用户名: 密码: 验证码:
囊泡转运及重大疾病相关膜蛋白的纯化方法与蛋白性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
囊泡转运和融合过程作为细胞生长繁殖的基本特征之一,在蛋白上膜及分泌途径中发挥重要的功能。囊泡的转运和分泌在各个阶段都需要一系列具有特殊功能的蛋白质的参与。Munc13-1在细胞中囊泡的启动分泌阶段发挥着重要作用。Exocyst复合物在囊泡的拴系和锚定过程中同样不可或缺。目前,对此类蛋白的性质和特征以及蛋白的三维晶体结构的研究有利于我们深入了解它们在囊泡转运过程中的分子作用机制。本文采用原核表达体系和层析技术表达纯化了一系列具有结构功能特征的Munc13-1缺失突变体,结合圆二色光谱,动态光散射和分析超速离心等体外蛋白研究技术对各缺失突变体蛋白的性质进行了系统的分析和比较。Munc13-1各缺失体蛋白的聚合状态,颗粒均一性及蛋白稳定性都存在着显著的差异。根据圆二色光谱和分析超速离心实验结果,我们首次发现了Munc13-1蛋白在溶液中的长棒状伸展螺旋束构象结构。结合同源建模构建了Munc13-1蛋白在体内以单体方式发挥功能的模型。Exocyst复合物的亚基蛋白Sec10的体外表达纯化研究发现,Sec10蛋白本身作为一个相对折叠紧密的结构来发挥功能,蛋白N端或者C端氨基酸的部分缺失都不可避免的导致了Sec10在表达过程中的错误折叠,形成包涵体。电镜分析发现了聚合的Sec10蛋白大部分以球形结构存在。
     GABAB受体属于G蛋白偶联受体中的C蛋白家族,与各类神经和精神错乱疾病有关。我们通过低温表达和包涵体变性复性实验得到了可用于结晶的具有药物结合靶点活性的胞外蛋白片断。葡萄糖转运蛋白GLUT4(Glucose Transporter 4)作为II型糖尿病领域研究中的关键蛋白,在维持体内糖平衡起到重要作用。目前世界上还未有关于体外组织大规模纯化GLUT4的相关报道。我们首次尝试选用猪脂肪作为原材料,采用组织匀浆,差速离心和硫酸铵沉淀方法初步分离纯化并获得了足够蛋白产量和纯度的GLUT4。
     膜蛋白的纯化与结晶是当前结构生物学领域里的一大难题。当前蛋白表达提取,蛋白性质优化等研究为进一步的结晶学研究打下基础。
The process of vesicle translocation and fusion, as a ubiquitous and fundamental event in the cell growth and propagation, play a critical role in proteins trafficking and secretion. A lot of critical proteins are involved in multiple steps of the process, such as Munc13-1 and Exocyst complex. Munc13-1 is an essential component controlling the vesicle priming event, whereas the Exocyst complex involves in regulating the process of vesicle terthering and docking. Recent works on these proteins properties and characters, as well as the 3D structures provided useful information for learning their molecular mechanism of function. A series of Munc13-1 truncations were rational designed based on homology and function, overexpressed in E. coli system, and purified to homogeneity with chromatography. In addition, the highα-helix contents of these constructs were measured by circular dichroism method, and their distinct oligomeric states, monodispersity and homogeneity properties were analyzed and compared by gel chromatography and analytical ultracentrifugation. Furthermore, a topology structure of long helical-bundle like of Munc13-1 and a model that Munc13 acts as a monomer in vivo were first raised by analysis of our data.
     Through the trials of overexpression and purification of Sec10, one subunit of Exocyst complex, we concluded that Sec10 folds closely with its full-length amino acids because any truncation either in the amino (N)-terminal or in the carboxyl (C)-terminal induced error-folded structures, resulting in the formation of inclusion bodies. The highly polymerized Sec10 showed globular structure in solution by electron microscope.
     GABAB Receptor belongs to class C family of G-protein coupled receptors, its function disorder results in lots of nervous diseases, such as Alzheimer, Parkinsonismus, et al. We used hypothermal expression and inclusion body denaturation/renaturation methods to express and purify enough yields of exocellular fragments of GABAB R for protein crystallization.
     Glucose transporter 4 (GLUT4), as a hot spot protein in the research of type II diabetes, has a crucial role in whole-body glucose homeostasis. To data, there has little report on the method of large-scale extraction and purification of GLUT4. High yield of GLUT4 was extracted and purified from fat tissues by methods of homogenate, differential centrifugation and ammonium sulfate precipitation. The paper developed a method of effective purification of GLUT4 from fat tissue for further protein crystallization.
     It is obvious that the bottleneck of membrane structural biology is the extraction, purification and crystallization of the membrane proteins. Recent works on the fields of trafficking and disease related membrane proteins in this paper shed new light on the further proteins crystallization.
引文
[1] Palade G. Intracellular aspects of the process of protein synthesis. Science 1975,189(4200): 347-358
    [2] Li L, Chin LS. The molecular machinery of synaptic vesicle exocytosis. Cell Mol Life Sci 2003, 60(5): 942-960
    [3] Chen H, Slepnev VI, Di Fiore PP, De Camilli P. The interaction of epsin and Eps15 with the clathrin adaptor AP-2 is inhibited by mitotic phosphorylation and enhanced by stimulation-dependent dephosphorylation in nerve terminals. J Biol Chem 1999, 274(6): 3257-3260
    [4] Slepnev VI, Ochoa GC, Butler MH, Grabs D, De Camilli P. Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science 1998, 281(5378): 821-824
    [5] Turner KM, Burgoyne RD, Morgan A. Protein phosphorylation and the regulation of synaptic membrane traffic. Trends Neurosci 1999, 22(10): 459-464
    [6] Cao X, Ballew N, Barlowe C. Initial docking of ER-derived vesicles requires Uso1p and Ypt1p but is independent of SNARE proteins. Embo J 1998, 17(8): 2156-2165
    [7] Brose N, Rosenmund C, Rettig J. Regulation of transmitter release by Unc-13 and its homologues. Curr Opin Neurobiol 2000, 10(3): 303-311
    [8] Rettig J, Neher E. Emerging roles of presynaptic proteins in Ca++-triggered exocytosis. Science 2002, 298(5594): 781-785
    [9] Xu T, Rammner B, Margittai M, Artalejo AR, Neher E, Jahn R. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 1999, 99(7): 713-722
    [10] Brose N, Hofmann K, Hata Y, Sudhof TC. Mammalian homologues of Caenorhabditis elegans unc-13 gene define novel family of C2-domain proteins. J Biol Chem 1995, 270(42): 25273-25280
    [11] Bennett MK, Scheller RH. The molecular machinery for secretion isconserved from yeast to neurons. Proc Natl Acad Sci U S A 1993, 90(7): 2559-2563
    [12] Ferro-Novick S, Jahn R. Vesicle fusion from yeast to man. Nature 1994, 370(6486): 191-193
    [13] Brunger AT. Structural insights into the molecular mechanism of Ca(2+)-dependent exocytosis. Curr Opin Neurobiol 2000, 10(3): 293-302
    [14] Rizo J, Sudhof TC. Snares and Munc18 in synaptic vesicle fusion. Nat Rev Neurosci 2002, 3(8): 641-653
    [15] Gerona RR, Larsen EC, Kowalchyk JA, Martin TF. The C terminus of SNAP25 is essential for Ca(2+)-dependent binding of synaptotagmin to SNARE complexes. J Biol Chem 2000, 275(9): 6328-6336
    [16] Chen X, Tomchick DR, Kovrigin E, Arac D, Machius M, Sudhof TC, Rizo J. Three-dimensional structure of the complexin/SNARE complex. Neuron 2002, 33(3): 397-409
    [17] Chen YA, Scales SJ, Patel SM, Doung YC, Scheller RH. SNARE complex formation is triggered by Ca2+ and drives membrane fusion. Cell 1999, 97(2): 165-174
    [18] Hanson PI, Heuser JE, Jahn R. Neurotransmitter release - four years of SNARE complexes. Curr Opin Neurobiol 1997, 7(3): 310-315
    [19] Brenner S. The genetics of Caenorhabditis elegans. Genetics 1974, 77(1): 71-94
    [20] Verhage M, Maia AS, Plomp JJ, Brussaard AB, Heeroma JH, Vermeer H, Toonen RF, Hammer RE, van den Berg TK, Missler M, Geuze HJ, Sudhof TC. Synaptic assembly of the brain in the absence of neurotransmitter secretion. Science 2000, 287(5454): 864-869
    [21] Stevens DR, Wu ZX, Matti U, Junge HJ, Schirra C, Becherer U, Wojcik SM, Brose N, Rettig J. Identification of the minimal protein domain required for priming activity of Munc13-1. Curr Biol 2005, 15(24): 2243-2248
    [22] Voets T, Toonen RF, Brian EC, de Wit H, Moser T, Rettig J, Sudhof TC, Neher E, Verhage M. Munc18-1 promotes large dense-core vesicle docking. Neuron 2001, 31(4): 581-591
    [23] Misura KM, Scheller RH, Weis WI. Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 2000, 404(6776): 355-362
    [24] Dulubova I, Khvotchev M, Liu S, Huryeva I, Sudhof TC, Rizo J. Munc18-1 binds directly to the neuronal SNARE complex. Proc Natl Acad Sci U S A 2007, 104(8): 2697-2702
    [25] Augustin I, Rosenmund C, Sudhof TC, Brose N. Munc13-1 is essential for fusion competence of glutamatergic synaptic vesicles. Nature 1999, 400(6743): 457-461
    [26] Koch H, Hofmann K, Brose N. Definition of Munc13-homology-domains and characterization of a novel ubiquitously expressed Munc13 isoform. Biochem J 2000, 349(Pt 1): 247-253
    [27] Shirakawa R, Higashi T, Tabuchi A, Yoshioka A, Nishioka H, Fukuda M, Kita T, Horiuchi H. Munc13-4 is a GTP-Rab27-binding protein regulating dense core granule secretion in platelets. J Biol Chem 2004, 279(11): 10730-10737
    [28] Betz A, Ashery U, Rickmann M, Augustin I, Neher E, Sudhof TC, Rettig J, Brose N. Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron 1998, 21(1): 123-136
    [29] Ostenson CG, Gaisano H, Sheu L, Tibell A, Bartfai T. Impaired gene and protein expression of exocytotic soluble N-ethylmaleimide attachment protein receptor complex proteins in pancreatic islets of type 2 diabetic patients. Diabetes 2006, 55(2): 435-440
    [30] Sheu L, Pasyk EA, Ji J, Huang X, Gao X, Varoqueaux F, Brose N, Gaisano HY. Regulation of insulin exocytosis by Munc13-1. J Biol Chem 2003, 278(30): 27556-27563
    [31] Rosenmund C, Sigler A, Augustin I, Reim K, Brose N, Rhee JS. Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron 2002, 33(3): 411-424
    [32] Maruyama IN, Brenner S. A phorbol ester/diacylglycerol-binding protein encoded by the unc-13 gene of Caenorhabditis elegans. Proc Natl Acad Sci U S A 1991, 88(13): 5729-5733
    [33] Rhee JS, Betz A, Pyott S, Reim K, Varoqueaux F, Augustin I, Hesse D,Sudhof TC, Takahashi M, Rosenmund C, Brose N. Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 2002, 108(1): 121-133
    [34] Colon-Gonzalez F, Kazanietz MG. C1 domains exposed: from diacylglycerol binding to protein-protein interactions. Biochim Biophys Acta 2006, 1761(8): 827-837
    [35] Silinsky EM, Searl TJ. Phorbol esters and neurotransmitter release: more than just protein kinase C? Br J Pharmacol 2003, 138(7): 1191-1201
    [36] Basu J, Shen N, Dulubova I, Lu J, Guan R, Guryev O, Grishin NV, Rosenmund C, Rizo J. A minimal domain responsible for Munc13 activity. Nat Struct Mol Biol 2005, 12(11): 1017-1018
    [37] Betz A, Okamoto M, Benseler F, Brose N. Direct interaction of the rat unc-13 homologue Munc13-1 with the N terminus of syntaxin. J Biol Chem 1997, 272(4): 2520-2526
    [38] Sassa T, Harada S, Ogawa H, Rand JB, Maruyama IN, Hosono R. Regulation of the UNC-18-Caenorhabditis elegans syntaxin complex by UNC-13. J Neurosci 1999, 19(12): 4772-4777
    [39] Duncan RR, Betz A, Shipston MJ, Brose N, Chow RH. Transient, phorbol ester-induced DOC2-Munc13 interactions in vivo. J Biol Chem 1999, 274(39): 27347-27350
    [40] Dulubova I, Lou X, Lu J, Huryeva I, Alam A, Schneggenburger R, Sudhof TC, Rizo J. A Munc13/RIM/Rab3 tripartite complex: from priming to plasticity? Embo J 2005, 24(16): 2839-2850
    [41] Schoch S, Mittelstaedt T, Kaeser PS, Padgett D, Feldmann N, Chevaleyre V, Castillo PE, Hammer RE, Han W, Schmitz F, Lin W, Sudhof TC. Redundant functions of RIM1alpha and RIM2alpha in Ca(2+)-triggered neurotransmitter release. Embo J 2006, 25(24): 5852-5863
    [42] Whyte JR, Munro S. Vesicle tethering complexes in membrane traffic. J Cell Sci 2002, 115(Pt 13): 2627-2637
    [43] Lipschutz JH, Mostov KE. Exocytosis: the many masters of the exocyst. Curr Biol 2002, 12(6): R212-214
    [44] TerBush DR, Novick P. Sec6, Sec8, and Sec15 are components of a multisubunit complex which localizes to small bud tips in Saccharomyces cerevisiae. J Cell Biol 1995, 130(2): 299-312
    [45] TerBush DR, Maurice T, Roth D, Novick P. The Exocyst is a multiprotein complex required for exocytosis in Saccharomyces cerevisiae. Embo J 1996, 15(23): 6483-6494
    [46] Novick P, Field C, Schekman R. Identification of 23 complementation groups required for post-translational events in the yeast secretory pathway. Cell 1980, 21(1): 205-215
    [47] Salminen A, Novick PJ. The Sec15 protein responds to the function of the GTP binding protein, Sec4, to control vesicular traffic in yeast. J Cell Biol 1989, 109(3): 1023-1036
    [48] Walch-Solimena C, Collins RN, Novick PJ. Sec2p mediates nucleotide exchange on Sec4p and is involved in polarized delivery of post-Golgi vesicles. J Cell Biol 1997, 137(7): 1495-1509
    [49] Grote E, Carr CM, Novick PJ. Ordering the final events in yeast exocytosis. J Cell Biol 2000, 151(2): 439-452
    [50] Boyd WD, Kiaii B, Kodera K, Rayman R, Abu-Khudair W, Fazel S, Dobkowski WB, Ganapathy S, Jablonsky G, Novick RJ. Early experience with robotically assisted internal thoracic artery harvest. Surg Laparosc Endosc Percutan Tech 2002, 12(1): 52-57
    [51] Novick P, Botstein D. Phenotypic analysis of temperature-sensitive yeast actin mutants. Cell 1985, 40(2): 405-416
    [52] Bowser R, Novick P. Sec15 protein, an essential component of the exocytotic apparatus, is associated with the plasma membrane and with a soluble 19. 5S particle. J Cell Biol 1991, 112(6): 1117-1131
    [53] Wiederkehr A, Du Y, Pypaert M, Ferro-Novick S, Novick P. Sec3p is needed for the spatial regulation of secretion and for the inheritance of the cortical endoplasmic reticulum. Mol Biol Cell 2003, 14(12): 4770-4782
    [54] Zhang X, Zajac A, Zhang J, Wang P, Li M, Murray J, TerBush D, Guo W. The critical role of Exo84p in the organization and polarized localization of theexocyst complex. J Biol Chem 2005, 280(21): 20356-20364
    [55] Vega IE, Hsu SC. The exocyst complex associates with microtubules to mediate vesicle targeting and neurite outgrowth. J Neurosci 2001, 21(11): 3839-3848
    [56] Zuo X, Zhang J, Zhang Y, Hsu SC, Zhou D, Guo W. Exo70 interacts with the Arp2/3 complex and regulates cell migration. Nat Cell Biol 2006, 8(12): 1383-1388
    [57] Adamo JE, Rossi G, Brennwald P. The Rho GTPase Rho3 has a direct role in exocytosis that is distinct from its role in actin polarity. Mol Biol Cell 1999, 10(12): 4121-4133
    [58] Murthy M, Ranjan R, Denef N, Higashi ME, Schupbach T, Schwarz TL. Sec6 mutations and the Drosophila exocyst complex. J Cell Sci 2005, 118(Pt 6): 1139-1150
    [59] Murthy M, Garza D, Scheller RH, Schwarz TL. Mutations in the exocyst component Sec5 disrupt neuronal membrane traffic, but neurotransmitter release persists. Neuron 2003, 37(3): 433-447
    [60] Murthy M, Schwarz TL. The exocyst component Sec5 is required for membrane traffic and polarity in the Drosophila ovary. Development 2004, 131(2): 377-388
    [61] Riefler GM, Balasingam G, Lucas KG, Wang S, Hsu SC, Firestein BL. Exocyst complex subunit sec8 binds to postsynaptic density protein-95 (PSD-95): a novel interaction regulated by cypin (cytosolic PSD-95 interactor). Biochem J 2003, 373(Pt 1): 49-55
    [62] Shin DM, Zhao XS, Zeng W, Mozhayeva M, Muallem S. The mammalian Sec6/8 complex interacts with Ca(2+) signaling complexes and regulates their activity. J Cell Biol 2000, 150(5): 1101-1112
    [63] Guo W, Roth D, Walch-Solimena C, Novick P. The exocyst is an effector for Sec4p, targeting secretory vesicles to sites of exocytosis. Embo J 1999, 18(4): 1071-1080
    [64] Moskalenko S, Henry DO, Rosse C, Mirey G, Camonis JH, White MA. The exocyst is a Ral effector complex. Nat Cell Biol 2002, 4(1): 66-72
    [65] Andrews HK, Zhang YQ, Trotta N, Broadie K. Drosophila sec10 is required for hormone secretion but not general exocytosis or neurotransmission. Traffic 2002, 3(12): 906-921
    [66] Prigent M, Dubois T, Raposo G, Derrien V, Tenza D, Rosse C, Camonis J, Chavrier P. ARF6 controls post-endocytic recycling through its downstream exocyst complex effector. J Cell Biol 2003, 163(5): 1111-1121
    [67] Mehta SQ, Hiesinger PR, Beronja S, Zhai RG, Schulze KL, Verstreken P, Cao Y, Zhou Y, Tepass U, Crair MC, Bellen HJ. Mutations in Drosophila sec15 reveal a function in neuronal targeting for a subset of exocyst components. Neuron 2005, 46(2): 219-232
    [68] France YE, Boyd C, Coleman J, Novick PJ. The polarity-establishment component Bem1p interacts with the exocyst complex through the Sec15p subunit. J Cell Sci 2006, 119(Pt 5): 876-888
    [69] Novick P, Guo W. Ras family therapy: Rab, Rho and Ral talk to the exocyst. Trends Cell Biol 2002, 12(6): 247-249
    [70] Robinson NG, Guo L, Imai J, Toh EA, Matsui Y, Tamanoi F. Rho3 of Saccharomyces cerevisiae, which regulates the actin cytoskeleton and exocytosis, is a GTPase which interacts with Myo2 and Exo70. Mol Cell Biol 1999, 19(5): 3580-3587
    [71] Zhang XM, Ellis S, Sriratana A, Mitchell CA, Rowe T. Sec15 is an effector for the Rab11 GTPase in mammalian cells. J Biol Chem 2004, 279(41): 43027-43034
    [72] Inoue M, Chang L, Hwang J, Chiang SH, Saltiel AR. The exocyst complex is required for targeting of Glut4 to the plasma membrane by insulin. Nature 2003, 422(6932): 629-633
    [73] Jin R, Junutula JR, Matern HT, Ervin KE, Scheller RH, Brunger AT. Exo84 and Sec5 are competitive regulatory Sec6/8 effectors to the RalA GTPase. Embo J 2005, 24(12): 2064-2074
    [74] Moskalenko S, Tong C, Rosse C, Mirey G, Formstecher E, Daviet L, Camonis J, White MA. Ral GTPases regulate exocyst assembly through dual subunit interactions. J Biol Chem 2003, 278(51): 51743-51748
    [75] Wang L, Li G, Sugita S. RalA-exocyst interaction mediates GTP-dependent exocytosis. J Biol Chem 2004, 279(19): 19875-19881
    [76] Lalli G, Hall A. Ral GTPases regulate neurite branching through GAP-43 and the exocyst complex. J Cell Biol 2005, 171(5): 857-869
    [77] Fukai S, Matern HT, Jagath JR, Scheller RH, Brunger AT. Structural basis of the interaction between RalA and Sec5, a subunit of the sec6/8 complex. Embo J 2003, 22(13): 3267-3278
    [78] Hamburger ZA, Hamburger AE, West AP, Jr., Weis WI. Crystal structure of the S. cerevisiae exocyst component Exo70p. J Mol Biol 2006, 356(1): 9-21
    [79] Dong G, Hutagalung AH, Fu C, Novick P, Reinisch KM. The structures of exocyst subunit Exo70p and the Exo84p C-terminal domains reveal a common motif. Nat Struct Mol Biol 2005, 12(12): 1094-1100
    [80] Sivaram MV, Furgason ML, Brewer DN, Munson M. The structure of the exocyst subunit Sec6p defines a conserved architecture with diverse roles. Nat Struct Mol Biol 2006, 13(6): 555-556
    [81] Hsu SC, Hazuka CD, Roth R, Foletti DL, Heuser J, Scheller RH. Subunit composition, protein interactions, and structures of the mammalian brain sec6/8 complex and septin filaments. Neuron 1998, 20(6): 1111-1122
    [82] Munson M, Novick P. The exocyst defrocked, a framework of rods revealed. Nat Struct Mol Biol 2006, 13(7): 577-581
    [83] Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nat Rev Mol Cell Biol 2002, 3(4): 267-277
    [84] Watson RT, Kanzaki M, Pessin JE. Regulated membrane trafficking of the insulin-responsive glucose transporter 4 in adipocytes. Endocr Rev 2004, 25(2): 177-204
    [85] Dugani CB, Klip A. Glucose transporter 4: cycling, compartments and controversies. EMBO Rep 2005, 6(12): 1137-1142
    [86] Mueckler M, Hresko RC, Sato M. Structure, function and biosynthesis of GLUT1. Biochem Soc Trans 1997, 25(3): 951-954
    [87] Vannucci SJ, Maher F, Simpson IA. Glucose transporter proteins in brain: delivery of glucose to neurons and glia. Glia 1997, 21(1): 2-21
    [88] Salas-Burgos A, Iserovich P, Zuniga F, Vera JC, Fischbarg J. Predicting the three-dimensional structure of the human facilitative glucose transporter glut1 by a novel evolutionary homology strategy: insights on the molecular mechanism of substrate migration, and binding sites for glucose and inhibitory molecules. Biophys J 2004, 87(5): 2990-2999
    [89] Zhang G, Raol YH, Hsu FC, Coulter DA, Brooks-Kayal AR. Effects of status epilepticus on hippocampal GABAA receptors are age-dependent. Neuroscience 2004, 125(2): 299-303
    [90] Vacher CM, Bettler B. GABA(B) receptors as potential therapeutic targets. Curr Drug Targets CNS Neurol Disord 2003, 2(4): 248-259
    [91] Le Corronc H, Alix P, Hue B. Differential sensitivity of two insect GABA-gated chloride channels to dieldrin, fipronil and picrotoxinin. J Insect Physiol 2002, 48(4): 419-431
    [92] Cromer BA, Morton CJ, Parker MW. Anxiety over GABA(A) receptor structure relieved by AChBP. Trends Biochem Sci 2002, 27(6): 280-287
    [93] Romano C, Yang WL, O'Malley KL. Metabotropic glutamate receptor 5 is a disulfide-linked dimer. J Biol Chem 1996, 271(45): 28612-28616
    [94] Kunishima N, Shimada Y, Tsuji Y, Sato T, Yamamoto M, Kumasaka T, Nakanishi S, Jingami H, Morikawa K. Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature 2000, 407(6807): 971-977
    [95] O'Hara PJ, Sheppard PO, Thogersen H, Venezia D, Haldeman BA, McGrane V, Houamed KM, Thomsen C, Gilbert TL, Mulvihill ER. The ligand-binding domain in metabotropic glutamate receptors is related to bacterial periplasmic binding proteins. Neuron 1993, 11(1): 41-52
    [96] Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R, Karschin A, Bettler B. GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature 1998, 396(6712): 683-687
    [97] Malitschek B, Schweizer C, Keir M, Heid J, Froestl W, Mosbacher J, Kuhn R, Henley J, Joly C, Pin JP, Kaupmann K, Bettler B. The N-terminal domain ofgamma-aminobutyric Acid(B) receptors is sufficient to specify agonist and antagonist binding. Mol Pharmacol 1999, 56(2): 448-454
    [98] Filippov AK, Couve A, Pangalos MN, Walsh FS, Brown DA, Moss SJ. Heteromeric assembly of GABA(B)R1 and GABA(B)R2 receptor subunits inhibits Ca(2+) current in sympathetic neurons. J Neurosci 2000, 20(8): 2867-2874
    [99] Kuner R, Kohr G, Grunewald S, Eisenhardt G, Bach A, Kornau HC. Role of heteromer formation in GABAB receptor function. Science 1999, 283(5398): 74-77
    [100] Kniazeff J, Galvez T, Labesse G, Pin JP. No ligand binding in the GB2 subunit of the GABA(B) receptor is required for activation and allosteric interaction between the subunits. J Neurosci 2002, 22(17): 7352-7361
    [101] Kniazeff J, Saintot PP, Goudet C, Liu J, Charnet A, Guillon G, Pin JP. Locking the dimeric GABA(B) G-protein-coupled receptor in its active state. J Neurosci 2004, 24(2): 370-377
    [102] Galvez T, Duthey B, Kniazeff J, Blahos J, Rovelli G, Bettler B, Prezeau L, Pin JP. Allosteric interactions between GB1 and GB2 subunits are required for optimal GABA(B) receptor function. Embo J 2001, 20(9): 2152-2159
    [103] Pin JP, Kniazeff J, Binet V, Liu J, Maurel D, Galvez T, Duthey B, Havlickova M, Blahos J, Prezeau L, Rondard P. Activation mechanism of the heterodimeric GABA(B) receptor. Biochem Pharmacol 2004, 68(8): 1565-1572
    [104] Schuck P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J 2000, 78(3): 1606-1619
    [105] Andrade MA, Chacon P, Merelo JJ, Moran F. Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Eng 1993, 6(4): 383-390
    [106] Coderre L, Kandror KV, Vallega G, Pilch PF. Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle. J Biol Chem 1995, 270(46): 27584-27588
    [107] Munoz P, Rosemblatt M, Testar X, Palacin M, Thoidis G, Pilch PF, Zorzano A. The T-tubule is a cell-surface target for insulin-regulated recycling of membrane proteins in skeletal muscle. Biochem J 1995, 312 ( Pt 2): 393-400
    [108] Klip A, Ramlal T, Young DA, Holloszy JO. Insulin-induced translocation of glucose transporters in rat hindlimb muscles. FEBS Lett 1987, 224(1): 224-230
    [109] Biber JW, Lienhard GE. Isolation of vesicles containing insulin-responsive, intracellular glucose transporters from 3T3-L1 adipocytes. J Biol Chem 1986, 261(34): 16180-16184

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700