用户名: 密码: 验证码:
甲烷可控转化新途径的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:New Controllable Method of Methane Conversion
  • 作者:李疆
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2010
  • 导师:单永奎
  • 学科代码:070304
  • 学位授予单位:华东师范大学
  • 论文提交日期:2008-11-01
  • 答辩委员会主席:施敏
摘要
近年来原油供应的持续短缺,供需矛盾日益尖锐,石油资源日趋枯竭已成为小争的事实。据有关报道,世界上的石油储量可供人类使用30-40年。而我国是贫油国家,情况尤为突出,可供使用的石油储量会更少,能源和原料供应面临严峻的挑战。从资源方面考虑,普遍地认为我们的基本国情是富煤,缺油,少气。但如果从可有效利用成分的角度来看,事实并非如此。与天然气具有类似组成的,性质相似或相同,以甲烷为主要成分的碳资源(包括天然气,煤层气,天然气(甲烷)水合物和沼气)是储量极其丰富的资源,其中天然气资源比石油资源丰富,据预测可满足世界需求120年以上;煤层气主要成分与常规天然气相似,全球埋深浅于2000米的煤层气资源约为240万亿立方米,是常规天然气探明储量的两倍多。我国煤层气资源丰富,居世界第三;目前,国际间公认全球的天然气水合物总储量是地球上所有煤、石油和天然气总和的2倍至3倍,可供人类使用1000年以上(当然其开采技术尚不成熟);沼气(主要成分甲烷)来源于生物质,属于可再生资源。此外,与石油和煤相比,它们还有清洁和热值高的优点。因而这类资源备受世人关注与重视,大力开发和利用这种资源几乎已经成为世界各国改善环境和维持可持续发展的最佳选择。
     然而甲烷在热力学上的稳定性成为其广泛应用的最大障碍。本博士论文的工作就是采用光化学卤化甲烷的方法,在甲烷气中添加低碳烷烃的方法以及采用原位涂层法合成了系列负载有磷酸铁的介孔催化材料作催化剂等方法来实现甲烷的低温高选择性的可控转化,以求实现低温常压条件下的高选择性的活化甲烷。
     主要工作有:
     1.甲烷的光化学碘化反应的研究
     本部分我们首先设计制作了适合气体光化学反应的反应器。并对甲烷与碘的光化学反应进行了研究。研究结果表明:甲烷与碘的光化学反应,只有紫外光部分起作用。可见光部分对光反应无效果。紫外光作用下的甲烷碘化反应,碘甲烷的产率较低。
     2.甲烷的光化学溴化反应的研究
     本部分的研究表明:甲烷与液溴的光化学反应的有效光的波长范围在可见光区。在没有加入任何催化剂的条件下,通过甲烷与溴的光反应,高选择性的活化甲烷生成一溴甲烷和二溴甲烷。经过对光源的选择,设计和改进光反应器,控制温度等方法实现了低温常压条件下的高选择性制备二溴甲烷。以溴来计算转化率可达98%。低溴甲烷(即一溴甲烷和二溴甲烷之和)的选择性之和可达93%。反应温度在16~140℃之间。这一结果远远高于国际上文献报道的结果。
     3.本章主要是采用添加低碳烃的方法考察了对甲烷的活化的影响。得到的主要结论有:
     ①在一定的实验条件下,添加乙烯对甲烷的活化最为有利。在Ga、稀土金属-Zn、Ce-Mo和Cr-Mo等负载的HZSM-5催化剂上,原料气中添加乙烯后甲烷在较低温度(450℃-520℃)下可实现活化。甲烷的转化率超过35.0%;而在相同的实验条件下,没有添加其它气体时,催化剂对甲烷活化作用就不明显。因此原料中添加第二组分对于甲烷活化具有十分重要的意义。
     ②以乙烯为第二组份气时,稀土金属氧化物的添加能够增加催化剂的活性,一定程度延长催化剂的寿命。
     ③添加丙烷在我们初步研究中对甲烷的活化影响有限。在研究丙烷的添加对甲烷芳构化的影响时,在1%Cu-1.35%Zn/HZSM-5、0.1%Gd-1.35%Zn/HZSM-5催化剂上,当CH_4/C_3H_8=0,1.17,2.25三种摩尔比条件下,实验中没有发现丙烷对甲烷的活化有明显作用,甲烷的转化率均为负值。反而是甲烷的添加似乎对丙烷的转化有抑制作用使其转化率下降。
     ④在研究丁烷的添加对甲烷芳构化的影响时,在450℃时,0.1%Gd-1.35%Zn-/HZSM-5上,CH_4/C_4H_(10)=0.00,0.45,1.01,1.50和3.12摩尔比条件下的实验结果表明:甲烷的转化率从摩尔比为0.45的负值-9.8%,增加到摩尔比为3.125时的6.9%。说明一定条件下,增加甲烷气体的量有利于其被丁烷活化;在较低的温度下有利于实现甲烷的活化,但从芳烃的收率和选择性随摩尔比增加而降低的趋势来看,说明被活化的甲烷可能主要是参与到生成低碳烃等产物中。
     4.原位涂层法合成FePO_4/SBA-15材料及其表征
     成功地(直接)合成了FePO_4修饰的SBA-15介孔硅材料,在这种一步合成方法中,硝酸铁不仅作为磷酸铁的铁源,而且有助于形成有序的介孔结构。此外,由于与传统的浸渍法相比,这种方法也许提供了一种新的修饰介孔材料的方法,可以应用在许多功能化材料的合成过程中。另外,用原位涂层法合成出的FePO_4-SBA-15介孔硅材料作为甲烷部分氧化制甲醛的催化剂经过实验考察发现:比硅基材料上负载有磷酸铁(5wt%)的催化剂和用浸渍法合成出的FePO_4/SBA-15催化剂催化活性要强10~100倍。
In recent years, the continuing shortage of crude oil supply, an increasingly acute contradiction between the supply and demand, the increasing depletion of oil resources have already been an indisputable fact. According to some reports, the world's oil reserves available for human use would last about 30-40 years. As our country is short of oil, the situation of the oil supply is particularly prominent. The available oil reserves are keeping dwindling and we are facing severe challenges in energy and raw material supply. In terms of feedstock resources, it is generally believed that the basic national situation is aboundant in coal, shortage of oil and lack of gas in China.
     However, from the point of effective use of components, this is not the case. Being similar or same with natural gas in composition, properties, the carbon resources (including natural gas, coal-bed methane, natural gas and methane hydrate), which all have methane as the main component, are extremely rich among all natural resources. Natural gas resources are richer than the oil, which has been estimated to meet the needs of the world for more than 120 years. The main components of coal-bed methane which are similar to nature gas are methane. It is proven that the coal-bed gas buried in the depth of 2000 meters underground are about 240 trillion cubic meters reserve, which is more than twice as much as nature gas. China's coal-bed methane resources are very aboundant, ranking the third in the world; At present, it is internationally recognized that the world's total reserves of gas hydrates on earth are as much 2 to 3 times as the grand sum of all coal, oil and natural gas, which would last more than 1000 years for human use (but it is so pity that the technology has not been put into practice in mining). Marsh gas(being methane as the main component) from biomass are reproducible resources. In addition, compared with oil and coal, they have the advantages of cleanness and high calorific value as an energy. Therefore, such resources are so important that they attract worldwide attention and make nearly all countries in the world to make effort to develop and utilize such resources, which is the best choice in improving the environment and maintaining sustainable developement.
     However, the biggest obstacle widely to use methane is its thermodynamic stability. The work of the doctoral thesis is aimed at realization of methane conversion through halogenation of methane with higher selectivity around normal pressure at lower temperature by photochemistry; or through thermal reaction of methane by some metals or rare metals promoted HZSM-5 zeolite as catalysts in mixture of methane and ethylene or some low alkanes; by synthesis of a series of iron phosphate supported mesoporous materials as catalysts by a simple one-step synthetic method.
     The thesis has four parts as follows:
     Part I Methane Iodination By Photochemistry
     In this part, the methane reactor for the photochemical gas reaction of methane with iodine was designed at first, and iodination reaction of methane by light have been studied. Some results are showed that the available light wavelength must be ultraviolet and the yield of methyl iodide is very low, which makes the process unpractical.
     Part II
     Methane Bromination By Photochemistry
     Without addition of any catalyst, our research in this part focus on high activation of methane with higher selectivity via bromination reaction by photochemical method, since the products (bromomethane and dibromomethane) can be easily converted into methanol and formaldehyde. Through our effort on the choice of light sources, design and manufacture of special reactor, controlling reaction temperature and changing some other factors, an outstanding results is obtained. The products( bromomethane and dibromomethane) are synthesized with high selectivety (8.0% and 85% respectively) and 98% conversion based on bromine at the temperature of 16~140℃around atmosphere pressure. The available light wavelength for methane bromination is visable. The results are better than any other reported in the world.
     Part III
     Low-Temperature Activation of Methane over some metals or rare metalspromoted HZSM-5 zeolite
     In this part, methane conversion in the presence of ethylene has been investigated. It shows that methane can well be activated in the presence of ethylene over rare earth metal or Ce-Mo, or Cr-Mo promoted Zn/HZSM-5 at lower temperature (450℃-520℃) . Especially, methane can be converted to higher hydrocarbons, including aromatic compounds at much lower temperature (723K) over Gd promoted Zn/HZSM-5, and at the same time methane conversion is relatively high (about 37%). In addition, the catalyst (Gd promoted Zn/HZSM-5) has longer life-time than Ga/HZSM-5 does.
     Part IV
     Direct Synthesis and Characterization of Mesoporous SBA-15 Loaded FePO_4Materials
     Mesoporous SBA-15-loaded FePO_4 materials (FePO_4/SBA-15) have been directly obtained by a simple one-step synthetic method. The investigation results from the X-ray diffraction, transmission electron microscopy, electron spin resonance, ~(31)P solid-state MAS-NMR, and N_2 adsorption-desorption analysis indicate that Fe and P are successfully loaded on the mesoporous SBA-15 in the form of FePO_4. From the characterization, the direct synthesized mesoporous FePO_4/SBA-15 materials are revealed the well textural properties and the ordered mesostructures. FePO_4 supported on mesoporous SBA-15 has the uniform dispersion state, even at 70wt% high loading amount. From our experiments, some conclusions are obtained that the catalysis of the direct synthesized mesoporous FePO_4/SBA-15 materials in partial oxidation of methane to formaldehyde is as much 100 times as that of indirect synthesized FePO_4/SB A-15. The catalysis of direct synthesized mesoporous FePO_4/SBA-15 is also better than that of the silica-supported FePO_4.
引文
[1] PrettreM, etal. Trans. Faraday Soc., 1946,42
    [2] Dissanayake D, etal. J. Catal., 1991,132
    [3] Kiyoharu Nakagawa, etal. J. Catal., 1999,186
    [4] Rostrup-Nielsen J R, BakHansen J -H, J. Catal., 1993,144,38.
    [5] Hickman D A, etal. Science., 1993,259
    [6] Hickman D A, etal. Catal. Lett., 1993,27
    [7] Au CT, etal. J. Catal., 1996,158
    [8] 沈师孔等.催化学报,1998,19
    [9] Emil John Klein, A Thesis of P. H. D. Minnesota, 2002
    [10] D.R.Stubl and H.Prophet, JANAF Thermochemical Tables NSRDS-NBS 37, Washington DC.,1971
    [11] 吴越(Wu Y),气化和气体合成反应的热力学,中国工业出版社,北京,1965.
    [12] 许峥(Xu Z),张继炎(zhang J Y),张鎏(Zhartg L),石油化工(Petrochemical Technology),1977,6,402.
    [13] Fischer F, Tropsch H, Brennstoff Chem., 1928, 3, 39
    [14] Tokunaga O, Osada Y, O gasawara S, Fuel, 1989,68,990.
    [15] Gadalla A M, Bow er B, Chemical Engineering Science, 1988,11,3049.
    [16] Gadalla A M, SommerM E, Chemical Engineering Science, 1989,12,2825.
    [17] Choudhary V R, U phade B S, Mamman A S, Applied Catalysis A : General, 1998,168,33.
    [18] Bitter J H, Seshan K, L ercher J A, J. Catal., 1997,171,279.
    [19] Perera J S, Sankar J W, Thomas J M , Catal. Lett., 1991,11,219.
    [20] ErdohelyiA, Cserenyi J, Popp E et al. Applied Cataly sis A : General, 1994,108,205.
    [21] Wang H Y, A u C T, Applied Catalysis A : General, 1997, 155,239.
    [22] Solymosi F, Kutsan G, ErdohelyiA , Catal. Lett., 1991,11,149.
    [23] Bhat R N , Sach t lerW M H, Applied Catalysis A : General, 1997,150,279
    [24] TsipouiariV A , Efstath iou A M , Zhang Z L et al., Catalysis Today , 1994,21, 579.
    [25] 邱发礼(Q iu F L),邱家明(Q iu J M),雷文敏(L eiW M),天然气化工(Chemical Engineering of Natural Gas),1983,4,45.
    [26] 范业梅(Fan YM),商永臣(Shang Y C),徐恒泳(Xu H Y)等,第七届全国催化学术会议论文摘要集,大连,1994,696.
    [27] 余长春(Yu C C),路勇(Lu Y),刘育(Liu Y)等,分子催化(Journal of Molecular Catalysis),1997,4,263.
    [28] 余长春(Yu C C),丁雪加(Ding X J),沈师孔(Shen S K),分子催化(Journal of Molecular Catalysis), 1993, 2,151
    [29] 纪敏(J iM),博士论文(Doctoral Dissertation),吉林大学(Ji Lin University),1996.
    [30] M amedov A Kh, M irzabekova S R, Nouriev Sh A , Shiryaev P A et al., Neftekhimia, 1991,31,630.
    [31] Toshihiko Osaki, Tatsuro Ho riuch i, Kenri Suzuk i et al., Applied Catalysis A : General. 1997, 155,229.
    [32] Gadalla A M , Bower B, Chemical Engineering Science, 1988, 11, 3049.
    [33] Gadalla A M , SommerM E, Chemical Engineering Science, 1989, 12,2825.
    [34] Masai M , Kado H, M iyake A et al., Stud. Surf. Catal., 1998, 36,67.
    [35] Takayasu O, M atsuura I et al., Proc. 10th ICC, Budapest, 1992,1951.
    [36] 路勇(Lu Y),邓存(Deng C),丁雪加(Ding X J)等,催化学报(Chinese Journal of Catalysis),1995,6,447.
    [37] 中村润(Zhong C R),内岛俊雄(Nei D J X),触媒(Catalyst),1993,8,478.
    [38] Ruckenstein E, Hu Y H, Applied Catalysis A : General, 1995,133,149.
    [39] Michel C J , Bradfo rd, A lbert V annice, J. Catal., 1988, 173,157.
    [40] 任杰(Ren J),陈仰光(Chen Y G),吴东(W u D)等,分子催化(Journal of Molecular Catalysis),1994,3,181.
    [41] Guerrero-Ruiz A , Sepulveda-Gscribana A , Rodriguez-Ramos I, Catal. Today , 1994, 21,545.
    [42] 许峥(Xu Z),张继炎(Zhang J Y),张鎏(Zhang L)等,第八届全国催化学术会议论文集,厦门,1996,201.
    [43] Zhang Z L , V erk io s X Z, Catal. Today , 1994, 21, 589.
    [44] Park S E, Sh im E K, L ee K W et al., Stud. Surf. Sci. Catal., 1994, 84,1595.
    [45] 史克英(Shi KY),徐恒泳(Xu HY),商永臣(Shang YC)等,分了催化(Journal of Molecular Catalysis),1995,3,161.
    [46] 徐龙伢(Xu L Y),王清遐(W ang Q X),林励吾(L in L W),石油与天然气化工(Chemical Engineering of Oil and Gas),1998,1,7.
    [47] 陈仰光(Chen Y G),任杰(Ren J),吴尔(W u D),石油化工(Petrochemical Technology),1994,12,771.
    [48] 徐恒泳(Xu H Y),孙希贤(Sun X X),范业梅(Fan Y M),石油化工(Petrochemical Technology),1992,3,147.
    [49] Tokunaga O,O gasaw ara S, React. Kinet. Catal. Lett., 1989,1, 69.
    [50] Richardson J T, Paripatyadar S A , Applied Catalysis A : General, 1990, 61, 293.
    [51] Q in D, L ap szew icz J , Catal. Today , 1994,21,551.
    [52] A schcroft A T, Nature, 1991,352,225.
    [53] Vernon P D F,GreenM L H,Cheetham A K, A shcroft A T,Catal.Today, 1992,13,417.
    [54] Rost rup-N ielsen J R, Bak Hansen J -H, J. Catal., 1993,144,38.
    [55] Trimm D L, 5th International Congress on Catalysis, Palm Bench, 1972.
    [56] Kro IIV C H, Swaan H M, Mirodato s C, J. Catal., 1996,161,409.
    [57] 唐松柏(Tang S B)等,天然气化工(Chemical Engineering of Natural Gas),1994,6,10.
    [58] 许峥(Xu Z),李玉敏(L i Y M),张继炎(zhang J Y)等,催化学报(Chinese Journal of Catalysis),1997,5,364.
    [59] (日)催化学会编 陆世雄译<> 宇航出版社 1990 P39-71
    [60] 马文平,刘全生等.内蒙古工业大学学报 Vol.18 No.2 1999 121
    [61] 张碧江主编.煤基合成液体燃料[M].太原:山西科学技术出版社,1993.48.
    [62] F. F ischer,H. Tropsch, Bernnst. Chem. 1926,59:830.
    [63] R. B. A nderson., Z. The Fisher-Tropsch Systhesis. Academic Press,New York, 1984:176.
    [64] H. P ich ler. ,H. Schulz., Chem. Ind. Techn., 1970,42:1162.
    [65] H. H. N ijs, P. A. Jacobs., J. Catal. 1980,66 (2): 401.
    [66] 郑绳安.刘旦初等.物理化学学报.1993,6(5):486.
    [67] E. Shusto rovich., Surface Science. 1991,248:359.
    [68] J. P. Reymond., J. Catal. 1982, 75 (1): 39.
    [69] C. M. M ims,L. E. McCandlish,M.T. Melchior., Catal. Lett. 1988,1:121.
    [70] L. E. M cCandlish., J. Catal. 1983,83 (2): 362.
    [71] E. Shusto rovich., Surface Science. 1991,248: 359.
    [72] D. F. Sm ith, C. O. Haw k, P. L. Goldhn., J. Am. Chem. Soc. 1930,52:3221.
    [73] S. R. Craxford., Trans. Faraday. Soc. 1939,35:946.
    [74] J. G. Ederdt. ,A. T. Bell., J. Catal. 1980,62: 19.
    [75] H. P ich ler. ,H. Schulz., Chem. Ind. Techn., 1970,42: 1162.
    [76] J. T. Kummer., P. H. Emmet., J. Am. Chem. Soc. 1953, 75: 5177.
    [77] C. S. Kellner.,A. T. Bell., J. Catal. 1981,70:418.
    [78] J. H. Boelee, J. M. G. Austers, K. VanderWilele., Appl. Catal. 1989, 53: 1.
    [79] A. A. A desina, R. R. Hudgins, P. L. Silveston. ,Appl. Catal. 1990,62: 295.
    [80] C. L. Kibby, R. B. Pannell, T. P. Kobylinski., Preprints of ACS Div. Petrol. Chem. 1984,29(4): 1113.
    [81] A. T. Bell., Cat Rev. Sci. Eng. 1981,23: 203.
    [82] S. R. Morris, R. B. Moyes, P. B. Wells, R. hyman., J. Catal. 1985,96: 23.
    [83] D. J. Dwyer., G. A. Somorjai., J. Catal. 1979, 56: 249.
    [84] Ruud Snel., J. Mol. Catal. 1989, 54: 103.
    [85] Ruud Snel., J. Mol. Catal. 1989, 54: 119.
    [86] Ruchenstein E, J. Catal., 1974, 35,441-452.
    [87] DryM E, The Fischer-Tropsch Synthesis, in Catalysis: Sci. and Tech., Ⅰ, (eds J. R. Anderson,M. Boudart), Springer-verlag, 1981,160-251.
    [88] Wang D Z, Cheng X P, Huang Z E et al., Appl. Catal., 1991, 77, 109-122.
    [89] Zhong B, Wang Q, Luo Q Y et al., China-Japan Bilateral Symp on Effective Utilization of Carbon Resources, Guang Zhou, China, 1991,69.
    [90] 南照东(Nan Z D),张志新(Zhang Z X)等,天然气化工(C1 化学与化工)(Natural Gas Chemical Industry,C1 Chemistry & Chemical Industry),1992,17(3),24-28.
    [91] Nosa O E, Charles W , Wo jcicho skiB W, Appl. Catal., 1989, 55,47-64.
    [92] Hiroyuk i I, Eiich i K, Appl. Catal., 1990,67, 1-9.
    [93] Li X G, Zhong B, Peng S etal., Catal. Lett., 1994,23,245-250.
    [94] O 'B rien R J , Xu L G, Sp icer R L et al., Catal. Today, 1994, 36,325-334.
    [95] D ragom ir B B, Lech N , L ang X S, Catal. Today , 1995, 24, 111-119.
    [96] Ajoy P R, Burtron H D, Catal. Today , 1997, 36,335-345.
    [97] Dragomir B B, SnehalA P,L ang X S, Appl. Catal., 1994, 61, 329-349.
    [98] SteiningerM , Gryglew icz S, Science & Technology , 1994,47 (3), 115-116.
    [99] 沈剑一(ShenJ Y),林励吾(Lin L W)等,燃料化学学报(Journal of Fuel Chemistry and Technology),1991,19(4),289-297.
    [100] Jager B, R Espinoza, Catal. Today, 1995,23, 17-28.
    [101] Inst. F rancais DV Petrole., E P 800 864,1997.
    [102] The British Petro leum Co., CN 1 052 844, 1991.
    [103] 斯塔特石油公司,CN 1 084 1 53,1994.
    [104] W illiam C B, Kym B A , Charles H M et al., US 5 545 674, 1996.
    [105] Enrique I, Stuart L S et al., J. Catal., 1995, 153, 108-122.
    [106] Tatsumi I, Nobuhiko H, KoichiE et al., Appl. Catal., 1990, 66, 267-282.
    [107] Li F, Yo shii K, Yan S et al., Catal. Today , 1997, 36, 295-304.
    [108] Bessell S, Appl. Catal. A : General, 1993, 96, 253-268.
    [109] Saul E C, R ichard G C, Graham J H etal., Appl. Catal. A : General, 1992, 84, 1-15.
    [110] Enrique I, Stuart L S, Rocco A F et al., J. Catal., 1993, 143, 345-368.
    [111] Bessell S, Stud. S u r. S ci. Catal. (Natural Gas ConversionⅡ ), 1994 ,483-486.
    [112] Roh r F, Ho Imen A , Barbo K et al., Stud. Sur. Sci. Catal. (Natural Gas Conversion Ⅴ , 1998,119,107-112.
    [113] LapidusA, Krylova A , Ratbousky J et al., Appl. Catal. A : General, 1992,80,1-11.
    [114] Sch luz H, Claw ysM, Harm s S, Stud. Sur. Sci. Catal. (Natural Gas Conversion Ⅰ), 1994,107, 193-200.
    [115] Vada S, KaziA M , Bedu-A ddo F K et al., Stud. Sur. Sci. Catal. (Natural Gas Conversion Ⅱ), 1994,443-448.
    [116] Van Berge P J, Stud. Su r. Sci. Catal. (Natural Gas Conversion Ⅳ), 1994,107,207-212.
    [117] 代小平 余长春等 化学进展 PRO GRESS IN CHEMISTRY Vol.12 No.3 Aug.,2000 268-281
    [118] Klbel H, RalekM, Catalyst Reviews-Science and Engineering, 1980,21,225-274.
    [119] YokotaK, Hanataka Y, Fujimo to K, Fuel, 1991,70,989-994.
    [120] 张志翔,王凤荣等 Modern Chemical Industry 2007.3.20-25
    [121] 丑凌军,蔡迎春,张兵,等.加压下甲烷氧化偶联反应工艺条件的研究.天然气化工,2002,27(5):1-3,7.
    [122] 季生福,李树本,张兵,等.Na-W-Mn/SiO2催化剂体系中W和Mn对甲烷氧化偶联反应的作用.催化学报,1999,20(6):608-612.
    [123] 季生福,李树本,许传芝,等.Na-W-Mn/SiO2催化剂活化甲烷的研究.分子催化,2000,14(1):1-5.
    [124] 陈宏善,牛建中,张兵,等.Na-W-Mn/SiO2催化剂中的组分协同效应[J].催化学报,2000,21(1):55-58.
    [125] 陈宏善,牛建中,夏春谷,等.Na-W-Mn/SiO2催化剂中Na,Mn协同作用的分子轨道研究.化学学报,2001,21(5):623.
    [126] 谢茂松 石油化工 1996 第25卷 第8期 579-589
    [127] Amenomiya H, Birss V I, Go ledzinow ski M et al. Catal Rev Sci Eng, 1990; 32 (3): 163
    [128] Mitchell H L ,W angho me R H. US 4507517,1985
    [129] Anderson J R, Tsai P. Appl Catal, 1985; 19: 141
    [130] Claridge J B, GreenM L, Tsang S Cet al. Applied Catalysis A : General, 1992; 89: 103
    [131] A basov S I, Babaeva F A , Dadshev B A . Kinet Catal, 1991; 32: 202
    [132] Seddon D. Catal Today , 1990; 6 (3): 351
    [133] ScurrellM S. Appl Catal, 1987; 32: 1
    [134] Koerts Tet al. J Catal, 1992: 138: 101
    [135] Giuseppe Giannetto, Reinaldo Monque, Roberto Galias-so. Catal Rev Sci Eng, 1994; 36(2):271
    [136] Wang Linsheng, Tao Longxiang, XieMao song et al. Catallett, 1993; 21: 35
    [137] 谢茂松,王林胜,陶龙骧等,中国专利申请号:93115889.3
    [138] 谢茂松,王林胜,陶龙骧等.第七届全国催化学术会议论文摘要集,大连,1994:D210
    [139] 陈来元,徐竹生,张涛等.天然气化工(C1化学与化工),1994;19(6):1
    [140] 刘社田,徐奕德,王林胜等.催化学报,1995;16(2):102
    [141] Tanabe K,M isono M ,Onoy et al. Studies in Surface Science and Catalysis, Vol.51,Elsevier: Am sterdam, 1989:1183
    [142] Sazonow V A , Popovk ii V V et al. Kinet Catal, 1968; 9:251
    [143] 陈立宇等 石油化工(PETROCHEMICAL TECHNOLOGY)2002年第31卷第11期 938-942
    [144] Geletii Y V,Shilov A E. Kinet Katal ,1983,24:413-419.
    [145] Goldshleger N F , Tyabin M B , Shilov A E, et al. Zh FizKhim, 1969,43 :1220-1223.
    [146] Sen A. [J]. New J Chem ,1989,13 (10/11) :756-760.
    [147] Yamanaka I ,Soma M ,Otsuka K. J Chem Soc, Chem Commun, 1995 ,2235-2236.
    [148] Raja R ,Ratnasamy P. Appl Catal A : General ,1997 ,158 :7-15.
    [149] Zengjian An, Xiulian Pan, et al. J. AM. CHEM. SOC. 2006, 128, 16028-16029
    [150] Gretz, E.; Oliver, T. F.; Sen, A. J. Am. Chem. Soc. 1987, 109, 8109-8111.
    [151] Istva T H ,Rayamond A C ,John M M ,et al. Organometallics ,1993 ,12 (1) :8-10.
    [152] Kao L G,Hutson A C ,Sen A..J Am Chem Soc, 1991 ,113: 700-701.
    [153] Piao D G, Inoue K.Shibasaki H ,et al. J Organomet Chem ,1999 ,574 : 116-120.
    [154] Sen A ,Benvenuto M A, Lin M , et al.. J Am Chem Soc ,1994 ,116 (3) :998-1003.
    [155] Kazuyuki N ,Yoshinori Y, Tsutomu M ,et al. J Organomet Chem ,1994 ,473 :329-334.
    [156] Lin M ,Sen A.. J Am Chem Soc ,1992,114 :892-894.
    [157] Periana R A ,Douglas J T, Eric R E ,et al.. Science ,1993 ,259 (15) :340-343.
    [158] Periana R A ,Douglas J T ,Scott G,et al.. Science ,1998 ,280 (5363) :560-564.
    [159] Bjerrum N J ,Xiao G,Hjuler A. A Process for the Catalytic Oxidation of Hydrocarbons[P].WO 9924383 ,1999-05-20.
    [160] Holtcamp M W,Labinger J A ,Bercaw J E.. J Am Chem Soc ,1997 ,119 :848-852.
    [161] Luinstra G,Wang L ,Stahl S S ,et al.. J Organomet Chem ,1995 ,504 :75-91.
    [162] Stahl S S ,Labinger J A ,Bercaw J E.. J Am Chem Soc ,1996 ,118 :5961-5976.
    [163] Johansson L ,Ryan O B ,Tilset M J . J Am Chem Soc ,1999,121 :1974.
    [164] Koenig G H. A Process for the Catalytic Oxidation of Methane to Methanol[P]. DE3101024A ,1982-08-05.
    [165] Gilbert T M ,Hristov I ,Ziegler T. Organometallics ,2001,20 (6) :1183-1189.
    [166] Kausala M ,George B B. J Am Chem Soc ,1999,121 (19) :4633-4636.
    [167] Kausala M ,George B B ,Noel H. J Am Chem Soc ,2000,122(9) :2041-2052.
    [168] Lin M,Hogan T,Sen A.J Am Chem Soc,1997,119: 6048-6053.
    [169] Vargaftik M N, Stolarov I P ,Moiseev. J Chem Soc, Chem Commun, 1990,1049-1050.
    [170] Lin M ,Hgan T E ,Sen A. J Am Chem Soc ,1996,118:4574-4580.
    [171] 尹国川,奚祖威,曹国英.催化学报,1997,18(5),402-405.
    [172] Xiao G,Birch H ,Zhu Yimin ,et al. J Catal ,2000,196 :287-292.
    [173] Kataja K,Song X M ,Hunska M. Catal Today, 1994,21 (2/3) ,513-517.
    [174] Wada K, et al. J . Chem. Soc. Faraday Trans., 1998,94 :1 771
    [175] Wada K, et al. J. Chem. Soc. Faraday Trans, 1995 ,91 :1 647
    [176] Wada K, et al. J . Chem. Soc. Chem. Commun., 1991, 726
    [177] Suzuki T, et al. J . Chem. Soc. Chem. Commun., 1990, 1 059
    [178] Thampi K R, et al. Catal. Lett. 1998, 1 : 109
    [179] Jenkins C J, Murphy D M. J. Phys. Chem. B 1999,103 :1 019
    [180] Chen Xi2hui(陈希慧),Li Shu-ben(李树本).博士学位论文[D],2000
    [181] Ward M D, Brazdil J F , Mehandru S P, et al. J . Phys.Chem., 1987,91 :6 515-6 521
    [182] Taylor C E, Noceti R P. Catal. Today 2000,55 : 259-267
    [183] Chen Xi-hui(陈希慧),等.J.Mol.Catal.(China)(分子催化)2000,14(4):245-246
    [184] Noceti, et al. US5720858 ,1998
    [185] Kaliaguine S L. J . Catal., 1978 , 55 : 384
    [186] Noceti R P, Taylor C E, D, Este J R. Catal. Today , 1997 , 33 : 199-204
    [187] Blatter F, Sun H , Frei H. Catal. Lett., 1995 , 35 : 1
    [188] H. Yoshida, M.G. Chaskar, Y. Kato, T. Hattori Journal of Photochemistry and Photobiology A: Chemistry 160 (2003) 47-53
    [189] Yuko Kato, Hisao Yoshida, Atsushi Satsuma, Tadashi Hattori Microporous and Mesoporous Materials 51(2002) 223-231
    [190] Hisao Yoshida Current Opinion in Solid State and Materials Science 7 (2003) 435-442
    [191] Hector H.lopez and Agustin Martinez Catalysis Letters Vol. 83, No. 1-2, October 2002
    [192] Charles E. Taylor Catalysis Today 84 (2003) 9-15
    [193] T. Kodama, T. Koyanagi, T. Shimizu, and Y. Kitayama Energy & Fuels 2001, 15, 60-65
    [194] T. Kodama, A. Kiyama, and K.-I. Shimizu Energy & Fuels 2003,17, 13-17
    [195] Hisao Yoshida, Norimitsu Matsushita, Yuko Kato, and Tadashi Hattori J. Phys. Chem. B 2003, 107, 8355-8362
    [196] M.A. Gondal, A. Hameed, Z.H. Yamani, A. Arfaj Chemical Physics Letters 392 (2004) 372-377
    [197] Richard ap.Noceti, Charles E.Taylor, Joseph R.D'Este Catalysis Today 33(1997) 199-204
    
    [198] Hiromi Yamashitaa, Yo Fujiia, Yuichi Ichihashia, Shu Gou Zhanga, Keita Ikeuea, Dal Ryung Parka, Keiko Koyanob, Takashi Tatsumib, Masakazu Anpoa Catalysis Today 45 (1998) 221-227
    [199] Tsunehiro Tanaka, Tomokazu Ito, Sakae Takenaka, Takuzo Funabiki, Satohiro Yoshida, Catal Today 2000;61:109-115.
    
    [200] Yuko Kato, Norimitsu Matsushita, Hisao Yoshida , Tadashi Hattori, Catal Commun 2002;3:99-103.
    
    [201] V.M. Allenger, R.N. Pendey, P. Yarlagadda. US Patent 5026944(1991)
    
    [202] L. B. Pierella, L. Wang, O. A. anunziata, React, kinet. Catal. lett. 60 (1997) 101
    
    [203] Oscar A. Anunziata, Griselda A. Eimer, Liliana B. Pierella, Appl. Catal. A, 190(2000)169-176
    
    [204] Oscar A. Anunziata, Griselda A. Eimer, Liliana B. Pierella, Catal.lett. 58(1999)235-239
    [205] Oscar A. Anunziata, Griselda V.Gonzalez Mercado, Liliana B. Pierella, Catal.lett. 87(2003)167-171
    
    [206]Vasant R. Choudhary, Anil K. Kinage, Tushar V. Choudhary, Science.Vol.275.1286-1288
    [1] 单永奎 李疆 赖克强 杨听 中国实用新型专利 2005 20047134.5
    [2] 单永奎 李疆 赖克强 杨昕 中国实用新型专利 200520047133.0
    [3] Peter Borrell's Photochemistry: A Primer. Edward Arnold, London 1973
    [1] 魏文德 主编 <<有机化工原料大全>>(第一卷)1989年12月第一版P 683
    [2] 魏文德 主编 <<有机化工原料大全>>(第一卷)1989年12月第一版P685-686
    [3] Peter Borrell's Photochemistry: A Primer. Edward Arnold, London 1973
    [4] J.C.Calvert, J.Y.Pitts, Photochemistry (Wiley, New YorK, 1966), pp. 148.
    
    [5] B.J.Huebert, M. Martin, J. Phys. Chem 72, 3046 (1968).
    
    [6] K.Watanabe, M.Zelikoff, E.C.Y.Inn, "Absorption Coefficients of Several Atmospheric Gases" (Air Force Cambridge Res. Center, 1953).
    [7] D.E.Robbins, Geophys.Res.Lett 3, 213 (1976).
    [8] J. Am. Chem. SOC. 1985, 107, 7097-7105
    [9] Science (1998), 280(5363), 560-564
    [10] WO/1999/024383
    
    [11] M.A. Gondal, A. Hameed, Z.H. Yamani, A. Arfaj Chemical Physics Letters 392 (2004) 372-377
    [1] 李锦春.天然气化工,1999,24(5):49;
    [2] Martindale D C , Kuchar P J , Olson R K. In : Proceedingsof AIChE Summer National Meeting. Denver (Colorado) ,1988;
    [3] Kabza R G, Gilsdorf N L , Conser R E , Peer R L , Martin dale D C. In : Proceedings of the 10th AIChE Annual European Colloquium. The Hague (the Netherlands) ,1989,[4] Wang L Sh, Tao L X, Xie M S, Xu G F, Huang J Sh, XuY D.Catal Lett, 1993,21(1/2): 35
    [5].Vasant R.Choudhary, Anil K.Kinage, Tushar V. Choudhary. Low-Temperature noxidative Activation of Methane over H-Galloaluminosilicate (MFI) Zeolite.Science.Vol.275: 1286-1288]。
    [6] Nakamura, Junji; Aikawa, Keita; Sato, Koichi; Uchijima, Toshio.The role of support in methane reforming with CO_2 over rhodium catalysts. Stud. Surf. Sci. Catal., 1994,90: 495-500
    [7] LiuSh, WangL, DongQ, etal.Catalytic dehydroaromatization of methane with CO/CO_2 towards benzene and naphthalene on bimetallic Mo/Zeolite catalyst: bifunctional catalysis and dynamic mechanism. Stud. Surf.Sci.Catal. 1998,119: 241-246
    [8] OhnishiR, LiuSh, DongQ, etal.Catalytic dehydrocondensation of methane of methane with CO and CO_2 toward benzene and naphthalene on Mo/HZSM-5 and Fe/Co modified Mo/HZSM-5.J.Catal.l999,182: 92-103
    [9] WangL, OhnishiR, IchikawaM. Selective dehydroaromatization of methane toward benzene on Re/HZSM- 5 catalysts and effects of CO/CO_2 addition. J.Catal.2000, 190: 276-283
    [10] 吕功煊,丁彦,潘霞等.水蒸气存在时Mo/HZSM-5催化剂上的甲烷芳构化反应性能.催化学报.1999,20(6):619-622
    [11] Ping Qiu, Jack H. Lunsford , Michael P. Rosynek.Characterization of Ga/ZSM-5 for the catalytic aromatization of dilute ethylene streams.Catalysis Letters. 1998,52 : 37-42
    [12] Ammar Alkhawaldeh, Xianchun Wu, Rayford G. Anthony .Conversion of mixtures of methane and acetylene or ethylene into higher molecular weight hydrocarbons over metal-loaded and unloaded HZSM-5 zeolite catalysts.Catalysis Today.2003,84: 43-49
    [13] Toshihide Baba, Yoshimune Abe. Metal cation-acidic proton bifunctional catalyst for methane activation: conversion of ~(13)CH4 in the presence of ethylene over metal cations-loaded HZSM-5. Appl.Catal., A, 2003,250:265-270
    [14] L.Wang, L.Tao, M.xie, G.Xu, Dehydrogenation and aromatization of methane under non-oxidizing conditions.Catal.lett.1993,21(1-2): 35-41
    [15] L.B.Pierella, L.Wang, O.A.anunziata, Methane direct conversion to aromatic hydrocarbons at low reaction temperature.React.kinet.Catal.lett. 1997,60(1): 101-106
    [16] OscarA.Anunziata, GriseldaA, Eimer, LilianaB.Pierella. Catalytic conversion of natural gas with added ethane and LPG over Zn-ZSM-11.Appl.Catal.A 2000,190:169-176
    [17] OscarA.Anunziata, GriseldaA, Eimer, LilianaB.Pierella. Methane transformation into aromatic hydrocarbons by activation with LPG over Zn-ZSM-11 zeolite. Catal.lett. 1999, 58: 235-239
    [18] Oscar A.Anunziata, Griselda A, Eimer, Liliana B.Pierella. Catalytic activation of methane using n-pentane as co-reactant over Zn-ZSM-11 zeolite. Catal.lett. 2003,87(3-4): 167-171
    [19] Wei Chu, Fali Qiu. Remarkable promation of benzene formation in methane aromatization with ethane addition. Topics in catalysis. 2003,22: 131-134
    [20] 陈军,丁富新,张鎏 等,清华大学学报:自然科学版,2000,40(10):36239]
    [1] Millet, J. M. Catal. Rev-Sci. Eng, 1998,40,1.
    [2] Wang, Y.; Otsuka, K. J. Catal. 1997,171,106.
    [3] Wang, Y. X.; Wang, X.; Su, Z.; Guo, Q.; Tang, Q. H.; Zhang, Q. H.; Wan, H. L Catal. Today. 2004,93-95, 155.
    [4] Wang, X. X.; Wang, Y. Q.; Tang, H.; Guo, Q. G.; Zhang, Q. H.; Wan, H. L. J. Catal. 2003,217,457.
    [5] Alptekin, G. O.; Herring, A. M.; Willamson, D. L.; Ohno, T. R.; McCormick, R. L. J. Catal. 1999, 181, 104. and McCormick, R. L.; Alptekin, G. O.; Willamson, D. I..; Ohno, T. R. Top. Catal. 2000, 10,115.
    [6] Kresge C T, Leonowicz M E, Roth WJ , et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal tem-plate mechanism[J]. Nature, 1992 , 359 (6397): 710-712.
    [7] Huo Q S, Ciesla U , Margolese D, et al. Generalized synthesis of periodic surfactant/ inorganic composite materials [J]. Nature, 1994 , 368 (6469): 317-321.
    [8] Hammond W, Prouzet E, Pinnavaia T J, et al. St ructure factor for the periodic walls of mesoporous MCM-41 molecular sieves[J]. Microporous and Mesoporous Materials, 1999,27(1): 19225.
    [9] 魏东伟,杨新丽,郭益群,等.中孔分子筛的合成与表征[J].郑州大学学报:理学版,2002,34(3):65-67.
    [10] 李文江,赵纯,宋利珠,等.水玻璃为原料在开放体系中快速合成介孔材料MCM-41[J].高等学校化学学报,2001,22(6):101321015.
    [11] Tanev P T, Pinnavaia T J. A neut ral templating route to mesoporous molecular sieves [J]. Science ,1995 ,267 (5199):865-867.
    [12] Bagshaw S A, Prouzet E , Pinnavaia T J . Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactant s[J]. Science, 1995,269 (5228): 1242-1244.
    [13]Zhao D Y, Huo J L, Stucky GD, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores[J ]. Science, 1998,279 (5350) :548-552.
    [14]Flodst roem K, Wennerst roem H, Alf redsson V. Mechanism of mesoporous silica formation: a time-resolved NMR and TEM study of silica-block copolymer aggregation[J]. Langmuir, 2004,20 (3) :680-688.
    [15]Galo J D, Eduardo L C, Clement S, et al. Block copolymer-templated mesoporous oxides [J]. Current Opinion in Colloid and Interface Science, 2003,8(1) :109-126.
    [16]Goldfarb, D. M.; Bernardo, K. G.; Strohmaier, D. E. W.; Vaughan, H. Thomann, J. Am. Chem. Soc. 1994, 116,6344.
    [17]Yuan, Z. Y.; Liu, S. Q.; Chen, T. H.; Wang, J. Z.; Li, H. X. Chem. Soc. Chem. Commun. 1995,973.
    [18]Tuel, A.; Acron, I.; Miller, J. M. M.; J. Chem. Soc., Faraday Trans. 1998,94,3501.
    [19]Kosslick, H.; Lischke, G.; Landmesser, H.; Parlitz, B.; Storek, W.; Fricke, R. J. Catal, 1998,176,102.
    [20]Philippou, A.; Salehirad, F.; Luigi, D. P.; Anderson, M. W. J. Phys. Chem. B, 1998,102,8975.
    [21]Zhao, D.; Huo, Q.; Feng, J.; Chmelka, B. F.; Stucky, G. D. J. Am. Chem. Soc, 1998,120,6024.
    [22]Wang, L. Z.; Velu, S.; Tomura, S. F.; Ohashi, K. Suzuki, J. Mater. Sci, 2002,37,801.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700