用户名: 密码: 验证码:
地应力瞬态卸荷对围岩损伤特征的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西南、西北地区在建和即将兴建的一批大型、特大型水电工程均需进行高地应力条件下的大跨度地下洞室群或超长隧洞的大规模、高强度开挖。同时,核废料处置工程、交通、采矿等工程领域也都涉及到深部岩体的开挖。爆破作为岩体开挖的主要方式,存在爆炸荷载和地应力瞬态卸荷等动力对深部工程围岩的扰动问题。
     针对围岩损伤的两大诱因:爆炸荷载和地应力瞬态卸荷,研究其作用机理及岩体的动态响应等问题,对深部岩体开挖方法的改进、安全度的评价以及降低工程造价等方面都有重大的理论意义和工程应用价值。
     本文主要研究了高地应力条件下地下洞室钻爆开挖过程中爆炸荷载、地应力瞬态卸荷及二者耦合作用激发的围岩动态应力场,在此基础上进一步确定了不同动载作用下围岩损伤区的分布特征。
     基于爆炸力学、断裂力学、流体力学等相关理论,结合有限元方法,计算了炮孔柱状装药爆炸荷载的峰值大小、持续时间与作用过程。根据岩体爆破开挖过程中爆炸荷载的作用特征及开挖面岩体的力学边界条件,进一步确定了地应力瞬态卸荷的起始时刻、持续时间与作用过程。
     采用理论方法求解了钻孔附近岩体在爆炸荷载作用下的应变率分布规律,结果表明,钻孔附近岩体的应变率较高,且随爆心距的增加,应变率急剧衰减,衰减速度随爆心距的增大而降低。按照岩石动、静态力学问题划分的应变率判据,确定了岩石爆破数值仿真中围岩动、静态力学强度参数取值的分区。综合分析了动载作用过程中洞室围岩可能存在的应力状态,并针对不同的破坏模式提出了相应的安全判剧。
     提出并建立了不同动载作用激发围岩动态应力场的计算模型,采用理论计算方法研究了静水应力场中圆形断面隧洞开挖过程中地应力瞬态卸荷作用激发的围岩动态应力场,分析了卸荷持续时间、岩体介质特性等因素对动态应力场的影响规律。结果表明,地应力瞬态卸荷具有显著的动力效应,径向应力快速卸荷回弹,表现出“超松弛”现象,而在切向则出现动态应力集中,表现出“超集中”现象。
     采用动力有限元方法,计算了非均匀应力场条件下、不同断面形状的洞室围岩在地应力瞬态卸荷作用下的动态应力时程曲线。结果表明,地应力瞬态卸荷的动力效应在应力值较大的方向上更为显著,对围岩的扰动也更大。同时,洞室结构也能影响瞬态卸荷应力场的分布,在城门洞形断面隧洞边墙处产生径向拉应力,且卸荷边界上对应的开挖荷载越大,在围岩中激发的拉应力值也越大。
     对于动载耦合作用激发的围岩动态应力场,由于爆炸应力波峰值高、衰减快,故耦合应力场在爆源近区以爆炸应力波为主,远区则以卸荷应力波为主。
     基于深埋洞室爆破开挖过程中围岩的动态应力分布,结合不同应力状态下岩体的损伤机理及相应的安全判剧,研究了不同动载作用诱发的围岩损伤区分布规律。不同地应力条件下,爆炸荷载诱发的围岩损伤主要限于围岩表层,深度较小,受围岩中二次应力场的切向压应力影响显著。在高地应力条件下,地应力瞬态卸荷所形成的损伤区范围大于准静态卸荷条件,二者形状相似,均由围岩二次应力场的形态决定。围岩的最终损伤范围可视为由一定地应力条件下的爆炸荷载诱发的围岩损伤区和地应力瞬态卸荷作用诱发的围岩区损伤叠加组成,且地应力瞬态卸荷作用是围岩中大范围损伤区形成的主要原因。
     以锦屏二级水电站引水隧洞爆破开挖过程中的实测围岩振动信号为基础,采用小波分析的模极大值法和时能密度法,证明了实际工程中地应力瞬态卸荷动力效应的存在。通过对锦屏二级辅助洞爆破开挖损伤区的检测和数值计算,比较了分别由地应力瞬态卸荷及地应力重分布(地应力准静态卸荷)所造成的围岩损伤,分析了不同损伤区的形成机理及分布特征。为控制和减小地应力瞬态卸荷作用对围岩的扰动,针对深埋大型洞室岩体的爆破开挖,从开挖程序和爆破网络两个方面出发,提出了具体的优化措施。
Large-scale and high-intensity excavation of wide-span underground caverns and extra-long tunnels is required in a large number of large-scaled and extra-large-scaled hydropower projects. And excavation of deep rock mass is also involved in nuclear waste deposit, communication and division tunnels, where blasting excavation is mainly adopted, there is an excavation disturbing problem in surrounding rock of deep-buried engineering.
     According to the two major factors which induce the damage of urrounding rock:blast load and in-situ stress transient unloading, problems are discussed on the action mechanism of dynamic load, dynamic response of surrounding rock, etc. It is of significance theoretical meaning and engineering application value on improving excavation methods for deep rock mass, evaluating safety level and reducing engineering cost.
     The dynamic stress field excited by blast load, in-situ stress transient unloading and the coupling effect of both them is mainly studied. And based on that, the damage area distribution characteristics is further determined.
     Based on relevant theories such as explosion mechanics, fracture mechanics, fluid mechanics, etc, adopting finite element method (FEM), the peak value, duration and process of blast load of column explosive in the borehole is calculated. According to the characteristics of the blast load, and the mechanical boundary of excavation surface in the blasting excavation process, the starting and ending moments, duration and effect process of in-situ stress transient unloading are determined.
     The strain rate distribution of the rock mass around the borehole induced by the blast load is calculated with theoretical methods. It is revealed by results that, the strain rate is high in the rock mass close to the borehole, and is rapidly decreased with the increase of the distance to the blasting source. And the decreasing rate is lower when the distance to the blasting source is longer. Rock mass dynamic problems and static problems are distinguished by strain rate. The zone division of different strength selection is determined for dynamic and static numerical simulation of surrounding rock. The potential stressed state of surrounding rock under dynamic load is comprehensively analyzed. Corresponding safety criteria is suggested for different damage pattern.
     Calculation models are put forward and built for dynamic stress field excited by different dynamic load in the surrounding rock. Adopting theoretical calculation method, the dynamic stress field excited by the in-situ stress transient unloading in surrounding rock during the excavation process of round-section tunnel in the hydrostatic stress field is studied, the influence of unloading duration, rock mass medium features, etc, is analyzed. The results show that the transient unloading of in-situ stress has an obvious dynamic effect. The radial stress rapid unloading shows extra-loosening phenomenon, while shows extra-concentrating phenomenon in circumferential stress.
     Adopting Dynamic FEM, the variation curve of dynamic stress with time is calculated for the surrounding rock of caverns in different section shapes under non-uniform stress field. It is revealed by the result that, the dynamic effect of in-situ stress transient unloading is more obvious in the direction of greater stress, where greater disturbance is applied on the surrounding rock. In the same time, the cavern structure is also influencing the unloading stress field distribution. Radial tensile stress is generated on the side walls of city-gate section channel. When the corresponding excavation load on the unloading boundary is higher, the induced tensile stress in the surrounding rock would be higher.
     As for the dynamic stress field excited by the coupling of static and dynamic load, due to the high peak value and fast attenuation of blast stress wave, the coupled stress field is mainly blast stress wave in the nearby area, and unloading stress wave in the far area.
     Base on the dynamic stress distribution in the surrounding rock during the blasting excavation of deep cavern, adopting damage mechanism and relevant safety criteria for rock mass in different stressed state, the damage zone distribution effected by different dynamic load is studied. Under different in-situ stress conditions, the blast load induced damage in the surrounding rock is limited within the surface layer, which is quite shallow and is obviously influenced by the circumferential stress of the secondary stress field. Under high in-situ stress condition, the damage zone formed by in-situ stress transient unloading is larger than that of quasi-static condition, and is similar in shapes, which are determined by the secondary stress field in the surrounding rock. The final damage scale can be regarded as the coupling of the blast load induced and in-situ stress induced damage zones in the surrounding rock. And the in-situ stress transient unloading is the major cause to large-scale damage zone.
     Based on the actual monitored vibration signals in surrounding rock around the diversion tunnel of Jingping Second Cascade Hydropower Station during the excavation, adopting modulus maximum method and time-energy density method in wavelet analysis, the existence of dynamic effect of in-situ stress transient unloading in actual engineering is proved. Through tests and numerical calculation on damage zone induced by blasting excavation in auxiliary tunnel at Jingping Second Cascade Hydropower Station, the surrounding rock damage induced by in-situ stress transient unloading and in-situ stress redistribution (in-situ stress quasi-statically unloaded) are compared, and the formation mechanism and distribution of different damage zones are analyzed. In order to control and reduce the disturbance of in-situ stress transient unloading in surrounding rock, specific optimizing measures are suggested on both excavation procedure and blasting network in the excavation of deep-buried and large-scale caverns.
引文
[1]何满潮,谢和平,彭苏萍等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2813;
    [2]王学潮,马国彦.南水北调西线工程及其主要工程地质问题[J].工程地质学报,2002,10(1):38-45;
    [3]李焯芬,王可钧.高水平地应力对岩石工程的影响[J].岩石力学与工程学报,1996,15(1):26-31;
    [4]贾愚如,范正绮.水工地下洞室中的岩爆机制与判据[J].水力发电,1990,(6):30-34;
    [5]蔡德文.二滩地下厂房围岩的变形特征[J].水电站设计,2000,16(4):54-61;
    [6]李正刚.二滩水电站地下厂房系统洞室围岩变形研究[J].四川水力发电,2004,23(1):43-47;
    [7]卢文波,陈明,严鹏等.高地应力条件下隧洞开挖诱发围岩振动特性研究[J].岩石力学与工程学报,2007,26(s1):3329-3334;
    [8]卢文波,周创兵,陈明等.开挖卸荷的瞬态特性研究[J].岩石力学与工程学报,2008,27(11):2184-2192;
    [9]严鹏.岩体开挖动态卸载诱发振动机理研究[D].武汉:武汉大学博士学位论文,2008;
    [10]吉小明.隧道开挖的围岩损伤扰动带分析[J].岩石力学与工程学报,2005,24(10):1697-1702;
    [11]Martino J.B & Chandler N.A. Excavation-induced damage studies at the Underground Research Laboratory[J]. International Journal of Rock Mechanics & Mining Sciences,2004,41(8):1413-1426;
    [12]Crouch S L & Fairhurst C F. Analysis of rock mass deformations due to excavation[J]. ASTM Special Technical Publication,1973, v3, Detroit, MI, USA;
    [13]Cook N G W. Seismicity associated with mining[J]. Engineering Geology,1976,10(2):99-122;
    [14]Walsh, Joseph B. Energy changes due to mining[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, v 14, n 1, Jan,1977:25-33;
    [15]Heuze F E, Patrick W C, Butkovich T R, et al. Rock mechanics studies of mining in the climax granite[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1982,19(4):167-183;
    [16]Kalkani E C. Excavation in unloading effect in rock wedge stability analysis[J]. Canadian Geotechnical Journal,1977,14(2):258-262;
    [17]Lodus E V. Stressed state and stress relaxation in rocks. Soviet Mining Science 1986,22(2):83-89 Ponomarenko, P I. Investigation of the advance unloading of a rock mass on three-dimensional models [J]. Soviet Mining Science.1989,24(4):301-304;
    [18]Read R S, Martin, C D. Monitoring the excavation-induced response of granite[C]. U.S. Symposium on Rock Mechanics,//Rock Mechanics Proceedings of the 33rd U.S. Symposium,1991:201;
    [19]Nguyen T S, Borgesson L, Chijimatsu M, et al. Hydro-mechanical response of a fractured granitic rock mass to excavation of a test pit-the Kamaishi Mine experiment in Japan[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(1):79-84;
    [20]Sayers C M. Orientation of microcracks formed in rocks during strain relaxation[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1990,27(5):437-439;
    [21]Pettittt W S, Young R P & Marsden J R. Investigating the mechanics of microcrack damage induced under true-triaxial unloading[C].//Proceedings of the SPE/ISRM Rock Mechanics in Petroleum Engineering Conference,1998,Soc Pet Eng (SPE),v1:509-517;
    [22]Diederichs M S & Kaiser P K. Tensile strength and abutment relaxation as failure control mechanisms in underground excavations [J]. Int. J.Rock Mech. Min. Sci.,1999,36(1):69-96;
    [23]Enqelder T & Plumb R. Changes in in-situ ultrasonic properties of rock on strain relaxation [J]. Int. J. Rock Mech. Min. Sci.& Geo,1984,21(2):75-82;
    [24]Bossart P, Meier, P M, at al. Geological and hydraulic characterisation of the excavation disturbed zone in the Opalinus Clay of the Mont Terri Rock Laboratory [J]. Eng. Geol.,2002,66:19-38;
    [25]Mitaim S, Detournay E. Damage around a cylindrical opening in a brittle rock mass [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1447-1457;
    [26]Nozhin A F. Use of the method of limiting equilibrium to calculating parameters of the unloading zone in the rim of deep quarries[J]. Soviet Mining Science,1985,21(5):405-409;
    [27]Molinero J, Samper J and Juanes R. Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks[J].Engineering Geology,2002,64(4):369-386;
    [28]Maejima T, Morioka, H, Mori T, Aoki K. Evaluation of loosened zones on excavation of a large underground rock cavern and application of observational construction techniques [J]. Tunnel. Undergr. Space Technol.2003,18:223-232;
    [29]Maxwell S C, Young R P. Seismic imaging of rock mass responses to excavation [J],International Journal of Rock Mechanics and Mining Sciences,1996,33(7):713-724;
    [30]Maxwell S C, Young R P, Read R S. A micro-velocity tool to assess the excavation damaged zone [J]. Int. J. Rock Mech. Min. Sci.1998,35(2):235-247;
    [31]Young R P, Collins D S. Seismic studies of rock fracture at the Underground Research Laboratory [J], Canada. Int. J. Rock Mech. Min. Sci.2001,8 (6):787-799;
    [32]Spivak A A. Relaxation Monitoring and Diagnostics of Rock Massifs [J]. Journal of Mining Science, 1994,30(5):418;
    [33]Backblom G & Martin C D. Recent experiments in hard rocks to study the excavation response: Implications for the performance of a nuclear waste geological repository [J]. Tunnelling and Underground Space Technology,1999,14(3):377-394;
    [34]Read R S.20 years of excavation response studies at AECL's Underground Research Laboratory [J]. International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1251-1275;
    [35]Kaiser P K, Zou Daihua, Lang P A. Stress determination by back-analysis of excavation-induced stress changes. A case study [J]. Rock Mechanics and Rock Engineering,1990,23(3):185-200;
    [36]Cai M, Kaiser PK, Martin CD. Quantification of rock mass damage in underground excavations from microseismic event monitoring [J]. Int. J. Rock Mech. Min. Sci.2001,38:1135-1145;
    [37]Cai M, Kaiser, P K Tasaka, Y Maejima, et al. Generalized crack initiation and crack damage stress thresholds of brittle rock masses near underground excavations. Int. J. Rock Mech. Min. Sci.2004, 41(5):833-847;
    [38]Martin C D, Kaiser P K, McCreath D R. Hoek-Brown parameters for predicting the depth of brittle failure around tunnel[J]. Canadian Geotechnical Journal,1999,36(1):136-151;
    [39]Kesall P C, Case J B & Chabannes C R. Evaluation of excavation-induced changes in rock permeability [J]. Int. J. Rock Mech. Min. Sci.& Geo.,1984,21(3):123-135;
    [40]哈秋舲.岩石边坡工程与卸载非线性岩石力学[J].岩石力学与工程学报.1997,16(4):386-391;
    [41]哈秋舲.岩体工程与岩体力学仿真分析-各向异性开挖卸载岩体力学研究[J].岩土工程学报,2001,23(6):664-668;
    [42]李天斌,王兰生.卸载应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报,1993,12(4):321-327;
    [43]吴刚,孙钧等.卸载应力状态下裂隙岩体的变形和强度特性[J].岩石力学与工程学报,1998,17(6):615-621:
    [44]陶履彬,夏才初,陆益鸣.三峡工程花岗岩卸载全过程特性的试验研究[J].同济大学学报,1998,26(3):330-334;
    [45]尤明庆,苏承东等.岩石试样的加载卸载过程及杨氏模量[J].岩土工程学报,2001,23(5):588-592;
    [46]沈军辉,王兰生,王青海等.卸荷岩体的变形破裂特征[J].岩石力学与工程学报,2003,22(12):2028-2031
    [47]任建喜等.岩石卸载损伤演化机理CT实时分析[J].岩石力学与工程学报,2000,19(6):697-701;
    [48]任建喜,葛修润等.节理岩石卸载损伤破坏过程CT实时检测[J].岩土力学,2002,23(5):575-578;
    [49]任建喜.冻结裂隙岩石加卸载破坏机理CT实时试验[J].岩土工程学报,2004,26(5):641-644;
    [50]陈忠辉,林忠明等.三维应力状态下岩石损伤破坏的卸载效应[J].煤炭学报,2004,29(1):31-35;
    [51]王贤能,黄润秋.岩石卸荷破坏特征与岩爆效应[J].山地研究,1998,16(4):281-285;
    [52]黄润秋,林峰等.岩质高边坡卸载带形成及其工程性状研究[J].工程地质学报.2001,9(3):227-232;
    [53]李建林,孟庆义.卸载岩体的各向异性研究[J].岩石力学与工程学报,2001,20(3):338-341;
    [54]周维垣,杨若琼,剡公瑞.岩体边坡非连续非线性卸载及流变分析[J].岩石力学与工程学报,1997,16(3):210-216;
    [55]张强勇,朱维申,陈卫忠.三峡船闸高边坡开挖卸载弹塑性损伤分析[J].水利学报,1998,(8):7-13;
    [56]徐平等.高边坡岩体开挖卸载效应流变数值分析[J].岩石力学与工程学报,2000,19(4):481-484;
    [57]盛谦,丁秀丽,冯夏庭等.三峡船闸高边坡考虑开挖卸载效应的位移反分析[J].岩石力学与工程学报,2000,19(s):987-993;
    [58]Cook M A,Cook U D,etal. Behavior of Rock during Blasting[J]. Trans.Soci. Min.Engrs,1966:17-25;
    [59]Abuov M G, Aitaliev S M, et al. Studies of the effect of dynamic processes during explosive break-out upon the roof of mining excavations[J]. Soviet Mining Science,1989,24(6):581-590;
    [60]Carter J P & Booker J R. Sudden Excavation of a Long Circular Tunnel in Elastic Ground [J]. Int J Rock Min Sci & Geomech Abstr,1990,27(2):129-132;
    [61]罗先启,舒茂修.岩爆的动力断裂判据—D判据[J].中国地质灾害与防治学报,1996,7(2):1-5;
    [62]王贤能,黄润秋.动力扰动对岩爆的影响分析[J].山地研究,1998,16(3):188-192;
    [63]张黎明,王在泉,贺俊征等.卸荷条件下岩爆机理的试验研究[J].岩石力学与工程学报,2005,24(s1):4769-4773;
    [64]徐则民,黄润秋,罗杏春等.静荷理论在岩爆研究中的局限性及岩爆岩石动力学机理的初步研究[J].岩石力学与工程学报,2003,22(8):1255-1262;
    [65]徐则民,黄润秋,范柱国等.长大隧道岩爆灾害研究进展[J].自然灾害学报,2004,13(2):16-19;
    [66]严鹏,卢文波,许红涛.高地应力条件下隧洞开挖动态卸荷的破坏机制初探[J].爆炸与冲击,2007,27(3):283-288;
    [67]金李.节理岩体开挖动态卸荷松动机理研究[D].武汉:武汉大学博士学位论文,2009;
    [68]高文学,刘运通,杨军.脆性岩石冲击损伤模型研究[J].岩石力学与工程学报,2000,19(2):153-156;
    [69]Kipp M.E., Grady D.E. Numerical studies of rock framentation[R].Sandia National Laboratories, Albuquerque NM.SAND79-1852,1978;
    [70]Grady D.E., Kipp M.E. Continuum modeling of explosive fracture in oil shale[J]. International Journal of Rock Mechanics and Mining Science Geomech Abstr.1980,(17):147-157;
    [71]Grady D.E. The mechanics of fracture under hugh-rate stress loading[A].Bazant Z.P.,ed.Preprints of the William Prager Symposium on mechanics of Geomaterials Rocks Concretes and Soils[C]. Northwestern University Evanstan IL,1983;
    [72]Grady D.E., Kipp M.E. Dynamics rock fragmentation[A].Atkinson B.K.,ed.Fracture Mechnics of Rock[C].Academic Press,London,1987,429-475;
    [73]Taylor L M, Chen E P, Kuszmaul J S. Microcrack-induced damage accumulation in brittle rock under dynamic loading[J].Computer Method in Applied Mechanics and Engineering,1986,55(3):301-320;
    [74]Budiansky B, O'Connel R J. Elastic moduli of a cracked solid[J].International Journal of Solids and Structures,1976,12:81-97;
    [75]Kuszmaul J S. A new constitutive model for fragmentation of rock under dynamic loading[C]. Proceedings of the 2nd International Symposium on Rock Fragmentation by Blasting.Columbia, USA:[s.n.],1987:412-423;
    [76]Thorne B.J, Hommer P.J, Brown B. Experimental and computational investigation of the fundamental mechanisms of cratering[C].Proceedings of the 3rd International Symposium on Rock Fragmentation by Blasting.Brisbane,Australia:[s.n.],1990:26-31;
    [77]Yang R, Bawden W.F., Katsabanis P.D. A new constitutive model for blast damager[J].International Journal of Rock Mechanics and Mining Science,1996,33:245-254;
    [78]王家来,孟益平,程玉生.岩体爆破的动静作用耦合分析[J].山东矿业学院学报,1996,15(2):140-148;
    [79]李宁,陈蕴生,韩火亘.岩石在爆振下的动力损伤特性研究[J].工程爆破,1997,3(2):17-22;
    [80]杨军,金乾坤,黄风雷.岩石爆破理论模型及数值计算[M].科学出版社,1999;
    [81]张继春.节理岩体爆破的损伤机理及其块度模型[J].中国有色金属学报,1999,9(3):667-671;
    [82]杨小林,王树仁.岩石爆破损伤断裂的细观机理[J].爆炸与冲击,2000,20(3):247-252;
    [83]杨小林,王梦恕.爆生气体作用下岩石裂纹的扩展机理[J].爆炸与冲击,2001,21(2):111-116;
    [84]单仁亮,薛友松,张倩.岩石动态破坏的时效损伤本构模型[J].岩石力学与工程学报,2003,22(11):1771-1776;
    [85]王家来,徐颖.应力波对岩体的损伤作用和爆生裂纹传播[J].爆炸与冲击,1995,15(3):212-216;
    [86]凌建明,孙钧.建立在损伤应变空间的岩体破坏准则[J].同济大学学报,1995,23(5):483-487;
    [87]蔡德所,张继春,刘浩吾等.圈定岩体爆破损伤范围德声层析成像技术[J].岩土工程学报,1997,19(6):11-15;
    [88]杨小林.岩石爆破损伤断裂的细观机理及其力学特性研究[D].北京:中国矿业大学北京校区博士学位论文,1999;
    [89]李俊如,夏祥,李海波等.核电站基岩爆破开挖损伤区研究[J].岩石力学与工程学报,2005,24(s1):4674-4678;
    [90]夏祥,李俊如,李海波等.广东岭澳核电站爆破开挖岩体损伤特征研究[J].岩石力学与工程学报,2007,26(12):2510-2516;
    [91]杨更社,谢定义,张长庆.岩石单轴受力CT识别损伤本构关系的探讨[J].岩土力学,1997,18(2):29-34;
    [92]葛修润,任建喜,蒲毅彬等.煤岩三轴细观损伤演化规律的CT动态试验[J].岩石力学与工程学报,1999,18(5):497-502;
    [93]朱传云,喻胜春.爆破引起岩体损伤的判别方法研究[J].工程爆破,2001,7(1):12-16;
    [94]赫建明,赵学亮,柳崇伟.爆炸冲击作用导致岩体损伤的模型试验研究[J].西安科技学院学报,2004,24(1):49-52;
    [95]Swanson S.R. An Observation of Loading Path Independence of Fracture Rock,Int.J.Rock Mech.Min.Sci.,Vol.8,No.3,1971;
    [96]Crouch S.L. A Note on Post-Failure Stress-Strain Path Dependence in Norite, Int.J.Rock Mech.Min.Sci.,Vol.9,No.2,1972:277-281;
    [97]陈颙,姚孝新,耿乃光.应力路径、岩石的强度和体积膨胀[J].中国科学,1979,(11):1093-1100;
    [98]耿乃光,陈颙,姚孝新.岩石强度与应力途径[J].力学学报,1981,(5):525-527;
    [99]陈旦熹,戴冠一.三向应力状态下大理岩压缩变形试验研究[J].岩土力学,1982,3(1):27-44;
    [100]吴玉山,李纪鼎.大理岩卸载力学特性的研究[J].岩土力学,1984,5(1):29-36;
    [101]Mogi K. Pressure dependence of rock strength and transition from brittle fracture to ductile flow[J]. Bulletin of the Earthquake Research Institute,1966,44(1):215-232;
    [102]Hoek E, Brown E T. Strength of jointed rock masses[J].Geotechnique,1983,33(3):157-223;
    [103]Hoek E, Brown E T. Practical estimates of rock masses strength[J].International Journal of Rock Mechanics and Mining Sciences,1997,34(8):1165-1186;
    [104]Yu Mao-hong, Zan Yue-wen, ZHAO Jian,et al. A unified strength criterion for rock material[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39(8):975-989;
    [105]Aubertinm, Lil, Simon R. A multiaxial stress criterion for short-and long-term strength of isotropic rock media[J]. International Journal of Rock Mechanics and Mining Sciences,2000,37(8):1169-1193;
    [106]许东俊,耿乃光.岩体变形和破坏的各种应力途径[J].岩土力学,1986,7(2):17-25;
    [107]Hudson J.A.岩石力学原理[J].岩石力学与工程学报,1989,8(3):252-258;
    [108]吴刚.岩体在加卸荷条件下破坏效应的对比分析[J].岩土力学,1997,18(2):13-16;
    [109]赵明阶,吴德伦.单轴受荷条件下岩石的声学特性模型与试验研究[J].岩土工程学报,1999,21(5):697-701;
    [110]王在泉,华安增.加卸荷条件下岩石变形及三轴强度研究[J].河海大学学报.2001,12:10-12;
    [111]任旭朋.围压卸荷诱发岩石破坏机理研究[D].沈阳:东北大学硕士学位论文,2004;
    [112]高春玉,徐进,何鹏等.大理岩加卸载力学特性的研究[J].岩石力学与工程学报,2005,24(3),3456-460;
    [113]杨善元.岩石爆破动力学基础[M].煤炭工业出版社.1991;
    [114]张正宇,刘颖,张文煊.东风水电站地下厂房爆破振动效应的研究[A].工程爆破文集(第五辑)[C].1993,299-305;
    [115]易长平,卢文波等.岩体开挖过程初始应力的动态卸载效应研究[J].岩石力学与工程学报,2005,24(s1):4750-4754;
    [116]Wen-bo Lu, Peng Yan, Chuang-bin Zhou. Dynamic Effect Induced by the Sudden Unloading of Initial Stress during Rock Excavation by Blasting[C].//Proc.4th ARMS,2006,11;
    [117]Lu Wen-bo, Chenming, Peng Yan, Study on the characteristics of vibration induced by tunnel excavation under middle to high in-situ stress[C],//Proceedings of the Asian-Pacific Symposium on blasting techniques(2007), Metallurgical industry press,2007, Kunming;
    [118]Chen S G, Zhao J, Zhou Y X. UDEC modeling of a field explosion test[J]. International journal of Blasting and Fragmentation,2000,(4):149-163;
    [119]J.Henrych. The Dynamics of Explosion and Its Use[M].New York:Elsevier Scientific Publishing Company,1979;
    [120]高金臣.爆破荷载在岩体中引起应力波的传播理论与试验研究[D].北京:中国矿业大学博士学问论文,1987;
    [121]戴俊.柱状装药爆破的岩石压碎圈与裂隙圈计算[J].辽宁工程技术大学学报(自然科学版),2001,20(20):144-147;
    [122]徐颖,丁光亚,宗琦等.爆炸应力波的波动特征及其能量分布研究[J].金属矿山,2002,(2):23-16;
    [123]王文龙.钻眼爆破[M].北京:煤炭工业出版社,1984;
    [124]张正宇,张文煊等.现代水利水电工程爆破[M].北京:中国水利水电出版社,2003;
    [125]张建华等.爆炸扩腔数值模拟及分析[J].武汉科技大学学报(自然科学版),2001,24(2):174-177;
    [126]朱瑞庚,王雪锋.不耦合装药爆破孔壁压力的计算(一)[J].爆破,1990,7(3):1-4;
    [127]Donze F.V, Bouchez J., Magnier S.A. Modeling Fractures in Rock Blasting[J].International Journal of Rock Mechanics and Mining Science.1997,34(8):1152-1163;
    [128]Kutter H.K., Fairhurst C. On the fracture process in blasting[J]. International Journal of Rock Mechanics and Mining Science.1971,8:181-202;
    [129]陶振宇,董振华,卢文波.敞口炮孔压力变化历程的理论分析与计算[J].武汉水利电力大学学报,1994,27(4):394-399;
    [130]Sharp,J.A. The production of elastic waves by explosion pressures.Theory and empirical field observation[J].Geophys,1942,7:144-154;
    [131]李宁,G.Swoboda.爆破荷载的数值模拟与应用[J].岩石力学与工程学报,1994,13(4):357-364;
    [132]夏祥,李俊如,李海波等.爆炸荷载作用下岩体振动特性的数值模拟[J].岩土力学,2005,26(1):50-56;
    [133]赵海鸥.LS-DYNA动力分析指南[M].北京:兵器工业出版社,2003;
    [134]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA 8.1进行显示动态分析[M].北京:清华大学出版社,2004;
    [135]白金泽.LS-DYNA3D理论基础与实例分析[M].北京:科学出版社,2005;
    [136]陈明,卢文波,周创兵.围岩应力重分布对隧洞爆生裂隙区比例半径的影响[J].爆炸与冲击:2009,29(3):328-332;
    [137]Livermore Software Technology Corporation. LS-DYNA Keyword user's manual[M]. California, U.S.A.,2003;
    [138]Hanchak S.J., Forrsetal M.J., Young E.R. Perforation of concrete slab with 48Mpa and 140Mpa unconfined compressive strengths[J].Int.J.Impact Engng.,1992,12(1):1-7;
    [139]Holmquist T.,Johnson G,Cook W. A computational constitutive model for concrete sunjected to large strains, high strain rates and high pressures[A].In:Proc.14th Int.Ballistics[C].Quebec:[s.n.],1995: 591-600;
    [140]鞠杨,夏昌敬,谢和平等.爆炸荷载作用夏煤岩巷道底板破坏的数值分析[J].岩石力学工程学报,2004,23(21):3664-3668;
    [141]鞠杨,夏昌敬,谢和平.爆炸波在岩体巷道中传播和能量耗散的数值分析[J].弹道学报,2005,17(4):1-5;
    [142]夏昌敬,鞠杨,谢和平.爆炸荷载作用下岩石损伤与能量耗散的数值分析[J].弹道学报,2006,18(3),2006,18(3):1-4;
    [143]黄宜胜,李建林,张立君,盛玉国等.岩质边坡开挖卸荷非线弹性本构模型研究[J].中国农村水利水电,2009,7:76-79;
    [144]刘殿书,杨吕俊,谢夫海等.非自由场中的爆破破碎数值模拟[J].建井技术,1999,20(5):21-23;
    [145]李夕兵,古德生.岩石冲击动力学研究内容及其应用[J].西部探矿工程,1996,8(6):1-2;
    [146]黄理兴,陈奕柏.我国岩石动力学研究状况与发展[J].岩石力学与工程学报,2003,22(11):1881-1886;
    [147]王礼立.应力波基础[M].国防工业出版社.1983;
    [148]于亚伦.岩石动力学[M].北京:北京科技大学出版社,1990;
    [149]李夕兵,古德生.岩石冲击动力学[M].长沙:中南工业大学出版社,1994;
    [150]王武林,刘远惠,陆以璐等.RDT—10000型岩石高压动力三轴仪的研制[J].岩土力学,1989,10(2):69-82;
    [151]Brace W.F., Martin R.J. A test of the law of effective stress for crystalline rock of low porosity[J].International Journal of Rock Mechanics and Mining Science,1968,5:415-426;
    [152]Chong K.P., Hoyt P.M., Smith J.W. Effects of strain rate on oil shale fracturing[J]. International Journal of Rock Mechanics and Mining Science,1980,17:35-43;
    [153]于亚伦.高应变率下的岩石动载特性[J].北京科技大学学报,1992,14(2):128-134;
    [154]于亚伦.高应变率下的岩石动载特性对爆破效果的影响[J].岩石力学与工程学报,1993,12(4):345-352;
    [155]Grady D.E. Shock wave properties of brittle solids[A].In:Schmidt Sed.Shock Compression of Condensed Matters[C].New York:AIP Press,1996;
    [156]李海波,赵坚,李俊如等.三轴情况下花岗岩动态力学特性的试验研究[J].爆炸与冲击,2004,24(5):470-474;
    [157]鞠庆海,吴绵拔.岩石材料的三轴压缩动力特性的试验研究[J].岩土工程学报,1993,15(3):72-80;
    [158]Yang C.H., Li T.J. The strain rate dependent mechanical properties of marble and its constitutive relation[A].Int Conf Computational Methods in Structural and Geotechnical Engineering[C].Hongkong,1994:1350-1354;
    [159]Lajtai E.Z., Scott Duncan E.J., Carter B.J. The effect of strain rate on rock strength[J].Rock Mechanics and Rock Engineering,1991,24:99-109;
    [160]吴绵拔,刘远惠.龙门石灰岩动力特性试验研究[J].岩石力学与工程,1996,15:415-429;
    [161]王武林,黄理兴,吕同生.用拉格朗日多点测量和分析法确定岩石的动力本构关系[A].复杂岩石中的建筑物[C].北京:科学出版社,1986;
    [162]信里田,何翔,苏敏.强冲击荷载下岩石的力学性质[J].岩体工程学报,1996,18(6):61-68;
    [163]高文学,杨军,黄风雷.强冲击荷载下岩石本构关系研究[J].北京理工大学学报,2000,20(2):165-170;
    [164]YANG Jun,Gao Wen-xue,JIN Qian-kun.Expertmental Study on Dynamic Properties of Rocks under Dynamic Loading[J].Journal of Beijing Institute of Technology,2000,9(3):243-248;
    [165]席道瑛.大理岩和砂岩动态本构的实验研究[J].爆炸与冲击,1995,(3):33-38;
    [166]单仁亮.花岗岩单轴冲击全程本构特性的实验研究[J].爆炸与冲击,2000,(1):41-46;
    [167]杨春和.地质材料率相关的内变量本构理论的研究[J].岩体力学,1992,13(1):74-80;
    [168]王家来.应力波对岩石的损伤及其在成缝中的作用[J].爆破,1995:6-8;
    [169]杨军,金乾坤.应力波衰减基础上的岩石爆破损伤模型[J].爆炸与冲击,2000,20(3):241-245;
    [170]高凌天.冲击荷载下各向异性体内的应力波传播、损伤及破坏[D].大连:大连理工大学硕士学位论文,2002;
    [171]李祥龙,刘殿书,董星等.岩石材料损伤与应力波参数关系研究[J].爆破,2009,26(3):6-9;
    [172]Tedsco J.W., Landis D.W. Wave propagation through layered systems[J].Compute Structure, 1989,26:625-638;
    [173]王明洋,钱七虎.爆炸应力波通过节理裂隙带的衰减规律[J].岩土工程学报,1995,17(2):42-46;
    [174]崔新状.爆炸应力波在各向同性损伤岩体中的衰减规律研究[J].爆炸与冲击,19985,(3):25-30;
    [175]Han C, Sun C T. Attenuation of stress wave propagation in periodically layered elastic media[J]. Journal of Sound and Vibration,2001,243(4):747-761;
    [176]卢文波.三峡工程岩石基础开挖爆破振动控制安全标准[J].爆炸与冲击,2001,(1):27-32;
    [177]许红涛.岩石高边坡爆破动力稳定性研究[D].武汉:武汉大学.博士学位论文,2006;
    [178]陈明.爆破振动对新浇筑混凝土结构的影响研究[D].武汉:武汉大学.博士学位论文,2006;
    [179]Olsson.W.A. The compressive stength of tuff as a function of strain rate from 10-6 to 103s-1[J]. Int. J. Rock Mech. Min. Sci.& Geomech. Abstr.1991,28(1):115-118;
    [180]J.LANKFORD. The Role of Tensile Microfracture in the Strain Rate Dependence of Compressive Strength of Fine-Grained Limestone-Analogy with Strong Ceramics.Int.J.Rock Mech.Min Sci.&Geomech.Abstr.1981,(18):173-175;
    [181]周维垣.高等岩石力学[M].北京:水利电力出版社,1989;
    [182]颜事龙,徐颖.水耦合装药爆破破岩机理的数值模拟研[J].地下空间与工程学报,2005,1(6):921-924;
    [183]罗云滚,罗强,宗琦.炮孔水耦合装药爆破破岩机理研究[J].安徽理工大学学报(自然科学版),2004,(24):60-63;
    [184]夏祥.爆炸荷载作用下岩体损伤特征及安全阀值研究[D].武汉:中科院武汉岩土力学研究所博士学位论文,2006;
    [185]杨桂通,张善元.弹性动力学[M].中国铁道出版社,1988;
    [186]刘式适,刘式达.特殊函数[M].北京:气象出版社,1988;
    [187]哈秋舲,李建林,张永兴等.节理岩体卸荷非线性岩体力学[M].北京:中国建筑工业出版社,1998;
    [188]徐国元,古德生,陈寿如.爆破破岩机理的实验研究[J].中南工业大学学报,1997,28(6):522-525;
    [189]许红涛.岩石爆破动态卸载机理及震动效应研究[D].武汉:武汉大学硕士学位论文,2003;
    [190]孙广忠.岩石力学基础[M].北京:科学出版社,1981;
    [191]许东俊,章光,李廷芥等.岩爆应力状态研究[J].岩石力学与工程学报,2000,19(2):169-172;
    [192]祝启虎,卢文波,孙金山.基于能量原理的岩爆机理及应力状态分析[J].武汉大学学报(工学版),2007,40(2):82-87;
    [193]J.N.Edl Jr,应力波在爆炸引起的岩石膨胀移动过程中的作用[A].//第一届爆破破岩国际会议论文集[C].长沙:中国长沙岩石力学工程技术咨询公司,1985,32-40;
    [194]卢文波,金李等.节理岩体爆破开挖过程的动态卸载松动机理研究[J].岩石力学与工程学报,2005,24(s1):4653-4657;
    [195]钱七虎,戚承志.岩石、岩石的动力强度与动力破坏准则[J].同济大学学报(自然科学版).2008,36(12):1599-1605;
    [196]易长平.爆破振动对地下洞室的影响研究[D].武汉:武汉大学.博士学位论文,2005;
    [197]宗琦.岩石内爆炸应力波破裂半径的计算[J].爆破,1993,(1):15-17;
    [198]Yang Jun, Liu Guo-Zheng, Lv Shu-Ran. Study on vibration effects of decked charge in bench blasting. Science and Technology of Energy Materials,v65,n2,2004:29-33;
    [199]J.Miklowitz,Plane-Stress Unloading Waves Emanating From a Suddenly Punched Hole in a Stretched Elastic Plate[J], Jounal of Applied Mechanics 27 (1960),165-171;
    [200]于学馥,郑颖人,刘怀恒等.地下工程围岩稳定性分析[M].北京:煤炭工业出版社,1983;
    [201]潘昌实.隧道力学数值方法[M].北京:中国铁道出版社,1995;
    [202]Hagan T N. Rock breakage by explosives[J]. Acta Astron.1979,(6):329-340;
    [203]高尔新,杨仁树.爆破工程[M].北京:中国矿业大学出版社,1999;
    [204]高金石,张继春.爆破破岩机理动力分析[J].金属矿山,1989,(9):6-12;
    [205]A.H.哈努卡耶夫.矿岩爆破物理过程[M].刘殿中译.北京:冶金业出版社,1980;
    [206]肖正学,张志呈,李端明.初始应力场对爆破效果的影响[J].煤炭学报,1996,21(5):497-501;
    [207]张志呈,肖正学,胡健等.岩体爆震传播时应力场的波导效应试验研究[J].化工矿物与加工,2005(7):21-24;
    [208]严鹏,卢文波,单治钢等.深埋隧洞爆破开挖损伤区检测及特性研究[J].岩石力学与工程,2009,28(8):1552-1561;
    [209]Kwon.S, Lee.C.S., Cho.S.J., et al. An investigation of the excavation damaged zone at the KAERI underground research tunnel. Tunnelling and underground space technology,2009,24(1):1-13;
    [210]陈秀铜,李璐.锦屏二级水电站引水隧洞区域三维初始地应力场反演回归分析[J].水文地质工程地质,2007,6:55-58;
    [211]陈国庆,冯夏庭,周辉,等.锦屏二级水电站引水隧洞长期稳定性数值分析[J].岩土力学,2007,28(10):417-422;
    [212]Barton A. A.N. TBM Tunneling in Jointed and Faulted Rock[M].Rotterdam:Balkema,2000:61-64;
    [213]Zhang Jingjian, Li Dianhuang, Xue Jihong, et al. Application of TBM in long distance tunnels and measurement of main rock mechanical problems [A]. In:Wang Sijing, Yang Zhifa, Fu Bingjun ed. Chinese Rock Mechanics and Engineering-achievements in Century[C].Nanjing:Hohai University Press,2004.582-597;
    [214]薛备芳.掘进机开挖法与钻爆法对围岩稳定性影响比较[J].水利电力施工机械,1995,17(4):16-17;
    [215]杨海霞.地下洞室全过程忧化设计建模理论与分析方法[D].南京:河海大学博士学位论文,2002;
    [216]蒋键,周宇.大型洞室群开挖爆破技术[J].工程爆破.2003,9(1):38-42;
    [217]苏鹏云.瀑布沟地下厂房优化设计和洞室群围岩稳定数值模拟分析[D].武汉:武汉大学硕士学位论文,2004;
    [218]华安增.地下工程周围岩体能量分析[J].岩石力学与工程学报,2003,22(7):1054-1059;
    [219]龚光伟.东风水电站地下厂房区原岩应力场及第一主应力的论证[J].水利水电技术,1990,(2):32-39;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700