用户名: 密码: 验证码:
葡萄籽原花青素聚合度与功效关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国葡萄的种植历史悠久,种植面积及产量都很大,且近年来葡萄年产量呈逐年上升趋势。作为葡萄酒及葡萄汁厂的下脚料,葡萄籽中富含天然抗氧化剂原花青素,但由于葡萄籽皮厚而硬,大多数葡萄酒(汁)厂都将其作为废物丢弃,或作为粗饲料使用,造成资源的严重浪费。因此,深入研究葡萄籽原花青素的组成、活性及提取工艺,对于合理利用葡萄籽资源、提高产品附加值具有重要意义。
    葡萄籽原花青素是(+)-儿茶素、(-)-表儿茶素及 (-)-表儿茶素没食子酸酯通过C4→ C8 或C4→C6连接而成的不同聚合度的混合物。由于原花青素强大的自由基清除能力、广泛的生理活性及出色的安全性,在营养及医学领域引起了越来越多的关注。原花青素的活性受其结构特别是聚合度的影响,但由于葡萄籽原花青素结构复杂,对原花青素检测方法的研究仍然存在一些不足,特别是对构效关系的研究还很缺乏,限制了原花青素的应用范围。本文提出了适宜的葡萄籽原花青素定性定量检测方法,按聚合度区段对原花青素进行分级分离,系统地研究了聚合度对原花青素抗氧化、自由基清除能力及体外抗肿瘤作用的影响,并在此基础上研究其提取分离工艺。主要研究结果如下:
    用RP-HPLC-ESI-MS分析葡萄籽粗提物中的原花青素,可以在没有对照品的情况下根据准分子离子及碎片信息简便地分析其中低聚原花青素的基本组成,并能够比较不同来源原花青素低聚体的相对含量。通过反相液相色谱分离、电喷雾质谱定性,从葡萄籽粗提液中检测出了三个单体、七个二聚体、七个三聚体及一个四聚体。由于各聚合体的异构体数目繁多,其ESI质谱行为也很相近,除单体外,还未能对各异构体的具体结构作出准确的鉴定。另外,RP-HPLC-ESI-MS分析葡萄籽原花青素时只能分离聚合度≤3的单体和聚合体,更高聚合度的原花青素,异构体数目更多,极性分布更复杂,在反相色谱上无法分开。
    对酸化香草醛法作了改进,用于测定葡萄籽中原花青素含量。以H2SO4作为反应的酸性介质,找出了合适的比色反应条件:反应体系0.5mL提取物水溶液+2.5mL 3%香草醛+2.5mL 30%硫酸,30℃反应15min后测定A500nm。方法评价结果表明本方法重现性好、回收率高,与其它方法相比,本体系检测灵敏度高、稳定性好,可以准确测定、比较不同来源的葡萄籽中原花青素的含量。应用本方法对国内几种不同产地及发酵/未发酵的葡萄籽原花青素含量进行测定,结果表明葡萄籽原花青素含量受葡萄的品种、地域及葡萄酒酿造方法的影响,原花青素的提取应选择未发酵的葡萄籽作为原料。除葡萄籽外,本方法还可用于测定不含二氢查耳酮及VC含量相对较低的植物原料中的原花青素。
    基于葡萄籽原花青素结构的复杂性,难以分离,提出按聚合度区段分离并以此来研究葡萄籽原花青素的构效关系。以硫解法、正相HPLC及凝胶渗透色谱、质谱等作为检测手段测定平均聚合度及聚合度、分子量的分布情况,采用氯仿-甲醇两相溶剂逐步沉淀及柱层析结合的方法。将原花青素分为二聚体、聚合度>2的低聚体、及平均聚合度分别为3.4、6.4、9.1、11.9、14.3的几个组分;原花青素的硫解实验测定结果表明,葡
    
    
    萄籽原花青素主要是由表儿茶素组成的,儿茶素及表儿茶素没食子酸酯在原花青素构成单元中的比例相对较低。儿茶素主要存在于原花青素的末端基团,表儿茶素主要构成原花青素的延伸段基团。
    用聚酰胺、HW-40凝胶色谱等分离手段对葡萄籽原花青素进行分离纯化,并用核磁共振技术进行化合物的结构鉴定。从原花青素提取物中分离出两种单体:(+)-儿茶素和(-)-表儿茶素;一种原花青素二聚体B4;两种其它酚类物质:对羟基苯甲酸及没食子酸乙酯。表明原花青素提取物中除主要成分原花青素外,还存在其它酚类活性成分,这些物质也对原花青素提取物的抗氧化功能作出贡献。
    采用亚油酸体系、脂质体体系、DPPH·自由基及化学发光法,研究分级得到的不同聚合度原花青素组分的抗氧化活性。结果表明,在亚油酸及脂质体体系中,原花青素的抗氧化作用高于VC和VE。原花青素对DPPH·自由基的清除能力优于VC、VE及BHT,半抑制浓度分别为:原花青素1.8μg/mL、VC 2.5μg/mL、VE 6.3μg/mL、BHT 3.5μg/mL。对O2ˉ·的清除能力优于VE而与VC相近。以质量浓度表示时,原花青素对DPPH·自由基的清除作用与聚合度无关,对亚油酸及脂质体体系的抗氧化活性及对HO·、O2ˉ·的清除能力随着聚合度的升高而下降。但以摩尔浓度(μM)表示时,原花青素的自由基清除能力基本上随着聚合度的增加而提高。说明原花青素的抗氧化和自由基清除能力与所处的溶剂环境有关,水相体系中原花青素分子中单位酚羟基的活性随着聚合度的增加而下降。可能与水溶液中酚羟基参与形成原花青素分子内或分子间氢键,从而降低酚羟基活性有关。
    人肝癌细胞Bel-7402及正常细胞3T3体外培养实验证明,原花青素能够选择性地抑制癌细胞而对正常细胞影响较小。所研究的20-200 μg/mL浓度范围内原花青素对人肝癌细胞Bel-7402具有生长抑制作用,且存在剂量效应关系。以质量浓度表示时,随着聚合度的增加,原花青素对Bel-7402的抑制作用降低。
    通过体外抗氧化、消除自由基及体外抗肿瘤实验,表明原花青素的聚合度是影响其活性的重要因素,以质量单位表示时,随着聚合度的增加,水相体系中原花青素的
Grape, which has a long history in china, is widely cultivated with an increasing production in recent years. As the by-product of grape juice and wine making, grape seeds are a rich source of procyanidins (a kind of natural antioxidants), but due to the hard hull, they are usually discarded as unwanted or used as crude feed, which is a waste of resources. For better use of the grape seeds, it is of great importance to analysis the procyanidins in grape seeds and study its biological activities and extraction.
    Grape seed procyanidins are oligomers and polymers of (+)-catechin, (-)-epicatechin, and (-)-epicatechin-O-gallate linked by C4→C8 or C4→C6 B-type bonds. They have attracted great attention in the fields of nutriology and pharmacology because of their potent radical-scavenging activity, broad biological and pharmacological effects and excellent security. The pharmacological properties of procyanidins largely depend on their structure and especially on their degree of polymerization (DP). But due to the diversity of procyanidin structures, the studies on the analysis methods as well as the relationship between the structure and activity are not thorough, which limits the utilization of procyanidins. In this work, feasible qualitative and quantitative methods were established, and the procyanidins were fractionated according to their degree of polymerization. And then the effects of DP on the antioxidant and anti-tumor activity in vitro were investigated systematically. Furthermore, studies on the extraction and isolation of procyanidins were also carried out for commercial preparation. The main results of this dissertation were described as following:
    
    The qualitative analysis of oligomeric procyanidins in crude grape seed extracts can be performed by reversed-phase high-performance liquid chromatography coupled with electrospray ionization mass spectrometry (RP-HPLC-ESI-MS). Pseudomolecular ion and fragment information of ESI-MS made it possible to analyze the composition of oligmeric procyanidins directly without standards. By RP-HPLC-ESI-MS, three monomers, seven dimers, seven trimers and one tetramer were tentatively identified in crude grape seed extract, but due to the large number of isomers and their similar ESI-MS characters, the isomers are not identified precisely except monomers. In fact, only oligomers with DP below 4 can be well detected by RP-HPLC-MS, the higher polymers, with more isomers and more diverse polarity, can neither be separated nor be analyzed by RP-HPLC.
    
    Acid-catalyzed vanillin assay was improved for quantitation of procyanidins in grape seed. By the use of H2SO4 as acid medium, proper reaction conditions were obtained as following: after 0.5mL aqueous solution of grape seed extract was mixed with 2.5mL 3% vanillin in methanol and 2.5mL 30% H2SO4 in methanol, the reaction was carried out at 30℃ for 15 minutes and the absorbance at 500nm was measured. Evaluation of the method proved that it has good repeatability and high recovery, and is also more sensitive and stable compared with previous methods. Procyanidins of different grape seeds can be quantified and compared by this method. The assay was then used to determine the procyanidin content of
    
    
    several kinds of grape seeds from different district and different fermentation process. Results showed that the procyanidin content of grape seed was affected by the variety, clime and wine-making methods. Procyanidins should be extracted from unfermented grape seeds. Besides grape seeds, this assay can also be used to quantify the procyanidin of other plant in which vitamin C and dihydrochalcone are absent or scarce.
    
     Because of the complexity of procyanidin structure, the proyanidins were separated according to their degree of polymerization (DP) for further study of the relationship between structure and activity. By use of thiolysis for determining the mean degree of polymerization (mDP) and normal-phase HPLC, gel permeation chromatography (GPC) and mass spectrometry (MS) for analysis of molecule profile of procyan
引文
Porter, L. J., Hrstich, L. N. & Chan, B. J. The conversion of Procyanidins and prodelphinidins to cyaniding and delphinidin. Phytochemistry, 1986, 25(1): 223-230
    Bate-Smith, E. Astringent tannins of the leaves of Geranium species. Phytochemistry, 1981, 20: 211-216
    Santos-Buelga, C. & Scalbert A. Review: Proanthocyanidins and tannin-like compounds - nature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agric. 2000, 80(7): 1094-1117
    石碧, 狄莹. 植物多酚,北京:科学出版社,2000,13-
    Prieur, C.; Rigaud, J.; Cheynier, V.; Moutounet, M. Oligomeric and polymeric procyanidins from grape seeds. Phytochemistry, 1994, 36(3): 781 –784
    Bilia A.R.; Morelli I.; Hamburger M.; Hostettmann K. Flavans and A-type proanthocyanidins from Prunus prostrata. Phytochemistry, 1996, 43(4): 887-892
    Lou H.; Yamazaki Y.; Sasaki T.; Uchida M.; Tanaka H.; Oka S. A-type proanthocyanidins from peanut skins. Phytochemistry, 1999, 51(2): 297-308
    Svedstr?m, U.; Vuorela, H.; Kostiainen, R. et al. High-performance liquid chromatographic determination of oligomeric procyanidins from dimers up to the hexamers in hawthorn. J. Chromatogr. A . 2002,968: 53-
    Ossipov, V.; Haukioja, E.; Ossipova, S. et al. Phenolic and phenolic-related factors as determinants of suitability of mountain birch leaves to an herbivorous insect. Biochem. System. Ecol. 2001, 29: 223-240
    Natsume, M.; Osakabe, N.; Yamagishi, M. et al. Analyses of polyphenols in cacao liquor, cocoa, and chocolate by normal-phase and reversed-phase HPLC. Biosci. Biotechnol. Biochem. 2000; 64: 2581-
    Chevaux,K. A.; Jackson, L.; Villar, M. E. et al. Proximate, mineral and procyanidin content of certain foods and beverages consumed by the Kuna Amerinds of Panama. J. Food Composition Analysis. 2001; 14(6): 553-563
    Pascual-Teresa, S. de; Santos-Buelga, C.; Rivas-Gonzalo, J. C. Quantitative analysis of flavan-3-ols in Spanish foodstuffs and beverages. J. Agric. Food Chem. 2000; 48(11): 5331-5337
    Hammerstone, J. F.; Lazarus, S. A.; Schmitz, H. H. Procyanidin content and variation in some commonly consumed foods. J. Nutri.. 2000; 130(8S): 2086S-2092S
    Packer L.; Rimbach G.; Virgili F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (pinus maritima) bark, pycnogenol. Free Radical Biol. Medicine, 1999, 27: 704-724
    Amarowicz, R.; Pegg, R. B.; Bautista, D. A. Antibacterial activity of green tea polyphenols against
    
    
    Escherichia coli K12. Nahrung. 2000; 44(1): 60-62
    Guyot, S.; Marnet, N.; Laraba, D.; Sanoner, P.; Drilleau, J. F. Reversed-phase HPLC following thiolysis for quantitative estimation and characterization of the four main classes of phenolic compounds in different tissue zones of a French cider apple variety (Malus domestica var. Kermerrien). J. Agric. Food Chem. 1998; 46(5): 1698-1705
    Juskiewicz, J.; Wroblewska, M.; Zhaki, K.; Zdunczyk, Z.; Hussein, L. Biological activity of faba bean proanthocyanidins. Acta-Alimentaria. 2001; 30(1): 63-69
    Putman, L. J.; Butler, L. G. Separation of high molecular weight sorghum procyanidins by high-performance liquid chromatography. J. Agric. Food Chem.. 1989; 37(4): 943-946
    McMurrough, I.; Madigan, D.; Smyth, M. R. Semipreparative chromatographic procedure for the isolation of dimeric and trimeric proanthocyanidins from barley. J. Agric. Food Chem. 1996:1731-
    Joslyn, M. A.; Dittmar, H. F. K. The proanthocyanidins of grapes. I. The proanthocyanidins of skin and seed of Pinot Blanc. Varieties. M. Mitt. Rebe. Wein., Obstbau. Fruechteverwert, 1967, 17: 92-108
    Wollgast J.; Pallaroni L.; Agazzi M. E.; Anklam, E. Analysis of procyanidins in chocolate by reversed-phase high-performance liquid chromatography with electrospray ionisation mass spectrometric and tandem mass spectrometric detection. J. Chromatogr. A, 2001, 926: 211-220
    Fuleki, T.; Ricardo da silva, J. M. Catechin and procyanidin composition of seeds from grape cultivars grown in Ontario. J. Agric. Food Chem. 1997,45,1156-1160
    Ricardo-da-Silva, J. M.; Cheynier, V.; Souquet, J. M. Interaction of Grape Seed Procyanidins with Various Proteins in Relation to Wine Fining. J. Sci. Food and Agric. 1991, 57(1): 111-
    Haslam, E. Polyphenol-protein interactions. Biochem. J. 1974, 139: 285-288
    Bagchi, D. et al. Oxygen free radical scavenging abilities of vitamins C and vitamins E, and a grape seed proanthocyanidins extract in vitro research. Commun. Mol. Pathol. Pharmacol. 1986, 25: 223-
    Saint-Cricq-de-Gaulejac, N.; Provost, C.; Vivas, N. Comparative study of polyphenol scavenging activities assessed by different methods. J. Agric. Food Chem.. 1999; 47(2): 425-431
    申宏,杭瑚,葡萄籽和葡萄皮清除自由基作用的研究。食品科学,1999,12:28-30
    Silva, J. M. R. da; Darmon, N.; Fernandez, Y.; Mitjavila, S. Oxygen free radical scavenger capacity in aqueous models of different procyanidins from grape seeds. J. Agric. Food Chem.1991; 39: 1549-1552
    余莹, 粟武, 魏东芝, 原花青素体外清除自由基活性的研究. 华东理工大学学报, 2000,318-320
    Yamaguchi, F.; Yoshimura, Y.; Nakazawa, H.; Ariga, T. Free radical scavenging activity of grape seed extract and antioxidants by electron spin resonance spectrometry in an H2O2/NaOH/DMSO system. J. Agric. Food Chem. 1999; 47(7): 2544-2548
    Bachi, D.; Garg, A.; Krohn, R. L. et al. Oxygen free radical scavenging abilities of vitamins C and E, and a grape seed proanthocyanidin extract in vitro. Res. Commun. Mol. Pathol. Pharmacol. 1997, 95: 179-
    张竣, 吉伟之, 齐欣. 葡萄籽中多酚类物质的提取及其对油脂的抗氧化作用。食品科学,2001,22(10):43-45
    凌智群,谢笔钧,莲房原花青素抗氧化损伤作用的研究,食品科学,2002,23(7): 98-100
    凌智群,谢笔钧. 莲房原花青素对氢自由基和脂质过氢化的作用. 营养学报2002, 24(2): 121-125
    Bouhamidi R.; Prevost V.; Nouvelot A. High protection by grape seed proanthocyanidins (GSPC) of polyunsaturated fatty acids against UV-C induced peroxidation. Comptes Rendus de lAcademie des Sciences Series III Sciences de la Vie, January 1998, 321(1): 31-38
    Bagchi D.; Garg A.; Krohn R.L.; et al. Protective Effects of Grape Seed Proanthocyanidins and Selected Antioxidants against TPA-Induced Hepatic and Brain Lipid Peroxidation and DNA Fragmentation, and Peritoneal Macrophage Activation in Mice - the biochemistry and molecular biology of programmed cell death. General Pharmacology, 1998, 30(5):771-776
    Roychowdhury, S.; Wolf, G.; Keilhoff, G. et al. Protection of Primary Glial Cells by Grape Seed Proanthocyanidin Extract against Nitrosative/Oxidative Stress. Nitric Oxide:Biology and Chemistry. 2001, 5(2): 137-149
    
    An Bong Jeun, et al. CA, 1995, 123: 107837p
    Tebib, K.; Bitri, L.; Besancon, P.; Rouanet, J. M. Polymeric grape seed tannins prevent plasma cholesterol changes in high-cholesterol-fed rats. Food Chem. 1994; 49(4): 403-406
    葡萄籽提取物原花青素调节血脂作用及机理研究,闫少芳 李勇 吴娟 肖颖,中国食品卫生杂志,2003, 15(4): 302-304
    Nuttall, S.L.; Kendall, M.J.; Morazzoni, P. An evaluation of the antioxidant activity of a standardized grape seed extract, Leucoselect. Journal of clinical pharmacy and therapeutics, 1998, 23(5); 385-389
    Yamakoshi, J.; Kataoka, S.; Koga, T.; Ariga, T. Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis, 1999, 142, (1):139-149
    Koga, T.; Moro, K.; Nakamori, K.;et al. Increase of antioxidative potential of rat plasma by oral administration of proanthocyanidin-rich extract from grape seeds. J. Agric. Food Chem. 1999; 47: 1892-
    Sen, C. K.; Bagchi, D. Regulation of inducible adhesion molecule expression in human endothelial cells by grape seed proanthocyanidin extract. Mol. Cell Biochem., 2001, 216(1-2): 1-7
    Brunet, M. J; Blade, C; Salvado, M. J; Arola, L. Human apo A-I and rat transferrin are the principal plasma proteins that bind wine catechins. J. Agric. Food Chem. 2002; 50(9): 2708-2712
    Preuss H.G.; Montamarry S.; Echard B. et al. Long-term effects of chromium, grape seed extract, and zinc on various metabolic parameters of rats. Mol. Cell. Biochem., 2001, 223, (1/2):95-102
    Gabor, M.; et al. CA, 1988, 108: 161134k
    Meunier, M. T. et al. Planta Med. 1987, 53: 12-
    Stato, M.; Maulik, G.; Ray, P. S. Cardioprotective effects of grape seed proanthocyanidin against ischemic reperfusion injury. J. Mol. Cell Cardiol. 1999,31(6): 1289-1297
    Stato, M.; Bagchi, D.; Tosaki, A. Grape seed proanthocyanidin reduces cardiomyocyte apoptosis by inhibiting ischemia/reperfusion-induced activation of JNK-1 and C-JUN. Free Raic. Biol. Med. 2001,31(6): 729-737
    Pataki, T.; Bak, I.; Kovacs, P. et al. Grape seed proanthocyanidins improved cardiac recovery during reperfusion after ischemia in isolated rat hearts. Am. J. Clin. Nutr., 2002, 75(5): 894-899
    汪晨净,高明堂,时小燕,吴勇杰,李文广. 原花青素对大鼠心肌缺血再灌注损伤的保护作用. 中国临床药理学与治疗学,2003,8(2):173-175
    张小郁,李文广等,葡萄籽中原花青素对心肌细胞的保护作用,中药药理与临床, 2001,17〔6〕: 14-16
    Wen-Guang, L.; Xiao-Yu, ZH.; Yong-Jie, W.; Xuan, T. Anti-inflammatory effect and mechanism of proanthocyanidins from grape seeds. Acta Phamacol Sin.(中国药理学报),2001,22(12): 1117-1120
    Sen, C. K.; Bagchi, D. Regulation of inducible adhesion molecule expression in human endothelial cells by grape seed proanthocyanidin extract. Mol. Cell Biochem., 2001, 216(1-2): 1-7
    Banerjee, B.; Bagchi, D. Beneficial Effects of a Novel IH636 Grape Seed Proanthocyanidin Extract in the Treatment of Chronic Pancreatitis. Digestion, 2001, 63(3): 203-206
    Ye X.; Krohn R.L.; Liu W. et al. The cytotoxic effects of a novel IH636 grape seed proanthocyanidin extract on cultured human cancer cells. Mol. Cell. Biochem., 1999, 196(1/2): 99-108
    A Polyphenolic Fraction from Grape Seeds Causes Irreversible Growth Inhibition of Breast Carcinoma MDA-MB468 Cells by Inhibiting Mitogen-Activated Protein Kinase Activation and Inducing G(I) Arrest and Differentiation. Clinical Cancer Research, 2000, 6(7): 2921-
    Ye X.; Krohn R.L.; Liu W. et al. The cytotoxic effects of a novel IH636 grape seed proanthocyanidin extract on cultured human cancer cells. Mol. Cell. Biochem., 1999, 196(1/2): 99-108
    A Polyphenolic Fraction from Grape Seeds Causes Irreversible Growth Inhibition of Breast Carcinoma MDA-MB468 Cells by Inhibiting Mitogen-Activated Protein Kinase Activation and Inducing G(I) Arrest and Differentiation. Clinical Cancer Research, 2000, 6(7): 2921-
    Carn?secchi, S.; Schneider, Y.; Lazarus, A. A.; Coehlo, D. Flavanols and procyanidins of cocoa and
    
    
    chocolate inhibit growth and polyamine biosynthesis of human colonic cancer cells. Cancer Letters, 2002, 175: 147-155
    Joshi, S. S.; Kuszynski, A. A.; Bagchi, M.; Bagchi, D. Chemopreventive effects of grape seed proanthocyanidin extract on Chang liver cells. Toxicology, 2000, 155:85-90
    Shirataki, Y.; Kawase, M.; Motohashi, N. Selective Cytotoxic Activity of Grape Peel and Seed Extracts against Oral Tumor Cell Lines. Anticancer Research, 2000, 20, (1A): 423-426
    Zhao, J.; Wang, J.; Agarwal, R. Anti-tumor-promoting activity of a polyphenolic fraction isolated from grape seeds in the mouse skin two-stage initiation-promotion protocol and identification of procyanidin B5-3'-gallate as the most effective antioxidant constituent. Carcinogenesis, 1999, 20(9):1737-1745
    Singletary K.W.; Meline B. Effect of Grape Seed Proanthocyanidins on Colon Aberrant Crypts and Breast Tumors in a Rat Dual-Organ Tumor Model. Nutrition and Cancer, 2001,39(2): 252-258
    陆 茵,孙志广,陈文星,王爱云,李 璘,朱 荃. 原花青素对MNNG致DNA损伤及拓扑异构酶II的影响。中国药理学通报,2003,19(1):52-55
    Bagchi, M.; Balmoori, J.; Bagchi, D.; Ray, S. D.;et al. Smokeless tobacco, oxidative stress, apoptosis, and antioxidants in human oral keratinocytes. Free Radical Biol. Medicine. 1999, 26(7-8): 992-1000
    Bagchi, M.; Kuszynski, C.; Balmoori, J. et al. Protective effects of antioxidants against tobacco- induced oxidative stress and modulation of Bcl-2 and p53 genes in human oral keratinocytes. Free Radical Res. 2001, 35(2): 181-194
    Ray, S. D.; Kumar, M. A.; Bagchi, D. A Novel Proanthocyanidin IH636 Grape Seed Extract Increases in Vivo Bcl-XL Expression and Prevents Acetaminophen-Induced Programmed and Unprogrammed Cell Death in Mouse Liver. Arch. Biochem. Biophys., 1999, 369(1): 42-58
    Bagchi, D.; Ray, S. D.; Patel, D.; Bagchi, M. Protection against drug- and chemical-induced multiorgan toxicity by a novel IH636 grape seed proanthocyanidin extract. Drugs Exp. and Clin. Res., 2001, 27(1): 3-16
    Ray, S. D.; Patel, D.; Wong, V.; Bagchi, D. In Vivo Protection of DNA Damage-Associated Apoptotic and Necrotic Cell Deaths During Acetaminophen-Induced Nephrotoxicity, Amiodarone-Induced Lung Toxicity and Doxorubicin-Induced Cardiotoxicity by a Novel IH636 Grape Seed Proanthocyanidin Extract. Res. Commun. Mol. Pathol. Pharmacol., 2000, (107)1/2: 137-166
    Ray, S. D.; Wong, V.; Rinkovsky, A.; Bagchi, M.; Raje, R. R.; Bagchi, D. Unique Organoprotective Properties of a Novel IH636 Grape Seed Proanthocyanidin Extract on Cadmium Chloride-Induced Nephrotoxicity, Dimethylnitrosamine (DMN)-Induced Splenotoxicity and MOCAP-Induced Neurotoxicity in Mice. Res. Commun. Mol. Pathol. Pharmacol., 2000, 107(1/2): 105-128
    段玉清,谢笔钧,原花青素在化妆品领域的研究与开发现状。香料香精化妆品,2002(6):23-26
    Carini, M.; Aldini, G.; Bombardelli, E.; Morazzoni, P.; Facino, R. M. UVB-induced hemolysis of rat erythrocytes: Protective effect of procyanidins from grape seeds. Life Sciences Including Pharmacology Letters. 2000, 67(15): 1799-1814
    US Patent No. 5804168
    Akyoshi, K.; Kimie, K. Toshaki, A. et al. 日本公开特许公报, 94 336419
    Akyoshi, K.; Kimie, K. Toshaki, A. et al. 日本公开特许公报, 94 336418
    Khanna, S.; Roy, S.; Bagchi, D.; et al. Upregulation of oxidant-induced VEGF expression in cultured keratinocytes by a grape seed proanthocyanidin extract. Free Radical Biol. Medicine, 2001, 31: 38-42
    Preuss H.G.; Montamarry S.; Echard B.;et al. Long-term effects of chromium, grape seed extract, and zinc on various metabolic parameters of rats. Mol. Cell. Biochem., 2001, 223(1/2): 95-102
    Hattori, M.; Kusumoto, Y.; Namba, T. et al. Effect of tea polyphenols on glucan synthesis by glucosyl-transferase from streptococcus mutans. Chem. Phamacent bull. 1990, 38: 717-720
    Sakanaka, S.; Sato, T.; Kim, M.; Yamamoto, T. Effects of green tea polyphenols on glucan synthesis and cellular adherence of cariogenic streptococci. Agric. Biol. Chem. 1990, 54: 2925-
    
    孙志广,赵万洲,陆茵等,葡萄籽原花青素对环磷酰胺诱发小鼠骨髓多染红细胞微核形成的抑制作用及其机理探讨。时珍国医国药,2000,11(5):386-387
    孙志广,赵万洲,陆茵等,葡萄籽原花青案对鼠伤寒沙门氏菌的抗诱变作用。癌变·畸变·突变,2002,14(3):191-194
    国植,徐莉,原花青素:具有广阔发展前景的植物药。国外医药·植物药分册,1996, 11 (5):196-20
    凌智群,张晓辉,谢笔钧,原花青素的药理学研究进展,中国药理学通报 2002, 18(1):9-12
    Hussein, L.; Abbas, H. Nitrogen balance studies among boys fed combinations of faba beans and wheat differing in polyphenolic contents. Nutr. Rep. Int. 1985, 31: 67-81
    Mole, S.; Rogler, J. C.; Butler, L. G. Growth reduotion by dietary tannins: different effects due to different tannins. Biochem. Syst. Ecol. 1993, 21: 667-677
    Lizardo, R.; Peiniau, J.; Aumaitre, A. Effect of sorghum on performance, digestibility of dietary components and activities of pancreatic and intestinal enzymes in the weaned piglet. Anim. Feed Sci. Technol. 1995, 56: 67-82
    Horigome, T.; Kumar, R.; Okamoto, K. Effects of condensed tannins prepared from leaves of fodder plants on digestive enzymes in vitro and in the intestine of rats. Bru. J. Nutr. 1988, 60: 275-285
    Tebib, K.; Rouanet, J. M.; Besancon, P. Effect of grape seed tannins on the activity of some rat intestinal enzyme activities. Enzyme and Protein, 1994, 48: 51-60
    Wren, A. F.; Cleary, M.; Frantz, C.; Melton, S.; Norris, L. 90-day oral toxicity study of a grape seed extract (IH636) in rats. J. Agric. Food Chem. 2002; 50(7): 2180-2192
    Yamakoshi J.; Saito M.; Kataoka S.; Kikuchi M. Safety evaluation of proanthocyanidin-rich extract from grape seeds. Food and Chemical Toxicology, 2002, 40(5): 599-607
    Ray, S.; Bagchi, D.; Lim, P. M. et al. Acute and Long-Term Safety Evaluation of a Novel IH636 Grape Seed Proanthocyanidin Extract. Res. Commun. Mol. Pathol. Pharmacol.,2001, 109(/4):165-198
    Blazso, G; Antiinflammatory activities of procyanidin-containing extract from Pinus pinaster Ait. After oral and cutaneous application. Pharmazie, 1997, 380-382
    US Patent No. 5256404
    US Patent No. 5962517
    US Patent No. 6817299
    Masaru, O.; Tooru, K. 日本公开特许公报 94 256160
    Takahashi, T.; Kamimura, A.; Yokoo, Y. Procyanidin B-2 and the Hair-Growing Activity of Proanthocyanidins. Cosmetics and Toiletries, 2001, vol. 116, no. 12, pp. 61-72
    Takahashi, T.; Kamimura, A.; Yokoo, Y.; Honda, S.; Watanabe, Y. The First Clinical Trial of Topical Application of Procyanidin B-2 to Investigate its Potential as a Hair Growing Agent. Phytotherapy Research, 2001, 15(4): 331-336
    Takahashi T.; Kamiya T.; Hasegawa A.; Yokoo Y. Procyanidin Oligomers Selectively and Intensively Promote Proliferation of Mouse Hair Epithelial Cells In Vitro and Activate Hair Follicle Growth In Vivo. Journal of Investigative Dermatology, March 1999, 112(3): 310-316
    US Patent No.6126940
    Iwao, U.; Motoki, F.; Miuoru, Y. 日本公开特许公报, 97 02941
    Takashi, M. 日本公开特许公报, 92077423
    Jayaprakasha, G. K.; Singh, R. P. ; Sakariah, K. K. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 2001, 73(3): 285-290
    Extraction of Natural Complex Phenols and Tannins from Grape Seeds by Using Supercritical Mixtures of Carbon Dioxide and Alcohol. J. Agric. Food Chem. 2000, 48(8):3408
    Fractional Extraction of Compounds from Grape Seeds by Supercritical Fluid Extraction and Analysis for Antimicrobial and Agrochemical Activities. J. Agric. Food Chem., 1999, 47(12): 5044-
    吕丽爽,葡萄籽低聚原花青素的研制,无锡轻工大学硕士论文,2000年
    
    US Patent 5484594
    US Patent 5912363
    Cacho, J.; Castell, J. E. Fractionation of phenolic compounds from grapes by size-exclusion liquid chromatography with HPLC instrumentation. Am. J. Enol. Vitic., 1991, 42, 327 –335
    Liwei, G.; Kelm, M.; Hammerstone, J. F et al. Fractionation of polymeric procyanidins from lowbush blueberry and quantification of procyanidins in selected foods with an optimized normal-phase HPLC-MS fluorescent detection method. J. Agric. Food Chem. , 2002, 50, 4852-4860
    Derdelinckx, G.; Jerumanis, J. Separation of malt and hop proanthocyanidins on Fractogel TSK HW-40(S). J. Chromatogr., A. 1984, 285, 231-234
    Yanagida, A.; Kanda, T.; Shoji, T.; Kameyama, M. O.; Nagata, T. Fractionation of apple procyanidins by size-exclusion chromatography. J. Chromatogr., A, 1999, 855,181-190
    Waterhouse, A. L.; Ignelzi, S.; Shirley, J. R. A comparison of methods for quantifying oligomeric proanthocyanidins from grape seed extracts. Am. J. Enol. Vitic., 2000, 51(4): 383-389
    Santos-Buelga, C. E.; Francia, A. M.; Escribano-Bailón, M. T. Comparative flavan-3-ol composition of seeds from different grape varieties. Food Chem. 1995,53(2): 197-201
    Waterhouse, A. L.; Price, S. F.; McCord, J. D. Reversed-phase high-performance liquid chromatography methods for analysis of wine polyphenols. Metho. Enzymol. 1998, 299:113-121
    Oszmianski, J; Sapis, J. C. Fractionation and identification of some low molecular weight grape seed phenolics. J. Agric. Food Chem. 1989; 37(5): 1293-1297
    Singleton,V. L.;Rossi,Jr,. J. A. Colorimetry of total phenolics with phosphomolybdic-phosphotung –stic acid reagent. Am. J. Enol. Vitic. 1965,16,144-158
    Price, M. L.; Butler, L. G. Rapid visual estimation of tannin content of Sorghum grain. J. Agric. Food Chem. 1977, 25:1268-1273
    Hagerman, A. E.; Butler, L. Q. Protein precipitation method for the quantitative determination of tannins. J. Agric. Food Chem. 1978, 26(4):809-812
    Broadhurst, R. B.;Jones, W. T. Analysis of condensed tannins using acidified vanillin. J. Sci. Food Agric. 1978,29,788-794
    Porter, L. J.; Hrstich, L. N.; Chan, B. G. The conversion of proanthocyanidins and prodelphenidins to cyanidins and delphenidins. Phytochemistry 1986,25,223-230
    Silva, J. M. R. da; Darmon, N.; Fernandez, Y.; Mitjavila, S. Oxygen free radical scavenger capacity in aqueous models of different procyanidins from grape seeds. J. Agric. Food Chem. 1991, 39:1549-1552
    Bombardelli, E. et al. Fitoterapia, 1995, 56(4):297-
    Tebib, K.; Bitri, L.; Besancon, P.; Rouanet, J. M. Polymeric grape seed tannins prevent plasma cholesterol changes in high-cholesterol-fed rats. Food Chem. 1994; 49(4): 403-406
    Plumb, G. W., De Pascual Teresa S., Santos Buelga, C. Antioxidant properties of catechins and proantho- cyanidins: Effect of polymerization, galloylation and glycosylation. Free Radical. Res., 1998, 29(4): 351-
    Saito,-M; Hosoyama,-H; Ariga,-T; Kataoka,-S; Yamaji,-N. Antiulcer activity of grape seed extract and procyanidins J. Agric. Food Chem. 1998; 46(4): 1460-1464
    Déprez, S.; Mila, I.; Huneau, J.-F.; Tome, D.; Scalbert, A . Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human Intestinal epithelial Caco-2 Cells, Antioxidants and Redox Signaling, 2001, 3(6):957-967
    Déprez, S.; Brezillon, C.; Rabot, S. et al. Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. J. Nutrition. 2000, 130: 2733-2738
    Rigaud. J., Escribano-Bailon, M.T. et al. Normal-phase high-performance liquid chromatographic separation of procyanidins from cacao beans and grape seeds. J. Chromatogr. 1993, A 654:255-260

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700