用户名: 密码: 验证码:
RNAi抑制人胆囊癌VEGF基因表达及其对胆囊癌细胞生长与侵袭影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     原发性胆囊癌是胆道系统中占首位的恶性肿瘤,在消化道恶性肿瘤中占第5位。胆囊癌恶性程度极高,早期无特异表现,很多病人在诊断时已进展至晚期。胆囊癌治疗以手术治疗仅只有20%-30%的患者可以得到根治性切除,其对于化疗和放疗均不敏感。探索胆囊癌的基因治疗具有积极意义。
     实体肿瘤是血管依赖性病变,其生长、浸润和转移离不开血管生成。VEGF是目前已知肿瘤血管生成因子中直接刺激内皮细胞分裂增殖的血管内皮细胞有丝分裂原。
     VEGF的表达在胆囊癌大小、淋巴浸润各阶段有显著的不同。胆囊癌细胞分泌VEGF增加,除可以促进新生血管形成,还可以加速肿瘤演进。VEGF不但与胆囊癌的发生相关,还与胆囊癌浸润、转移及预后密切相关。针对VEGF抗胆囊癌血管形成的治疗研究具有重要意义。
     肿瘤治疗的关键是有效抑制VEGF基因表达。现在,可以下调VEGF基因表达的技术包括反义核酸技术、核酶技术以及RNA干扰技术。反义技术和核酶技术的基因抑制效果十分短暂、微弱,不适合长期研究基因功能。RNA干扰技术抑制效果强,持续时间长,技术流程简便,其表达非常稳定。
     本实验的基本思路是:通过构建针对人VEGF基因的shRNA干扰质粒载体,观察沉默VEGF基因对胆囊癌GBC-SD细胞生长和侵袭能力的影响;建立稳定转染shRNA-VEGF的细胞株,通过检测其VEGF受体表达变化,初步探讨VEGF与VEGF受体的相互作用;应用胆囊癌GBC-SD细胞株以及稳定转染细胞株分别建立胆囊癌的裸鼠移植瘤模型,观察各组细胞的成瘤能力。另一组动物实验中,向正常胆囊癌裸鼠移植瘤瘤内注射干扰质粒shRNA-VEGF2,观察其对裸鼠移植瘤VEGF基因表达的影响及对肿瘤的生长与血管生成的抑制作用,通过应用RNA干扰技术抑制胆囊癌VEGF基因表达从而抑制胆囊癌肿瘤生长与侵袭,为这一技术的临床应用提供实验和理论基础。
     目的:构建针对人胆囊癌VEGF基因的shRNA及其质粒表达载体。
     方法:设计针对人VEGF基因序列的4组寡核苷酸链模板,退火后与载体质粒pCY/U6/GFP/Neo连接,然后进行酶切鉴定和DNA序列测定。
     结果:酶切鉴定和DNA测序分析后,表明靶向VEGF的RNA干扰质粒载体构建成功。
     结论:成功构建针对人VEGF基因的shRNA表达载体pCY/U6/GFP/Neo-shRNA-VEGF。
     目的:将干扰质粒转染人胆囊癌细胞,观察其对VEGF基因沉默的效果,并采用荧光素酶报告基因验证RNA干扰位点的有效性。筛选出干扰效果最好的质粒并建立稳定转染细胞株。观察VEGF受体表达变化,初步探讨VEGF与VEGF受体之间的作用机制。
     方法:①干扰质粒转染胆囊癌GBC-SD细胞,分别采用半定量PCR、实时荧光定量PCR和Western印迹方法检测VEGF mRNA和蛋白表达情况,筛选出抑制靶基因表达效果最好的质粒;
     ②因RNA干扰可能存在“脱靶效应”,为验证RNA干扰位点的准确性,我们设计含有VEGF靶位点的引物,将其与荧光素酶报告基因载体退火连接,再将其与第一部分的干扰质粒共转染人胆囊癌细胞,观察荧光素酶活性变化,明确RNA干扰位点的有效性;
     ③将干扰效率最高的的表达质粒用来建立稳转细胞株。同时用NC表达质粒作为阴性对照稳转细胞株。经G418筛选,建立两个稳转细胞株,分别称为GBC-shV2和GBC-NC;
     ④采用实时荧光定量PCR检测稳定转染细胞株的三种VEGF受体(Flt-1、KDR、NRP-1)的mRNA表达变化情况,并加入外源性VEGF因子到稳转细胞株中,分别检测24,48,72小时VEGF受体的表达变化情况。初步探讨VEGF与其受体之间的作用机制。
     结果:干扰质粒转染胆囊癌GBC-SD细胞后,半定量PCR检测显示,shVEGF1、shVEGF2、shVEGF3、shVEGF4干扰质粒对靶基因mRNA表达都有抑制作用,其中shVEGF2干扰质粒抑制作用最明显,抑制率达64%,与空白对照组相比,具有明显差异(P<0.05);实时荧光定量PCR检测显示,shVEGF1、shVEGF2. shVEGF3干扰质粒对靶基因mRNA表达都有抑制作用,其中shVEGF2干扰质粒抑制作用最明显,抑制率达83%,与空白对照组相比,具有明显差异(P<0.05); Western blot方法检测各组细胞中VEGF蛋白表达水平显示,shVEGF1、shVEGF2干扰质粒对靶基因蛋白表达有抑制作用,其中shVEGF2干扰质粒抑制作用最明显,抑制率达92%,与空白对照组相比,具有明显差异(P<0.05)。可见shVEGF2干扰质粒对VEGF基因表达抑制最明显;
     ②通过荧光素酶报告基因验证实验,我们发现含有VEGF2靶位点的荧光素酶报告基因载体被shRNA-VEGF2成功干扰,与对照组比较,荧光素酶活性下降75%,有统计学意义(P<0.05);
     ③成功建立两个分别表达shRNA-VEGF2和NC质粒的稳转细胞株,分别命名为GBC-shV2和GBC-NC细胞。
     ④实时荧光定量PCR检测显示,相对于阴性稳转细胞株,GBC-shV2细胞株中的Flt-1与KDR受体表达分别下降28%和18%,而NRP-1受体表达升高47%。我们将外源性VEGF因子加入稳转细胞株中,检测Flt-1受体表达变化:相对于阴性稳转细胞株,24小时表达75%,48小时表达183%,72小时表达411%。可见,外源性VEGF因子加入后,Flt-1受体mNRA的表达呈明显上升的趋势。
     结论:①shRNA-VEGF2干扰质粒可以明显抑制人胆囊癌细胞VEGF基因mRNA和蛋白的表达;
     ②经荧光素酶报告基因实验证明RNA干扰的VEGF基因序列的靶位点是准确有效的;
     ③成功建立稳定表达shRNA-VEGF2质粒的细胞株;
     ④人胆囊癌GBC-SD细胞存在VEGF的受体(Flt-1、KDR、NRP-1);
     ⑤胆囊癌细胞VEGF蛋白可能存在自分泌机制;
     ⑥VEGF可能对其Flt-1受体的表达有诱导作用。
     目的:通过对前面试验得到的稳定转染细胞株进行相关的生物学实验,探讨沉默VEGF基因对人胆囊癌GBC-SD细胞生长、黏附、迁移运动及侵袭能力的影响。
     方法:本实验采用的细胞株分别是正常胆囊癌细胞株GBC-SD以及前面试验得到的稳定转染细胞株GBC-shV2和GBC-NC。在本部分实验中拟采用MTT法绘制胆囊癌细胞的生长曲线;通过肿瘤细胞与细胞基质黏附实验以及肿瘤细胞与内皮细胞黏附实验,测定细胞不同吸光度值,评估胆囊癌细胞黏附能力变化;通过肿瘤细胞迁移运动实验,对比肿瘤细胞不同的迁移距离,评估胆囊癌细胞迁移运动能力变化;通过Transwell小室侵袭实验法,计算穿透膜的细胞数,评估胆囊癌细胞侵袭能力变化。
     结果:①从生长曲线看,GBC-shV2细胞与GBC-SD细胞相比,增殖生长明显变慢,细胞活力下降明显,达36%,差异有统计学意义(p<0.05)。而GBC-NC细胞的生长速度和GBC-SD没有区别(p>0.05);
     ②与GBC-SD细胞相比,GBC-shV2细胞与细胞外基质黏附率明显下降,达55%(p<0.05),与内皮细胞黏附率明显下降,达60%(p<0.05),而GBC-NC细胞与细胞外基质和内皮细胞的黏附率与GBC-SD细胞相比没有明显区别(p>0.05);
     ③与GBC-SD细胞相比,GBC-shV2细胞迁移运动距离明显减少,达61%(p<0.05),而GBC-NC细胞与与GBC-SD细胞相比没有明显区别(p>0.05);
     ④与GBC-SD细胞相比,GBC-shV2细胞穿透膜的细胞数明显减少,减少达51%(p<0.05),而GBC-NC细胞与与GBC-SD细胞相比没有明显区别(p>0.05)。
     结论:shRNA-VEGF干扰质粒能抑制胆囊癌细胞生长,可能使胆囊癌细胞的黏附,迁移运动以及侵袭能力降低。
     目的:应用胆囊癌GBC-SD细胞及稳转细胞株分别建立裸鼠移植瘤模型,观察其成瘤能力变化;瘤内注射重组质粒shRNA-VEGF2,观察对其裸鼠移植瘤VEGF基因表达的影响以及对肿瘤的生长与血管生成的抑制作用。
     方法:本实验分为裸鼠成瘤实验与荷瘤裸鼠治疗实验两部分。
     裸鼠成瘤实验:分别将GBC-SD, GBC-shV2, GBC-NC细胞建立裸鼠移植瘤模型,观察其成瘤时间,成瘤率,肿瘤体积变化,绘制生长曲线。
     荷瘤裸鼠治疗实验:首先建立正常胆囊癌GBC-SD细胞裸鼠异位移植瘤。分别将不同试剂(干扰质粒,空白质粒,培养液,转染试剂)多点多次注射入瘤内,观察肿瘤体积变化。
     动物实验结束后,进行肿瘤组织免疫组化检测。分别测定VEGF蛋白的积分光密度(IOD)与组织微血管密度(MVD)。
     结果:①裸鼠成瘤实验:GBC-shV2细胞成瘤时间在12.7天,成瘤率67%,肿瘤体积抑制率70%。GBC-shV2细胞组肿瘤组织无明显出血及坏死,肿瘤与周围组织粘连较松,易剥离;相对于GBC-SD细胞组,GBC-shV2组肿瘤组织VEGF蛋白的IOD值下降59%(p<0.05),MVD值下降64%(p<0.05)。
     ②荷瘤裸鼠治疗实验:与注射培养液组(A组)相比较,注射shRNA-VEGF2质粒组(D组)的肿瘤体积明显减小,体积抑制率为45%;与A组比较,D组肿瘤组织VEGF的IOD值下降50%(p<0.05),MVD值下降59%(p<0.05)。
     结论:针对人胆囊癌GBC-SD细胞VEGF基因的RNA干扰技术可以显著抑制胆囊癌移植瘤中VEGF基因的表达,可以明显抑制胆囊癌移植瘤中的新生血管生成,从而间接抑制胆囊癌移植瘤的生长。
     目的:以VEGF-A的生物序列为基础,对其进行生物信息学分析。
     方法:首先以Phylip和Treeview软件绘制该VEGF-A系统进化树;以ExPASY网站提供的生物信息学分析模块和分析软件对VEGF-A的理化性质进行分析;预测VEGF-A的二级结构;使用ExPASy网站上SWISSMODEL模块进行VEGF-A蛋白的三级结构预测,使用STRING网站上Protein-Protein Interactions模块进行VEGF-A蛋白的四级结构(蛋白质相互作用)预测分析。
     结果:①从VEGF-A系统进化树可以看出,斑马鱼分支起源最早,然后依次是狗,马,猪等分支,人VEGF-A的进化发源得比较晚;
     ②VEGF-A蛋白所带总负电荷残基数为2,所带总正电荷残基数为37,VEGF-A的等电点分别是12.38和12.9,这说明VEGF-A是一种带正电的蛋白质。VEGF-A蛋白的亲水指数为-0.605,这说明VEGF-A蛋白是一种疏水性的蛋白质。VEGF-A的不稳定指数为31.26,可以看出VEGF是比较稳定蛋白;
     ③GOR4、HNN、SOPMA三种方法预测的二级结构都认为第55-60、65-70、98-108位等区域可能是VEGF-A的功能结构域。分析VEGF-A的亲水性、极性以及折返系数可以发现,第6-12、55-65、132-138、150-157位等区域可能是VEGF-A的功能结构域。与VEGFA有相互作用联系的蛋白质有十种,分别是Flt-1,KDR,NRP-1,NRP-2,免疫球蛋白K轻链基因片段C区,Src,N0S3, ARNT, VTN, HIF1A。
     结论:VEGF-A蛋白是一种带正电荷的稳定的疏水性蛋白。第55-60位区域可能是VEGF-A的功能结构域。
Primary gallbladder carcinoma ranked first in malignant tumors of biliary system,and ranked fifth in malignant tumors of digestive tract. The degree of malignancy of gallbladder carcinoma is very high. Because of the early non-specific clinical manifestations, many patients at the time of diagnosis has progressed to the late, and 5-year survival rate of stage III and IV patients is only 1% and 5%. The 5-year survival rate of gallbladder cancer in United States and Europe is only 5% -13%. The main treatment for gallbladder carcinoma is surgery, but only 20%-30% of patients can be radical resection. The fact that chemotherapy and radiotherapy for gallbladder carcinoma are not sensitive has brought great difficulties to the clinical treatment for gallbladder carcinoma. It is important to explore new therapy.
     Solid tumor is vascular-dependent, and the tumor growth, invasion and metastasis can not be separated from angiogenesis. Tumor angiogenesis is a key factor in tumor growth. Among all tumor angiogenesis factors, only VEGF is highly specific vascular endothelial cell mitogen which directly stimulated endothelial cell division and proliferation.
     VEGF was highly expressed in gallbladder carcinoma. VEGF expression is different in gallbladder size, lymph node infiltration in various stages. VEGF participates in not only the occurrence of gallbladder carcinoma, but also the invasion, metastasis. The anti-angiogenic treatment targeting VEGF is very important.
     How to effectively inhibit VEGF gene expression is the key factort of cancer treatment. The way of inhibiting VEGF gene expression includes:antisense nucleic acid technology, ribozyme technology, and RNA interference technology. The gene suppression effect of antisense technology and ribozyme technology is very short and weak, which is not suitable for long-term study of gene function. The RNAi technology is far superior to them in suppressing specific gene expression. It has strong inhibitory effect, simple technical process, short-cycle, stability, efficiency and other unique advantages.
     The plan of this experiment is:we observe the impact of VEGF gene silencing on growth and invasion of gallbladder carcinoma GBC-SD cell line; we use the gallbladder carcinoma GBC-SD cells to establish nude mice xenograft model and observe the change of VEGF expression after intratumoral injection of recombinant plasmid shRNA-VEGF2 in xenografts in nude mice and effects on tumor growth and angiogenesis in order to provide experimental and theoretical basis for the clinical development and application of cancer treatment.
     Objective:To construct VEGF-targeted small interfering RNA and its expression vector
     Methods:Complementary oligo DNA strands targeting VEGF gene were designed and synthesized according to the principles of designing siRNA. After annealing, oligo DNAs were inserted into pCY/U6/GFP/Neo vector, then enzyme digestion analysis and DNA suquencillg were performed.
     Results:The enzyme digestion analysis and DNA sequencing showed that VEGF-targeted small interfering RNA and its expression vector were constructed successfully.
     Conclusion:VEGF-targeted small interfering RNA and its expression vectors were constructed successfully.
     Objective:To observe the impact of VEGF-targeted shRNA on the expressions of VEGF. Luciferase reporter gene was used to verify the validity of RNA interference sites. We choose the best plasmid to establish a stable transfected cell line. We observed the expression of VEGF receptors, and study the mechanism of action between VEGF and VEGF receptors.
     Methods:①In order to determine the inhibiting effect of VEGF, we use semi-quantitative PCR, real-time PCR and Western blot to detect VEGF mRNA and protein expression.
     ②We design primers containing the VEGF target sites, make it connected with the luciferase reporter gene vector. The recombinant vector and the vectors of chapter I were transfected into human gallbladder carcinoma cells to observe the changes of luciferase activity, and to verify the validity of RNA interference sites.
     ③We use the shRNA-VEGF2 plasmid and NC plasmid to establish stable transfected cell lines by G418 selection.
     ④The mRNA expressions of the three VEGF receptors (Flt-1, KDR, NRP-1) are detected by real-time PCR. Then we added VEGF into the cell line and detecte the mRNA expressions of Flt-1 at 24,48,72 hours in order to study the mechanism between VEGF and of its receptors.
     Results:①shVEGF1, shVEGF2, shVEGF3, shVEGF4 interfering vectors all inhibit VEGF mRNA expression and the inhibition rate of shVEGF2 is 64%. Detected by real-time PCR,the inhibition rate of shVEGF2 is 83%. The inhibition rate of VEGF protein of shVEGF2 is 92% detected by western blotting.
     ②Luciferase reporter gene through In the verification experiment, we found luciferase activity decreased 75% which imply that the target site is accurate;
     ③We successfully establish two stable transfected cell lines, named GBC-shV2 and GBC-NC cells.
     ④Expression of Flt-1 and KDR receptors in GBC-shV2 cell lines decreased 28% and 18%, while expression of NRP-1 receptor increased 47%. When added VEGF into the cell line, the expression of Flt-1 is 75%, 183% and 411% at 24,48 and 72 hours respectively. We can concluded that the expression of Flt-1 increased significantly with the VEGF.
     Conclusion:①shVEGF2 can inhibit expression of VEGF in human gallbladder carcinoma GBC-SD cells;
     ②The luciferase reporter gene experiments show that the RNA interference target site is accurate and valid;
     ③We established stable transfected cell lines which express shVEGF2 plasmid;
     ④There are VEGF receptors (Flt-1, KDR, NRP-1) in human gallbladder carcinoma GBC-SD cells;
     ⑤There is VEGF autocrine mechanism in human gallbladder carcinoma GBC-SD cells;
     ⑥VEGF can induce expression of Flt-1 receptor.
     Objective:To study the effects of VEGF gene silencing on capacity of growth, adhesion, migration, and invasion of human gallbladder carcinoma GBC-SD cells.
     Methods:In this part, we draw the cell growth curve using MTT method; To assess the adhesion ability through adhesion experiments; To assess the migration ability through migration experiments; To assess the invasion ability through Transwell chamber invasion assay.
     Results:①Compared with GBC-SD cells, the cell viability decreased significantly, reaching 36%, and the difference was statistically significant (p<0.05). There is no difference between the GBC-NC cells and GBC-SD cells.
     ②Compared with GBC-SD cells, the cell's adhesion ability decreased significantly, reaching 55%, and the difference was statistically significant (p<0.05). There is no difference between the GBC-NC cells and GBC-SD cells.
     ③Compared with GBC-SD cells, the cell's migration ability decreased significantly, reaching 61%, and the difference was statistically significant (p<0.05). There is no difference between the GBC-NC cells and GBC-SD cells (p<0.05)
     ④Compared with GBC-SD cells, the cell's invasion ability decreased significantly, reaching 51%, and the difference was statistically significant (p<0.05). There is no difference between the GBC-NC cells and GBC-SD cells (p<0.05)
     Conclusion:shRNA-VEGF interfering plasmid significantly inhibited the, cell, and ability of gallbladder cancer cells. In vitro, it validate that the VEGF gene can be a good therapeutic target.
     Objective:We use the GBC-SD, GBC-NC and GBC-shV2 cells to established mice xenograft models to observe the change of tumorigenic capacity; We intratumoral inject recombinant plasmid shRNA-VEGF2 into the tumors to observe the VEGF expression in tumor tissue and the change of tumor growth and angiogenesis.
     Methods:In this study, the experiment were divided into two parts: tumor formation experiment and treatment of tumor-bearing mice experiment.
     ①Tumor formation experiment:18 health nude mice were randomly divided into three groups of six. The GBC-SD, GBC-NC and GBC-shV2 cells are injected into the nude mice to establish mice xenograft models. We observe tumor formation time, rate of tumor formation, change of tumor volume, and draw the growth curve.
     ②Treatment of tumor-bearing mice experiment:24 healthy nude mice were randomly divided into four groups of six. When the xenograft models are established, we inject different 200ul reagents into the tumors: group A:liposome; group B:RPMI1640; group C:empty plasmid and liposome; group D:shRNA-VEGF2 plasmid and liposome.
     After the animal experiments, we remove the tumor from the mice and take it for VEGF and CD34 immunohistochemistry. We use the computer-assisted image analysis system to analyze IOD and MVD to assess the expression of VEGF and angiogenesis in tumor tissue.
     Results:①Tumor formation experiment:The tumor formation rate of GBC-shV2 group is 67%, and the tumor volume inhibition rate is 70%. Compared with GBC-SD cells, the IOD value of VEGF decrease 59% and the MVD value decrease 64%. There is no difference between the GBC-NC group and GBC-SD group.
     ②Treatment of tumor-bearing mice experiment:The tumor volume inhibition rate of group D is 45%. Compared with group A, the IOD value of VEGF of group D decrease 50% and the MVD value decrease 59%. There is no difference between the group A、B and C.
     Conclusion:RNA interference can inhibit the expression of VEGF in tumor tissue of gallbladder carcinoma. VEGF silencing can inhibit gallbladder carcinoma cell growth and angiogenesis.
     Objective:Making bioinformatics analysis with VEGF-A biological sequences to obtain the structure and function-related information.
     Methods:First of all, we draw phylogenetic trees of VEGF-A by Phylip and Treeview software; Then, analyze the amino acid composition, isoelectric point, the signal peptide cleavage point and the titration curve of VEGF-A by Anthprot bioinformatics analysis software and ExPASY website; We predict the secondary structure of VEGF-A by GOR4, HNN, SOPMA methods and analyze hydrophilicity, polarity, and return coefficient by ExPASY website; Finally, these results are compared and analyzed. We predict the tertiary and fourth structure of VEGF-A by STRING website.
     Results:①we can see from the phylogenetic tree that:zebra fish is the origin of the first branch, followed by dogs, horses, pigs and other branches;②VEGF is a positively charged, hydrophobic and stable proteins;③GOR4, HNN, SOPMA predict the secondary structures that the 55-60,65-70,98-108 regions may be VEGF-A function domain. Analysis of VEGF A hydrophilicity, polarity, and return coefficient can be found, the 6-12,55-65,132-138,150-157 regions may be VEGFA function of the regional domain. There are ten interacting proteins associated with VEGF:Flt-1, KDR, NRP-1, NRP-2, HIF1A, Immunoglobulin Kappa light chain C gene segment, SRC, NOS3, ARNT, VTN.
     Conclusion:VEGF is a positively charged, hydrophobic and stable proteins. The 55-60 regions may be VEGF-A functional domain。
引文
[1]Misra S,Chaturvedi A,Misra NC,et al. Carcinoma of the gallbladder. Lancet Oncol.2003; 4:167-176.
    [2]Donohue J.H.,Stewart A.K.,Menck H.R.The National Cancer Data Base report on carcinoma of the gallbladder,1989-1995. Cancer,1998,83:2618-2628;
    [3]Albores-Saavedra J,Alcantra-Vazquez A,Cruz-Ortiz H,et al.The precursor lesions of invasive gallbladder carcinoma,Hyperplasia, atypical hyperplasia and carcinoma in situ. Cancer,1980,45:919-927
    [4]Fong Y,Jarnagin W, Blumgart LH. Gallbladder cancer:comparison of patients presenting initially for definitive operation with those presenting after prior no curative intervention. Ann Surg 2000; 232:557-5692
    [5]Cubertafond PA, Cucchiaro G. Surgical treatment of 724 carcinomas of the gallbladder. Results of the Franch Surgical Association Survey. Ann Surg 1994;219:275-280
    [6]Todoroki T. Chemotherapy for gallbladder carcinoma-a surgeon's perspective. Hepatogastroenterology 2000;47:948-955
    [7]Takada T, Amano H, Yasuda H, et al. Is postoperative adjuvant chemotherapy useful for gallbladder cancer? Cancer,2002,95:1685-1695
    [8]Ishii H, Furuse J, Yonemoto N,et al. Chemotherapy in the treatment of advanced gallbladder cancer. Oncology 2004; 66:138-142
    [9]Houry S,Barrier A,Huguier M.Irradiation therapy for gallbladder carcinoma: recent advances. J Hepatobiliary Pancreat Surg 2001; 8:518-524
    [10]Kresl JJ, Schild SE, Henning GT, et al. Adjuvant external beam radiation therapy with concurrent chemotherapy in the treatment of gallbladder carcinoma. Int J Radiat Oncol Biol Phys,2002,52:167-175
    [11]Folkman J.Angiogenesis and apoptosis. Semin Cancer Biol,2003,13 (2) 159-167.
    [12]George D,Yancopoulos,Samuel Davis, et al.Vascular-specific growth factors and blood vessel formation. Nature,2000,407(6801):242-248
    [13]Leung DW, Cachianes G, Kuang WJ,etal. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science,1989,246 (4935):1306-1309
    [14]李海军.VEGF反义寡核苷酸转染对胆囊癌肿瘤血管生成影响的研究:[博士学位论文].杭州:浙江大学,2005
    [15]周健国.血管内皮生长因子(VEGF)在原发性胆囊癌中表达及意义:[硕士学位论文].沈阳:中国医科大学,2000
    [16]庞作良,李海军,张国庆等。血管内皮生长因子及其受体Flt-1和KDR在原发性胆囊癌的表达及其与临床病理特征的关系中华实验外科杂志,2006,23(1):63-65
    [17]Jeffries AC,Symons RH,Jeffries AC, etal. A catalytic 13-mer ribozyme. Nucleic Acids Res 1989,17 (4):1371-1377.
    [18]Haseloff and W.L. Gerlach. Simple RNA enzymes with new and highly specific endoribonuclease activities, Nature,1988,334:585-591
    [19]Im SA, Kin JS, Gomez Manzano C, etal. Inhibition of breast cancer growth in vivo by antiangiogenesis gene therapy with adenovirus-Mediated antisense-VEGF. Br J Cancer,2001,84(9):1252-1257
    [20]Fire A, Xu S, Montgomery MK, etal. Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature,1998,391:806-811.
    [21]Couzin j. Breakthrough of the year:small RNAs make big splash. Science,2002,298(5602):2296-2297.
    [22]http://nobelprize.org/nobel_prizes/medicine/laureates/2006/announcement.html
    [23]Elbashir SM,Harbotrh J,Lendeckel W,et al.Duplexes of 21 nuclecbied RNAs mediate RNA interference incultured mammalian cells Nature,2001,411:494-498.
    [24]Micura R. Small interfering RNAs and their chemical synthesis. Angew chem Int Ed Eng,2002,41(13):2265-2269.
    [25]Donze O, Picard D. RNA interference in mammalian cells using siRNA synthesized with T7 RNApolymerase. Nucleic Acids Res,2002,30(10):46.
    [26]Myers JW,Jones JT,Meyer T, et al. Recombinant Dicer efficiently converts large dsRNA into siRNAs suitable for gene silencing. Nat Biotechnol,2003, 21(3):324-328.
    [27]Brummelkamp TR,Bernards R,Agami RA.System for stable expression of short interfering RNAs in mammalian cells.Science,2002,296(5567):550-553.
    [28]Paul CP, Good PD, Winer I et al. Effective expression of small interfering RNA in human cells.Nature Biotechnology,2002,20(5):505-508
    [29]Castanotto D,Li H,Rossi JJ. Functional siRNA expression from transfected PCR products.,2002,8:1454-1460.
    [30]Paddison PJ, Caudy AA, Bemstein E, et al. Short hairpin RNAs (shRNAs) induce sequence-specific silencing in mammalian cells. Genes Dev,2002,16: 948-958
    [31]Liu F, He Chw, Zhang YF, et al. RNA interference by expression of short hairpinRNAs suppresses bcl-xL gene expression in nasopharyngeal carcinoma cells. Acta Pharmacol Sin,2005,26(2):228.234.
    [32]Lee NS, DohjimaT, Bauer G, et al. Expression of smallinter-fering RNAs targeted against HIV-1 revtranscripts in human cells. Nature Biotechnology, 2002,20(5):500-505.
    [33]邹声泉,张林.全国胆囊癌临床流行病学调查报告.中国实用外科杂志,2000,20(1):43-46.
    [34]曲维恺,王宇.肿瘤血管生成及抗肿瘤血管生成治疗实体肿瘤的研究进展.中国实用外科杂志,2000,20(8):492-493
    [35]张平.肿瘤血管生成评估.肿瘤防治研究,2001,28(1):70-72
    [36]赵改平,许世雄,陈二云.实体肿瘤血管生成和肿瘤生长的耦合研究.力学季刊,2008,29(4):622-626
    [37]McNamara DA, Harmcy JH, Walsh TN,et al. Significance of angingenesis in cancer therapy. Br J Surg.1998; 85:1044-1055.
    [38]Bussolino F, Mantovani A, Persico G, et al. Molecular Mechanisms of blood vessel formation. Trends Biochem Sci.1997; 22:251-256.
    [39]Harmey JH, Dimitriadis E, Kay E, et al. Regulation of macrophnge production of vascular endothelial growth factor (VEGF) by hypoxia and transforming growth factor beta-1. Ann Surg Oncol,1998; 5:271-278.
    [40]刘丹,陶泽璋,陈始明.RNA干扰hTERT基因治疗喉鳞状细胞癌的实验研究.中国肿瘤临床,2005,32(20):1182-1186
    [41]谢明,邬力祥.血管内皮生长因子基因沉默抑制人胶质瘤裸鼠移植瘤生长及血管生成的研究.中华实验外科杂志,2009,26(11):1496-1498
    [42]刘靖,鲍依稀,刘明学.RNA干扰enolase-1基因治疗胃癌的实验研究.中国肿瘤临床,2008,35(8):455-462
    [43]梅玫,任玉,周旋RNAi抑制PI3Kp85 α蛋白活性对人乳腺癌细胞系MCF-7生长抑制的体外研究.中国肿瘤临床,2009,36(23):1360-1364
    [44]张鹏辉,涂植光,杨明清.RNA干扰技术靶向hTERT基因治疗肝癌的实验研究.癌症,2004,23(6):619-625
    [45]Mcmanus M. T. and Sharp PA. Gene silencing in mammals by small interfering RNAs, Nat Rev Genet.2002,3(10):737-747
    [46]陈杰,白春学,张敏.RNA干扰技术在哺乳动物中的应用.生物化学与生物物理进展,2003,30(4):650-654
    [47]章清华,方佩华siRNA体内导入策略.天津医药,2009,37(5):424-426
    [48]房宝英,何冬梅,张洹siRNA及其导入体内外方法的研究进展.国际病理科学与临床杂志,2007,27(1):44-47
    [49]倪春,张才全siRNA分子选择性的导入靶组织细胞的方法.重庆医学.2007,36(24):2572-2574
    [50]石松生,杨卫忠,陈春美.一氧化氮合酶反义RNA重组腺相关病毒载体体内抑制脑缺血神经细胞凋亡的研究.中华实验外科杂志,2008,25(4):471-473
    [51]郑钧丰,四种病毒载体对人成纤维细胞转染效率的研究:[硕士学位论文].重庆:重庆第三军医大学,2008
    [52]戴智勤,朱为.细菌载体技术研究进展.国际生物制品学杂志,2005,28(1):14-17
    [53]李贺,孟庆文,吕平.细菌载体技术研究进展.动物医学进展,2006,27:40-43
    [54]王翔,胡治平,周为军.转化生长因子-β1基因RNAi质粒载体的构建与鉴定.西安交通大学学报(医学版),2009,30(1):22-26.
    [55]侯立男,IL-15真核表达质粒载体的构建及实验研究:[硕士学位论文].天津:天津医科大学,2008
    [56]高川,朱旭东,周晓巍.以新霉素抗性基因突变体为筛选标志的真核表达载体的构建.生物工程学报,2002,18(3):308-312
    [57]刘默芳,王恩多.绿色荧光蛋白.生物化学与生物物理进展,2000,27(3):238-243.
    [58].陈永井,施勤,徐宽枫LacZ基因在哺乳动物细胞中的稳定表达及其检测方法.苏州大学学报(医学版),2002,22(6):641-643
    [59]陈晨,陈始明,陶泽璋。RNA干扰非特异性研究进展。生物技术通报,2009,7: 27-30
    [60]刘丹,陶泽璋,肖伯奎.短发夹RNA沉默hTERT基因对人喉癌裸鼠移植瘤的生长抑制作用.癌症,200625(1):11-16
    [61]李冬斌,郑志刚,许香梅.短发夹RNA对胰腺癌细胞PANC-1突变型K-ras基因表达的影响.世界华人消化杂志,200816(35):3941-3945.
    [62]张靖,付彦超,康春生.腺病毒介导的靶向P85和Aktl短发夹RNA对人胃腺癌细胞生长抑制作用的研究.中华内科杂志,200948(7):557-561
    [63]遇玲,李名扬,郭余龙.RNA干扰机理与应用.安徽农业科学,2009 37(7):2870-2872
    [64]Dias S, Hattori K, Heissig B, et al. Inhibition of both paracrine and autocrine VEGF/VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci U S A,2001, 98(19):10857-10862.
    [65]Robinson CJ, Stringer SE. The splice variants of vascular endothelial growth factor(VEGF) and their receptors. J Cell Sci 2001;114:853-865.
    [66]Tian X, Song S, Wu J, Shou C, et al. Vascular endothelial growth factor, acting as an autocrine growth factor for human gastric adenocarcinoma cell MGC803. 2001
    [67]Damiano V, Melisi D, Bianco C, et al. Cooperative antitumor effect of multitargeted kinase inhibitor ZD6474 and ionizing radiation in glioblastoma. Clin Cancer Res,2005, 11(15):5639-5644
    [68]Hanahan D, Folkman J. Patterns and emerging mechanisms of angiogenic switch during tumor genesis Cell,1996,353-364.
    [69]何小伟,刘颖斌,彭淑牖.胆囊癌转移相关基因筛选.浙江临床医学,2006,10:1038-1039
    [70]何小伟,胆囊癌转移机制研究.[博士后学位论文].杭州:浙江大学,2005
    [71]锁涛,童赛雄,秦新裕.胆囊癌细胞运动侵袭相关基因的筛选.中华实验外科杂志,2006,23(8):926-927
    [72]李力,王丽梅,张玮.血管内皮生长因子介导的卵巢恶性肿瘤浸润生长的实验研究/肿瘤防治研究,2004 31(11):667-670
    [73]左衍海,施鑫.恶性肿瘤转移机制研究新进展.医学研究生学报,2008,21(3):293-297
    [74]梁静,阚志超,韩涛.恶性肿瘤转移机制及分子基础.武警医学院学报,2004 13(1):53-56
    [75]张海霞,方芸,葛卫红.四氮唑盐法肿瘤药敏试验及应用.中国医院药学杂志,2005 25(7):663-664
    [76]Takei Y, Kadomatsu K, Yuzawa Y, et al. A small interfering RNA targeting vascular endothelial growth factor as cancer therapeutics. Cancer research, 2004,64(10):3365-3370.
    [77]Bachelder RE, Crago A, Chung J, et al. Vascular endothelial growth factor is an autocrine survival factor for neuropilin-expressing breast carcinoma cells. Cancer research,2001,61(15):5736-5740.
    [78]Zhang L, Yang N, Garcia JR, et al. Generation of a syngeneic mouse model to study the effects of vascular endothelial growth factor in ovarian carcinoma. The American journal of pathology,2002,161(6):2295-2309.
    [79]Fan XH, Han BH, Dong QG, et al. Vascular endothelial growth factor inhibits dendritic cells from patients with non-small cell lung carcinoma. Zhonghua Jie He He Hu Xi Za Zhi JT,2003,26(9):539-543.
    [80]Schoeffner DJ, Matheny SL, Akahane T, et al. VEGF contributes to mammary tumor growth in transgenic mice through paracrine and autocrine mechanisms. Laboratory investigation,2005,85(5):608-623.
    [81]Price DJ, Miralem T, Jiang S, et al. Role of vascular endothelial growth factor in the stimulation of cellular invasion and signaling of breast cancer cells. Cell Growth Differ,2001,12(3):129-35.
    [82]Lim JH, Lee ES, You HJ, et al. Ras-dependent induction of HIF-lalpha785 via the Raf/MEK/ERK pathway:a novel mechanism of Ras-mediated tumor promotion. Oncogene,2004,23(58):9427-9431.
    [83]牛纪晓,张文健,叶丽亚.黏附分子αvβ3和αvβ5介导肿瘤细胞与肿瘤内皮细胞的黏附.中华肿瘤杂志,2008 30(3):165-169
    [84]Dias S, Hattori K, Zhu ZP, et al. Autocrine stinmlation of VEGFR-2 activates hunmn leukemic cell growth and migration. J Clin Invest,2000,106:511-521.
    [85]Dias S, Choy M, Alitalo K, et al. VEGF(165)promotes smwival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood,2002,99:2179-2184.
    [86]周云飞,张爱华,刘文虎Transwell模拟生物屏障.北京生物医学工程,2009,6:657-660
    [87]张凌志,邸菁,王运杰Transwell小室筛选高侵袭性C6细胞MMP-2和TIMP-2的表达.中华肿瘤防治杂志,2005,10:742-745
    [88]Dias S, Hattori K, Heissig B, el al. Inhibition of both paracrine and autocrine VEGF/VEGFR-2 signaling pathways is essential to induce long-tem remission of xenotransplanted human leukemias. Proc Natl Acad Sci USA,2001:98: 10857-10862
    [89]Weidner N. Current pathologic methods for measuring intratumoral microvessel density with breast carcinoma and other solid Tumors.Breast Cancer Res Treat,1995;36:169-180
    [90]夏一忠,通过原位移植建立人肿瘤裸鼠转移模型建立高转移细胞株.[硕士学位论文].西安:第二军医大学,2007.
    [91]朱华,冼丽萍,张玉萌.人胃癌裸鼠移植瘤转移模型的研究概况.科学技术与工程,2007,7(23):6031-6034
    [92]孟令新李强薛英杰,人胰腺癌细胞系MIA PaCa-Ⅱ神经侵袭原位移植瘤动物模型的建立.中华肝胆外科杂志,2009,15(3):217-220
    [93]Schalken JA, van Moorselaar RJ, Bringuier PP, et al. Critical review of the models to study the biologic progression of bladder cancer. Semin Surg Oncol, 1992,8(5):274-278.
    [94]常新忠.胆囊癌裸鼠原位模型的建立、单克隆细胞株的分离及双自杀基因体内外杀伤作用的研究:[博士学位论文].济南:山东大学,2004
    [95]童洪飞.胆囊癌肝脏侵袭和转移动物模型的建立和初步评估外科学:[硕士学位论文].上海:复旦大学,2002
    [96]De Souza, AT; Dai, XD; Spencer, AG; Transcriptional and phenotypic comparisons of Ppara knockout and siRNA knockdown mice Nucleic Acids Res.2006,34(16):4486-4494.
    [97]Sumimoto H, Miyagishi M, Miyoshi H, et al. Inhibition of growth and invasive ability of melanoma by inactivation of mutated BRAF with lentivirus-mediated RNA interference. Oncogene,2004,23(36):6031-6039.
    [98]Li CX, Parker A, Menocal E, et al. Delivery of RNA Interference. Cell Cycle,2006,5(18):2103-2109.
    [99]Soutschek J, Aldnc A, Bramlage B, et al. Therapeutic silencing of all endogenous gene by systemic administration of modified siRNAs. Nature,2004, 432(7014):173-178.
    [100]Lakka SS, Gondi CS, Yanamandra N, et al. Inhibition of cathepsin Band MMP-9 gene expression in glioblastoma cell line via RNA interference reduces tumor cell invasion, tumor growth and angiogenesis. Oncogene,2004, 23(27):4681-4689.
    [101]Landen CN Jr, Chavez-Reyes A, Bucana C, et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res,2005,65(15):6910-6918.
    [102]蔡克波,沈泽民VEGF家族及其受体与新生血管生成.医学综述,2002,8(2):70-72
    [103]杨芙蓉,张红雨,原始蛋白结构与功能研究进展.山东理工大学学报(自然科学版),2008,22(4):100-103
    [104]李占潮,基于氨基酸序列信息的蛋白质结构与功能预测研究分析化学:[博士学位论文].广州:中山大学,2009
    [105]徐建华,朱家勇.生物信息学在蛋白质结构与功能预测中的应用.医学分子生物学杂志,2005,2(3):227-232
    [106]杨咏梅,曲迅,曹玉美.生物信息学在医学研究中的应用进展.医学综述,2007,13(22):1681-1683
    [107]黄国韦,余海兵,刘小兴.生物信息学在药物开发中的应用.天津药学,2006,18(2):60-63
    [108]郑珂晖.生物信息学的背景、现状及前景.农业网络信息.2005,(2):4-7.
    [109]吴霞,蛋白质序列比较中的图形表示及其相似性分析,计算数学,[硕士学位论文].大连:大连理工大学,2004
    [110]符克强,生物信息学中序列比较的一些问题及其算法.应用数学,[硕士学位论文].广州:华南理工大学,2003
    [111]李菁,蛋白质序列复杂性简化与序列分析.凝聚态物理.[博士学位论文].南京:南京大学,2006
    [112]Neuropilin-2-mediated tumor growth and angiogenesis in pancreatic adenocarcinoma Dallas,NA; Gray,MJ; Xia,L Clinical cancer research 2008vol.14(no.24) 155-117
    [113]The kappa immunoglobulin light chain repertoire of peripheral blood B cells in patients with juvenile rheumatoid arthritis Morbach,H; Richl,P; Faber,C Molecular Immunology 2008vol.45(no.14) 255-259
    [114]谢捷,龚兴国,曾冬云.Src蛋白研究进展.中国病理生理杂志,2003,19(8):1119-1124
    [115]王靖华,陈龙邦,马恒辉.一氧化氮合酶2、3在非小细胞肺癌中的表达及其临床意义.医学研究生学报,2004,17(2):109-113.
    [116]王卓,张万起,芳香烃受体核转位蛋白的结构及相关功能.生命科学,2007,19(1):73-77
    [117]李素敏,王晓明,邱劲.TNF α、oxLDL对单核细胞玻璃粘连蛋白nRNA表达的影响及其可能的信号转导途径.中国病理生理杂志,2000,16(10):962-963
    [118]金炜东,陈孝平,杨盛利.缺氧诱导因子1 α表达对裸鼠肝癌皮下移植瘤生长的促进作用.中华普通外科杂志,2008,23(10):788-790
    [119]Schultz J, Doerks T, Ponting CP,et al. More than 1,000 putative new human signaling proteins revealed by ESTdata mining. Nat Genet.2000,25(2): 201-204
    [120]柳菁筠,生物序列进化树的构建,基础数学,[硕士学位论文]海南:海南师范大学,2008
    [121]任雨笙,崔芳,陈强.猪血小板衍生生长因子的氨基酸组成和等电点分析.第二军医大学学报,2000,21(4):369-371
    [122]朱才众,熊鸿燕,崔步云.VP1蛋白结构特征预测及功能分析.山西医科大学学报,2009,40(6):485-490
    [123]Tuning the HNN experiment:generation of serine-threonine check pointsChugh, J; Kumar, D; Hosur, RVJournal of Biomolecular NMR 2008vol. 40(no.2) 145-152
    [124]张海霞,唐焕文,张立震.蛋白质二级结构预测方法的评价.计算机与应用化学,2003,20(6):735-740
    [1]Dvorak HF,Orenstein NS,Carvalho AC. Induction of a fibrin-gel investment:an early event in line 10 hepatocarcinoma growth mediated by tumor-secreted products. Immunology,1979,122:166-174.
    [2]Senger DR,Galli SJ,Dvorak AM. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. SCIENCE,1983, 219(4587):983-985
    [3]Herve,MA,Buteau-Lozano,H,Vassy,R. Overexpression of vascular endothelial growth factor 189 in breast cancer cells leads to delayed tumor uptake with dilated intratumoral vessels.American Journal of Pathology,2008, 172(1):112-114.
    [4]ZHAO Dong-mei, WANG Hai-bin,YANG Jia-feng. Effect of vascular endothelial growth factor 165 gene transfection on bone defects and its mRNA expression in rabbits. CHINESE MEDICAL JOURNAL,2007,120(13):211-214
    [5]Willmann JK,Chen K,Wang H. Monitoring of the biological response to murine hindlimb ischemia with 64 Cu-labeled vascular endothelial growth factor-121 positron emission tomography. Circulation,2008,117(7):621-625
    [6]Lange T.,Guttmann-Raviv N.,Baruch L.. VEGF(162), a new heparin-binding vascular endothelial growth factor splice form that is expressed in transformed human cells. The Journal of Biological Chemistry,2003,278,(19):521-526
    [7]Jingjing L,Srinivasan B,Roque RS. Ectodomain shedding of VEGF183, a novel isoform of vascular endothelial growth factor, promotes its mitogenic activity in vitro.Angiogenesis,2001,4(2):141-147.
    [8]Jingjing,L; Xue,Y; Agarwal,N. Human Muller cells express VEGF183, a novel spliced variant of vascular endothelial growth factor.Investigative Ophthalmology & Visual Science,1999,40(3):236-239
    [9]Nishi M,Abe Y,Tomii Y. Cell binding isoforms of vascular endothelial growth factor-A (VEGF189) contribute to blood flow-distant metastasis of pulmonary adenocarcinoma. International journal of oncology,2005,26(6):629-674
    [10]Al-Kateb H, Mirea L, Xie X,. Multiple variants in vascular endothelial growth factor (VEGFA) are risk factors for time to severe retinopathy in type 1 diabetes: the DCCT/EDIC genetics study.Diabetes,2007,56(8):544-560
    [11]Kim DH, Lee NY, Lee MH. Vascular endothelial growth factor (VEGF) gene (VEGFA) polymorphism can predict the prognosis in acute myeloid leukaemia patients. British Journal of Haematology,2008,140(1):61-68
    [12]Reichelt M, Shi S, Hayes M.Vascular endothelial growth factor-B and retinal vascular development in the mouse. Clinical & experimental ophthalmology,2003,31(1):63-67
    [13]Wanstall JC, Jeffery TK, Bellomo D. Vascular endothelial growth factor-B-deficient mice show impaired development of hypoxic pulmonary hypertension. Cardiovascular Research,2002,55(2):123-128
    [14]14. Bock JM, Sinclair LL, Bedford NS. Modulation of Cellular Invasion by VEGF-C Expression in Squamous Cell Carcinoma of the Head and Neck.Archives of Otolaryngology-Head & Neck Surgery,20081,34(4):452-458
    [15]Yi-Tao Jia, Zhong-Xin Li, Yu-Tong He. Expression of vascular endothelial growth factor-C and the relationship between lymphangiogenesis and lymphatic metastasis in colorectal cancer. WORLD JOURNAL OF GASTROENTEROLOGY,2004,10(22):655-659
    [16]Choi J H, Oh Y H, Park Y W, et al. Correlation of vascular endothelial growth factor-D expression and VEGFR-3-positive vessel density with lymph node metastasis in gastric carcinoma [J] J Korean Med Sci,2008,23(4):592-597.
    [17]17 Ogawa S, Oku A, Sawano A.A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J Biol Chem. 1998,20,273(47):31273-82.
    [18]Tokunaga Y, Yamazaki Y, Morita T.Specific distribution of VEGF-F in Viperinae snake venoms:isolation and characterization of a VGEF-F from the venom of Daboia russelli siamensis. Arch Biochem Biophys.2005 Jul 15;439(2):241-7.
    [19]Gera Neufelda, Tzafra Cohena, Stela Gengrinovitcha. Vascular endothelial growth factor (VEGF) and its receptors. The FASEB Journal.1999; 13:9-22.
    [20]Toshiyuki,Nakayama, Yang Cheul Cho. Expression of vascular endothelial growth factor and its receptors VEGFR-1 and 2 in gastrointestinal stromal tumors,leiomyomas and schwannomas.WORLD JOURNAL OF GASTROENTEROLOGY,2006,12(38):1211-1219
    [21]Mansour S, Al-Houndhd A,Al-Shukaili M. Measurement of circulating levels of VEGF-A,-C,and-D and their receptors, VEGFR-1 and-2 in gastric adenocarcinoma WORLD JOURNAL OF GASTROENTEROLOGY, 2008,14(24):696-699
    [22]LI Jun HONG, Mei PAN, Tie cheng. Clinical Significance of VEGF-C and VEGFR-3 Expression in Non-small Cell Lung Cancer. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY(MEDICAL SCIENCE) 2006,26(5):511-519
    [23]Schmidt M, Voelker HU, Kapp M. Expression of VEGFR-1 (Flt-1) in breast cancer is associated with VEGF expression and with node-negative tumour stage.AIDS care,2008,28(3):361-366
    [24]Liu CP,Guo LH, Yao C. Expression and purification of human vascular-endothelial-growth-factor-receptor-2 tyrosine kinase in Streptomyces for inhibitor screening.Biotechnology and Applied Biochemistry, 2008,50(2):199-205
    [25]Lee HT,Chang YC,Tu YF.VEGF-A/VEGFR-2 signaling leading to cAMP response element-binding protein phosphorylation is a shared pathway underlying the protective effect of preconditioning on neurons and endothelial cells.The Journal of Neuroscience,2009,29(14):1254-1259
    [26]Vales,A; Kondo,R; Aichberger,KJ. Myeloid leukemias express a broad spectrum of VEGF receptors including neuropilin-1 (NRP-1) and NRP-2.Leukemia & lymphoma,2007,48(10):1217-1223
    [27]张鹏,王雨生,张星.缺氧对人视网膜色素上皮细胞增生和VEGF表达的影响.眼科新进展.2004.24(1):32-34
    [28]关键,王健平,车笑非.缺氧条件对成骨细胞VEGF和TGF-β1表达影响的实验研究.中国修复重建外科杂志,2008,22(8):1422-1428
    [29]刘海意,乔福元,刘玉凌.缺氧对滋养细胞VEGF分泌与基因表达调控作用的研究.现代妇产科进展,2008,17(3):298-302
    [30]孙京华,张煜昭,王慧VEGF和PEDF在实验性大鼠角膜新生血管组织中的动态表达.眼科新进展,2006,26(8):652-657
    [31]孔怡淳,韩梅,赵堪兴.高氧诱导小鼠视网膜病变模型中血管内皮生长因子和色素上皮衍生因子的表达及意义.中华眼科杂志,2008,44(8):1025-1028
    [32]邬海翔,夏欣,刘堃.胰岛素对正常糖和高糖浓度下牛视网膜微血管内皮细胞血管内皮生长因子表达的影响.中华眼科杂志,2008,44(7):822-824
    [33]宋鄂,王越晖,徐琪.高浓度胰岛素对兔视网膜Muller细胞表达血管内皮生长因子的影响.中华眼科杂志,2004,40(1):32-36
    [34]马萍萍,王玉粦,吴炎.胰岛素对糖尿病大鼠视网膜VEGF和Ang-2表达的影响.医学研究杂志,2010,39(1):11-15
    [35]刘石,王鑫,徐秀玉.生长相关性癌基因-1在喉癌中的表达及其与VEGF的相关性.临床耳鼻咽喉科杂志,2006,20(12):1024-1028.
    [36]陈健,李敏,王静.血管内皮生长因子、癌基因c-erbB-2在胃癌中的表达及临床意义.中国肿瘤临床,2002,29(1):55-60
    [37]彭瑞云,高亚兵,熊呈琦.正常和放射复合伤口血管再生中VEGF基因的表达及其意义.细胞与分子免疫学杂志,2001,17(5):443-447
    [38]李建军,陈延治,辛彦。放射对乏氧胃癌细胞PTEN基因和VEGF等蛋白表达的影响。中华放射肿瘤学杂志,2005,14(6):771-775
    [39]邱彦,芮耀诚,张黎。血管内皮生长因子对大鼠脑血管通透性的影响及丹酚酸B对其抑制作用。解放军药学学报,2002,18(1):50-53
    [40]巩沅鑫,周其全.低氧暴露下血管内皮生长因子高表达与血脑屏障通透性改变的关系。中国微循环,2009,13(1):16-20
    [41]冯红超,宋宇峰,温玉明。口腔鳞癌中VEGF表达和肿瘤相关巨噬细胞在血管生成中相互作用的初步研究。中国肿瘤临床,2004,31(8):741-745
    [42]王长谦,汤大鸣,黄定九。VEGF对人血单核细胞TIMPs表达的影响,上海第二医科大学学报,2003,23(3):318-321
    [43]倪健,徐妍,鲁冰。血管内皮生长因子与细胞外基质在非小细胞肺癌中的表达及其临床意义。肿瘤,2010,30(2):201-206
    [44]李海军VEGF反义寡核苷酸转染对胆囊癌肿瘤血管生成影响的研究:[博士学位论文].杭州:浙江大学,2005
    [45]周健国.血管内皮生长因子(VEGF)在原发性胆囊癌中表达及意义:[硕士学位论文].沈阳:中国医科大学,2000
    [46]房思炼,王大章,张静仪。抗人血管内皮生长因子单克隆抗体对荷人颊癌裸鼠血清中血管内皮生长因子水平的影响。华西口腔医学杂志,2004,22(4):445-449
    [47]石琦,单冰,高晨。血管内皮生长因子(VEGF)单克隆抗体的制备及鉴定细胞与分子免疫学杂志,2008,24(2):196-199
    [48]Gossmann A, Helbich TH, Kuriyama N.Dynamic contrast-enhanced magnetic resonance imaging as a surrogate marker of tumor response to anti-angiogenic therapy in a xenograft model of glioblastoma multiforme. J Magn Reson Imaging.2002,15(3):233-240.
    [49]封宇飞,雷静,傅得兴。血管内皮生长因子抑制剂--贝伐单抗。中国药学杂志,2005,40(19):1208-1211.
    [50]李洪波,彭枫。贝伐单抗临床研究进展。四川肿瘤防治,2006,19(1):31-35.
    [51]崔斐,李军,罗荣城。贝伐单抗在肿瘤临床治疗中的研究进展。河北医学,2008,14(6):582-586
    [52]Siemeister G, Schimer M, Reusch P, et al. An antagonistic vascular endothelial growth factor (VEGF)variant inhibits VEGF-stimulated receptor autophosphory-lation and proliferation of human Endothelial cells. Proc Natl Acad Sci U SA,1998,95(8):4625-4629
    [53]Saleh M,Stacker SA,Wills A F. Inhibition o f growth o f C6 Glioma cells in vivo by expression of antisense vascular endothelial growth factor. Cancer Res, 1996,56(2):393

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700