pig lungs:in vivo comparison of internally cooled, perfusion and multitined expandable electrodes.Br J Radiol. 2006;79(943):562-71.
    [8]Ahmed M, Liu ZJ, Afzal KS. Radiofrequency Ablation:Effect of Surrounding Tissue Composition on Coagulation Necrosis in a Canine Tumor Model. Radiology,2004;230:761-67.
    [9]Oshima F,Yamakado K,Akeboshi M,et al. Lung radiofrequency ablation with and without bronchial occlusion:experimental study in porcine lungs.J Vasc Interv Radiol.2004;15(12):1451-56.
    [10]Hiraki T, Gobara H,Sakurai J,et al. Radiofrequency ablation of normal lungs after pulmonary artery embolization with use of degradable starch microspheres:results in a porcine model.J Vasc Interv Radiol.2006;17(12):1991-98.
    [11]Anai H,Uchida BT,Pavcnik D,et al. Effects of blood flow and/or ventilation restriction on radiofrequency coagulation size in the lung:an experimental study in swine.Cardiovasc Intervent Radiol.2006;29(5):838-45.
    [12]Steinke K,Arnold C,Wulf S,et al. Safety of radiofrequency ablation of myocardium and lung adjacent to the heart:an animal study.J Surg Res.2003;114(2):140-45.
    [13]顾莹莹,陈国勤,刘慕嫦,等.多极针射频消融术治疗肺癌的临床病理及免疫组化研究.广州医学院学报,2002;30(4):47—49.
    [14]Hataji O,Yamakado K,Nakatsuka A, et al. Radiological and pathological correlation of lung malignant tumors treated with percutaneous radiofrequency ablation.Intern Med,2005; 44(8): 865-69.
    [15]Miao Y, Ni Y, Mulier S, YuJ, et al. Treatment of VX2 liver tumor in rabbits with "wet" electrode mediated radio-frequency ablation. Eur Radiol,2000; 10:188-194.
    [16]Goldberg SN, Gazelle GS, Solbiati L, et al. Ablation of liver tumors using percutaneous RF therapy.Am J Roentgenol.1998;170(4):1023-1028.
    [17]Mrowiet ZU. Advances in systemic therapy for psoriasis. Clin Exp Dermatol,2001; 26(4): 362-67.
    [18]张俊平,潘宏铭,方勇等,射频治疗对荷H22肝癌小鼠脾淋巴细胞免疫功能的影响.癌症.2006;25(1):34-39.
    [19]Hess A D, Thoburn C, Chen W, et al. The N-terminal flanking region of the invariant chain peptide augments the immunogenicity of a cryptic "self" epitope from a tumor--associated antigen. Clin Immunol,2001;101(1):67-76.
    [20]王建,王远东,赵建.射频治疗局部晚期非小细胞肺癌近远期疗效分析.国际医药卫生导报,2006;12(13):20-23.
    [21]Ambrogi MC, Lucchi M, Dini P,et al. Percutaneous radiofrequency ablation of lung tumours: results in the mid-term. Eur J Cardiothorac Surg,2006;30(1):177-83.
    [22]Steinke K, Glenn D, King J, et al.Percutaneous imaging-guided radiofrequency ablation in patients with colorectal pulmonary metastases:1-year followup.Ann Surg Oncol,2004; 11:207-212.
    [23]Akeboshi M, Yamakado K, Nakatsuka A,et al. Percutaneous radiofrequency ablation of lung neoplasms:initial therapeutic response. J Vasc Interv Radiol,2004; 15:463-470.
    [24]Yamakado K,Hase S, Matsuoka T, et al. Radiofrequency Ablation for the Treatment of Unresectable Lung Metastases in Patients with Colorectal Cancer:A Multicenter Study in Japan.J Vasc Interv Radiol.2007;18:393-398.
    [25]Iguchi T,Hiraki T,Gobara H,et al, Percutaneous radiofrequency ablation of lung tumors close to the heart or aorta:evaluation of safety and effectiveness. Journal of Vascular and Interventional Radiology.2007;18:733-740.
    [26]Dupuy DE, DiPetrillo T, Gandhi S,et al. Radiofrequency ablation followed by conventional radiotherapy for medically inoperable stage I non-small cell lung cancer. Chest,2006 Mar;129(3):738-45.
    [27]赵健,吴一龙,王远东等,放射加化疗联合射频治疗不能手术的非小细胞肺癌 中华放射肿瘤学杂志.2004,13(4):284-285。
    [28]Hiraki T, Sakurai J, Tsuda T et al. Risk factors for local progression after percutaneous radiofrequency ablation of lung tumors:evaluation based on a preliminary review of 342 tumors. Cancer,2006 15;107(12):2873-80.
    [29]Yan TD, King J, Sjarif A et al. Percutaneous radiofrequency ablation of pulmonary metastases from colorectal carcinoma:prognostic determinants for survival.Ann Surg Oncol.2006;13(11): 1529-1537.
    [30]Suh R, Reckamp K, Zeidler M,et al. Radiofrequency ablation in lung cancer:promising results in safety and efficacy. Oncology (Williston Park).2005;19(11 Suppl 4):12-21.
    [31]Simon CJ, Dupuy DE, DiPetrillo TA, et al. Pulmonary radiofrequency ablation:long-term safety and efficacy in 153 patients.Radiology.2007; 243(1):268-75.
    [32]Gadaleta C, Catino A, Mattioli V. Radiofrequency thermal ablation in the treatment of lung malignancies. In Vivo.2006; 20(6A):765-67.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700