用户名: 密码: 验证码:
兼性生化—局部充氧波形潜流人工湿地处理分散污水工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
污水的治理必须走集中处理与分散治理相接合的道路,本论文根据分散污水治理的特点,在以下三点形成了创新:提出和构建了兼性生化-局部充氧波形潜流人工湿地(Wavy Subsurface-flow Constructed Wetland, W-SFCW)处理分散污水的工艺路线和处理构筑物;分析了兼性生化的最佳运行条件,首次在波形潜流人工湿地中提出了局部充氧的设想,并利用局部充氧和回流措施提高了湿地对氨氮和总氮的去除率,分别达到93%和50%以上;探讨了组合工艺去除COD的动力学模型及湿地的硝化动力学Monod模型。
     通过回归分析和matlab响应曲面分析,得出兼性生化最佳工艺条件分别为:HRT是8h,MLSS为5800mg/L,并在1m3/d的兼性生化中试反应器中进行了验证,试验证明兼性生化对调节水质,提高可生化性及去除COD有一定效果,但是对于去除TP,TN及NH4+-N的效果不明显,也表明要对兼性生化出水进行进一步处理才能达标排放。
     在W-SFCW的前端或后端设置局部充氧管,W-SFCW中的溶解氧浓度局部得到改善,而且硝化过程和COD的去除得到加强,当W-SFCW水力负荷达到0.8m3/m~2·d,COD平均去除率达到62.12%和58.09%,NH_4~+-N平均去除率达到93.5%和96.6%,出水COD浓度稳定在30mg/L左右,而且整个系统耐冲击负荷的能力明显提高,出水水质稳定。
     在前充氧人工湿地中,将湿地出水按50%的回流比回流到湿地起端,原污水进到湿地的1/3处,获得了较好的TN去除率,达到50%左右。后充氧人工湿地中,按50%回流后,TN去除率达到50%以上,设计中要求后充氧人工湿地的长宽比达到10左右。
     分析了局部充氧人工湿地的去除COD和脱氮的机理。分析了影响局部充氧人工湿地的几种因素,分别是温度、溶解氧、pH值、停留时间、有机负荷与水力负荷和湿地的耗氧与供氧。
     推导了兼性生化COD降解Monod动力学方程和局部充氧人工湿地COD降解与硝化过程一级动力学模型,获得了组合工艺降解COD的动力学方程,并通过实验数据求解了模型的参数。实验数据显示一级动力学不适用于局部充氧人工湿地的硝化过程,而利用Monod动力学方程推导的局部充氧人工湿地的硝化动力学方程则可以很好的模拟该湿地的硝化过程。提出了组合工艺的相关设计要点及相关参数,可以指导此技术的工程设计与应用。
Wastewater treatment must take the way of combining the centralized treatment and decentralized treatment together. According to the characteristics of decentralized sewage treatment, the following three innovations were proposed in this paper: (1) the technology line and structure for handling wastewater in facultative biochemical technology and wavy subsurface-flow constructed wetland (W-SFCW) with partial aeration were proposed and constructed; (2) The best conditions for the operation of facultative biochemical technology were analyzed, and the assumption of partial aeration in wavy subsurface-flow constructed wetland was proposed for the first time, and the removal rates of NH4+-N and TN were improved by the combination of partial-aeration and recirculation, which could go up to higher than 93% and 50%, respectively; (3) Discussion was made on the kinetic model for COD removal in the combined technology and nitrification Monod model in constructed wetland.
     With regression analysis and matlab curve analysis, the best conditions for facultative biochemical technology could be gained: HRT was 8h,MLSS was 5800mg/L,which was validated in facultative biochemical reactor when influent flux was 1m~3/d, and the test also proved that facultative biochemical technology has a certain effect on regulating water quality, enhancing biodegradability and removing COD. However, the effect was not obvious on removing TP, TN and NH4+-N, which showed that further process is needed for the effluent of facultative biochemical technology to achieve the discharge standards.
     If partial aeration pipe was placed in the front or at the back of W-SFCW, the concentration of dissolved oxygen (DO) in wastewater could be improved partially, besides, nitrification process and the removal of COD can be strengthened. When the hydraulic load of W-SFCW was 0.8m3/m~2·d, the average removal rate of COD reached 62.12% and 58.09%, and that of NH_4~+-N reached 93.5% and 96.6%. The effluent COD can maintain at about 30mg/L, and furthermore, the shock resistance capacity of the whole system was sharply improved, effluent quality was quite stable.
     In the wavy subsurface-flow constructed wetland with aeration in forepart, 50% of effluent was recirculated to the starting part, and raw sewage entered the wetlands at the 1/3 of wetland length, a better removal rate of TN was gained, to about 50%. In wavy subsurface-flow constructed wetland with aeration at the back part, at the same recirculation rate, TN removal rate was higher than 50%. The ratio of length/ width is required about 10 in the design of the latter wetland.
     The mechanisms for nitrogen and COD removal in partial-aeration constructed wetlands were analyzed in this paper, and so are the factors that affect the performance of partial-aeration constructed wetlands: temperature, dissolved oxygen (DO), pH value, retention time, organic and hydraulic load, oxygen consumption and supply of wetlands.
     Derivation of Monod kinetic equation for COD removal in the facultative biochemical technology and first-grade kinetic model for COD removal and nitrification in partial-aeration constructed wetlands were performed, and kinetic equation for COD removal of combined technology was also gained. Model parameters were gained from experimental data. It was shown that first-grade kinetic does not suit the nitrification process in partial-aeration constructed wetlands, but nitrification kinetic equation derived from Monod kinetic equation for partial- aeration constructed wetland can perfectly simulate nitrification process in the wetland. Relevant design points and parameters for the combined technology were proposed in this paper, which can guide the engineering design and application of this technology.
引文
[1]曹型荣.城市水资源的调查利用和预测[M].北京:中国环境科学出版社, 1998: 15
    [2]邹华生,陈焕钦.生物填料塔处理餐厅污水的研究[J].工业水处理, 2001, 21(6): 32-34
    [3]吕向红.酒店废水混凝过滤处理工艺[J].环境污染治理技术与设备, 2001, 2(1): 80-83
    [4]顾国维,何义亮.膜生物反应器[M].北京:化学工业出版社, 2002: 79
    [5]许劲.小型污水处理装置的应用与发展[J].重庆环境科学, 2001, 23(4): 26-29
    [6]李怀正,胡国林,宗兵年等.小型生活污水处理装置存在的问题及对策[J].给水排水, 2000, 26(4): 61-63
    [7] Grady J, Daigger G T and Lim H C著,张锡辉,刘勇弟译.废水生物处理(第二版,改编和扩充)[M].北京:化学工业出版社, 2003
    [8]张自杰.排水工程(第四版)[M].北京:中国建筑工业出版社, 2000
    [9]沈耀良,王宝贞.废水生物处理新技术-理论与应用[M].北京:中国环境科学出版程, 1999
    [10] Kuniyasu K, Ohrnori H. Anaerobic and aerobic submerged bio-filter for small scale on-site domestic sewage treatment [J]. Water science and technology, 1993, 27(1): 0273-1223
    [11]王凯军,贾立敏.城市污水生物处理-新技术开发与应用[M].北京:化学工业出版社, 2001
    [12] Grasius M G., Iyengar L, Venkobachar C. Anaerobic biotechnology for the treatment of wastewater: a review [J]. J. of Scientific and Industrial Research, 1997, 56(7): 385-397
    [13] Rebac S, van Lier J B, Lens P et al. Psychrophilic anaerobic treatment of low strength wastewaters [J]. Water science and technology, 1999, 39(5): 203-210
    [14] Hario T. Kato, A. Diaz. G. Colina. The anaerobic treatment of low strength wastewaters in UASB and EGSB reactors [J]. Water science and technology, 1997, 36(6): 375-382
    [15] Alette A. M. Langenhoff, David C. stuckey. Treatment of dilute wastewater using ananaerobic baffled reactor: effect of low temperature [J]. Water Research, 2000, 34(15): 3867-3875
    [16] Hario T Kato, A Diaz, G. Colina. The anaerobic treatment of low strength wastewaters In UASB and EGSB reactors [J]. Water science and technology, 1997, 36(6): 375-382
    [17] Seghezzo Lucas, Zeeman Grietje, van Lier Jules B. A review: the anaerobic treatment of sewage in UASB and EGSB reactors [J]. Bioresource Technology, 1998, 65(3): 175-190
    [18] Bodik Igor, Herdova Bronislava, Drtil Miloslav. The use of upflow anaerobic filter and AnSBR for wastewater treatment at ambient temperature [J]. Water Research, 2002, 36(4): 1084-1088
    [19] Agrawal Lalit K, Ohashi Yasuhiro, Mochida Etsuo. Treatment of raw sewage in a temperate climate using a UASB reactor and the hanging sponge cubes process [J]. Water Science and Technology, 1997, 36(6-7): 433-440
    [20] Hendriksen H V, Ahring B K. Integrated removal of nitrate and carbon in an upflow anaerobic sludge blanket (UASB) reactor: operating performance [J]. Water Research, 1996, 30: 1451-1458
    [21] Zakkour P D, Gaterell M R, Griffin P. Anaerobic treatment of domestic wastewater in temperate climates: treatment plant modelling with economic considerations[J]. Water Research, 2001, 35(7): 4137-4149
    [22] Van Lier Jules B, Rebac Salih, Lettings, Gatze. High-rate anaerobic wastewater treatment under psychrophilic and thermophilic conditions [J]. Water Science and Technology, 1997, 35(10): 199-206
    [23] Grant S and Lin K C. Effects of temperature and organic loading on the performance of upflow anaerobic sludge blanket reactors [J]. Can. J. Civil Eng, 1995, 22: 143-149
    [24] Rebac S at al. High-rate anaerobic treatment of wastewater under psychrophilic conditions [J]. J. Fermen. Bioengin, 1995, 80: 15-22
    [25] Kalogo Y and Verstraete W. Technical feasibility of the treatment of domestic wastewater by a CEPS-UASB system [J]. Environ. Technol, 2000, 21: 55-65
    [26] Sayed S K I and Fergala M A A. Two-stage UASB concept for treatment of domestic sewage including sludge stabilization process [J]. Water Science and Technology, 1995, 32(11), 55-63
    [27]刘礼祥,章北平,周红燕等.一体化CIBR反应器的低温脱氮除磷中试[J].中国给水排水, 2006, 22(19): 21-24
    [28] Tanaka N, Hvitved J. Transformations of wastewater organic matter in sewers under changing aerobic/anaerobic conditions [J]. Water Science and Technology, 1998, 37(1): 105-113
    [29] Del Pozo R, Diez V. Organic matter removal in combined anaerobic-aerobic fixed-film bioreactors [J]. Water Research, 2003, 37(15): 3561-3568
    [30] Carucci A, Lindrea K, Majone M, Ramadori R. Dynamics of the anaerobic utilization of organic substrates in an anaerobic/aerobic sequencing batch reactor [J]. Water Science and Technology, 1995, 31(2): 35-43
    [31] Agrawal Lalit K, Ohashi Yasuhiro, Mochida Etsuo, Okui Hiroyuki, Ueki, Yasuko Harada Hideki et al. Treatment of raw sewage in a temperate climate using a UASB reactor and the hanging sponge cubes process [J]. Water Science and Technology, 1997, 36(67): 433-440
    [32] Mikawa Kazuhiro, Emori Hiroyoshi, Takeshima Tadashi, Ishiyama Eiichi, Tanaka Kazuhiro. High rate and compact two-stage post-denitrification process with single-sludge pre-denitrification [J]. Water Science and Technology, 1996, 34(1-2): 467-475
    [33]陈凌霞,魏峰.徐志伟. A+A2O工艺在泰安市污水处理厂的应用[J].中国给水排水, 2005, 21(12): 83-85
    [34]尤作亮.城市污水强化一级处理的研究进展[J].中国给水排水, 1998, 14(5): 28-31
    [35]蒋展鹏,尤作亮,师绍琪等.城市污水强化一级处理新工艺-活化污泥法[J].中国给水排水, 1999, 15(12): 1-5
    [36]邱慎初.化学强化一级处理(CEPT)技术[J].中国给水排水, 2000, 16(1): 26-29
    [37] Aiyuk Sunny, Amoako Joyce, Raskin Lutgarde, van Haandel Adrianus, Verstraete Willy. Removal of carbon and nutrients from domestic wastewater using a low investment, integrated treatment concept [J]. Water Research, 2004, 38(13): 3031-3042
    [38]姜应和,李玲玲.混凝法强化城市污水厂一级处理的试验研究[J].中国给水排水, 2000, 16(3): 12-15
    [39]潘碌亭,肖锦,赵建夫等.中国城市污水强化一级处理研究现状与进展[J].环境污染与防治, 2003, 25(1): 29-31
    [40] J. C. V Smith et al. The use of ultrafiltration membrane activated sludge separation[C]. Presented paper of 24th annual purdue industrial waste conference, 1969
    [41] Nagaoka, H. Nitrogen removal by submerged membrane separation activated sludge process [J]. Water Science and Technology, 1999, 39(8): 107-117
    [42]雷晓东,熊蓉春,魏刚.膜分离法污水处理技术[J].工业水处理, 2002, 22(2): 1-3
    [43] Kashyap D R, Dadhich K S, Sharma S K. Biomethanation under psychrophilic conditions: a review [J]. Bioresource Technology, 2003, 87(2): 147-153
    [44] Langenhoff Alette A M, Stuckey David C. Treatment of dilute wastewater using an anaerobic baffled reactor: effect of low temperature [J]. Water Research, 2000, 34(15): 3867-3875
    [45] Banik Gouranga C, Dague Richard R. ASBR treatment of low strength industrial wastewater at psychrophilic temperatures [J]. Water Science and Technology, 1997, 36(2-3): 337-344
    [46] Singh L. Production of biogas from night soil at psychrophilic temperature [J]. Bioresource Technology, 1995, 53(2): 147-149
    [47] McHugh Sharon, Carton Micheal, Collins Gavin, O'Flaherty Vincent. Reactor performance and microbial community dynamics during anaerobic biological treatment of wastewaters at 16-37℃[J]. FEMS Microbiology Ecology, 2004, 48(3): 369-378
    [48] Rebac Salih, Gerbens Sybren, Lens Piet et al. Kinetics of fatty acid degradation by psychro ilically grown anaerobic granular sludge [J]. Bioresource Technology, 1999, 69(3): 241-248
    [49] Zeeman G Sanders W T M, Wang K Y et al. Anaerobic treatment of complex wastewater and waste activated sludge: Application of an Upflow anaerobic solids removal (UASR) reactor for the removal and pre-hydrolysis of suspended COD [J]. Water Science and Technology, 1997, 35(10): 121-128
    [50] Elrnitwalli T A, Sklyar V, Zeeman G et al. Low temperature pre-treatment of domestic sewage in an anaerobic hybrid or an anaerobic filter reactor [J].Bioresource Technology, 2002, 82(1): 233-239
    [51] Chernicharo C A Land Machado G. Feasibility of the UASB/AF system for domestic sewage treatment in developing countries [J]. Water Science and Technology, 1998, 38(8): 325-332
    [52] Held C, Wellacher M, Robra K H et al. Two-stage anaerobic fermentation of organic waste in CSTR and UFAF-reactors [J]. Bioresource Technology, 2002, 81(1): 19-24
    [53] Lettinga G. High-rate anaerobic treatment of wastewater at low temperature [J]. Apply Environment, 1999, 65(5): 1696-1702
    [54] Miron Y. The role of sludge residence time in the hydrolysis of lipids, carbohydrates and proteins during the anaerobic treatment of domestic sewage [J]. Water Research, 2000, 34(4): 1705-1713
    [55] Sanders W T M. Anaerobic hydrolysis kinetics of particulate substrate [J]. Water Science and Technology, 2000, 41(1): 17-24
    [56]沈耀良.厌氧折流板反应器(ABR)的水力流态及其处理高浓度有机废水效能的研究.河海大学博士后研究报告, 2001: 42-44
    [57]王建龙,韩英健,钱易.拆流式厌氧反应器((ABR)的研究进展[J].应用与环境全物学报, 2000, 6(5): 490-498
    [58] Alette A M, Langenhoff and Stuckey D C. Treatment of dilute wastewater using an anaerobic baffled reactor: effect of low temperature [J]. Water Research, 2000, 34(15): 3867-3875
    [59]王凯军, van Der L, Lettinga G..水解与颗粒污泥膨胀床串联工艺处理城市污水[J].中国给水排水, 1999, 15(8): 19-23
    [60] Elimtwalli T A, Sklyar V, Zeeman G et al. Low temperature pre-treatment of domestic sewage in an anaerobic hybrid or an anaerobic filter reactor [J]. Bioresource Technology, 2002,82(3): 233-239
    [61] Sayed S K I and Fergala M A A. Two-stage UASB concept for treatment of domestic sewage including sludge stabilization process [J]. Water Science and Technology, 1995, 32(11): 55-63
    [62] Chemicharo C A L and Machado R M G. Feasibility of the UASB/AF system for domestic sewage treatment in developing countries [J]. Water Science and Technology, 1998, 38(8): 325-332
    [63] Van Lier J, Rebac S, Lens P et al. Anaerobic treatment of partly acidified wastewaterin a two-stage expanded granular sludge bed (EGSB) system at 8℃[J]. Water Science and Technology, 1997, 36(6): 317-324
    [64] Bodik, Igor; Kratochvil, Karol; Gasparikova, Eva; Hutnan, Miroslav. Nitrogen removal in an anaerobic baffled filter reactor with aerobic post-treatment [J]. Bioresource Technology, 2003, 86(1): 79-84
    [65]王凯军, Lettinga G.生活污水厌氧后处理工艺研究[J].中国给水排水, 1998, 14(3): 20-23
    [66] Del Pozo R, Diez V. Organic matter removal in combined anaerobic-aerobic fixed-film bioreactors [J]. Water Research, 2003, 37(15): 3561-3568
    [67] Bhaumik S, Christodoulatos C, Korfiatis G P, Brodman B W. Aerobic and anaerobic biodegradation of nitroglycerin in batch and packed bed bioreactors[J]. Water Science and Technology, 1997, 36(2-3): 139-146
    [68] Kaseva, M. E. Performance of a sub-surface flow constructed wetland in polishing pre-treated wastewater-a tropical case study [J]. Water Research, 2004, 38(3): 681-687
    [69] Van der Steen Peter, Brenner Asher, van Buuren Joost, Oron. Gideon Post-treatment of UASB reactor effluent in an integrated duckweed and stabilization pond system [J]. Water Research, 1999, 33(3): 615-620
    [70] Chemicharo C A L, Machado R M G. Feasibility of the UASB/AF system for domestic sewage treatment in developing countries [J]. Water Science and Technology, l998, 38 (8-9): 325-332
    [71] Penetra RG, Reali M A P, Foresti E, Campos J R. Post-Treatment of Effluents from Anaerobic Reactor Treating Domestic Sewage by Dissolved-Air Flotation [J]. Water Science and Technology, 1999, 40(8): 137-143
    [72] Duin Olaf, Wessels Peter, van der Roest Helle, Uijterlinde Cora, Schoonewille Henk. Direct nanofiltration or ultrafiltration of WWTP effluent [J]. Desalination, 2000, 132(1-3): 65-72
    [73] Aiyuk Sunny, Amoako Joyce, Raskin Lutgarde, van Haandel Adrianus, Verstraete Willy. Removal of carbon and nutrients from domestic wastewater using a low investment, integrated treatment concept [J]. Water Research, 2004, 38(13): 3031-3042
    [74]彭超英,朱国洪,尹国等.人工湿地处理污水的研究[J].重庆环境科学, 2000,22(6): 43-45
    [75]席俊秀,谢协忠.污水的湿地处理工艺[J].工业用水与废水, 2001, 32(5): 32-33
    [76] Kadlec, Robert H. Chemical, Physical and Biological Cycles in Treatment Wetlands [J]. Water Science and Technology, 1999, 40(3): 37-44
    [77]白晓慧等.人工湿地污水处理技术及其发展应用[J].哈尔滨建筑大学报, 1999, 32(6): 88-92
    [78] Gopal, Brij. Natural and Constructed Wetlands for Wastewater Treatment: Potentials and Problems [J]. Water Science and Technology, 1999, 40(3): 27-35
    [79]丁疆华,舒强.人工湿地在处理污水中的应用[J].农业环境保护, 2000, 19(5): 320-321
    [80]段志勇等.复合植物床式人工湿地研究.环境污染治理技术与设备, 2002, 3(8):4-7
    [81] Jos Verhoeven T. A, Meuleman, Arthur F. M. Wetlands for wastewater Treatment: Opportunities and limitations [J]. Ecological Engineering, 1999, 12(12): 5-12
    [82]王爱萍,周琪.人工湿地处理污水的研究.四川环境, 2005, 24(2): 76-80
    [83]何成达,谈玲,葛丽英等.波形潜流人工湿地处理生活污水的试验研究[J].农业环境科学学报, 2004, 23(4): 766-769
    [84]徐伟伟.波形潜流湿地处理低浓度生活污水试验研究[D].华中科技大学, 2005
    [85] A. Heritage, Pistillo, K. P. Sharma, et al. Treatment of primary-settled urban sewage in pilot-scale vertical flow wetland filters: Comparison of four emergent macrophyte species over a 12 month period [J]. Water Science and Technology, 1995, 32(3): 295-304
    [86] Bonomol, Pastorell G., Zambon N. Advantages and limitation of duck-wead-based wastewater treatment systems [J]. Water Science and Technology, 1997, 34(5): 239-246
    [87]李寒娥.人工湿地系统在我国污水处理中的应用[J].环境污染治理技术与设备, 2004, 5(7): 9-12
    [88]黄德锋;李田.不同基质复合垂直流人工湿地对富营养化景观水的净化效果[J].环境污染与防治, 2007, 29(8): 616-621
    [89]夏汉平.人工湿地处理污水的机理与效率[J].生态学杂志, 2002, 21(4): 52-59
    [90] Knight R L, Payne Jr V W E, Borer R E, et al. Constructed wetlands for livestockwastewater management [J]. Ecological Engineering, 2000, 15: 41-45
    [91] Nguyen L M. Organic matter composition, microbial biomass and microbial activity in gravel-bed constructed wetlands treating farm dairy wastewaters [J]. Ecological Engineering, 2000, 16: 199-221
    [92] Mays P A, Edwards G S. Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage [J]. Ecological Engineering, 2001, 16: 487-500
    [93] Mitsch W J, Wise K M. Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage [J]. Water Research, 1998, 32(6): 1888-1900
    [94] Vihovsek D, Kukanja V. Constructed wetland for industrial wastewater treatment [J]. Water Research, 1996, 30(10): 2287-2292
    [95] Thut R N. Feasibility of treating pulp mill effluent with a constructed wetland [A]. in Moshiri, G. A. (ed). Constructed Wetlands for Water Quality Improvement[C]. Boca Raton, Florida, Lewis Publishers, 1993: 441-447
    [96] Kern J, Idler C. Treatment of domestic and agricultural wastewater by reed bed systems [J]. Ecological Engineering, 1999, 13(25):13-25
    [97] Sun G, Gray K R, Biddlestone A J, et al. Treatment of agri cultural wastewater in a combined tidal flow-down flow reed bed system [J]. Water Science and Technology, 1999, 40(3): 139-146
    [98] Vrhovsek D, Kuschk R. The use of constructed wetland for landfill leachate treatment [J]. Water Science and Technology, 1997, 35(5): 301-306
    [99] Martin C D, Johnson K D, Kadlec R H, et a1. The use of extended aeration and in series surface-flow wetlands for landfill leachate treatment [J]. Water Science and Technology, 1995, 32(3): 119-128
    [100] Thomas P. Constructed wetlands as a tool for sewage and stormwater pollution control [J]. Water, Sanitation and Health, 2000, 105: 305-310
    [101] Thurston K A. Lead and petroleum hydrocarbon changes in an urban wetland receiving storm water run off [J]. Ecological Engineering, 1999, 12: 387-399
    [102] Bachand P A M, Horne A J. Denitrification in constructed free water surface wetland [J]. Ecological Engineering, 2000, 14: 9-32
    [103] D'Angelo E M, Reddy K R. Diagenesis of organic matter in a wetland receiving gyper-eutrophic lake water [J]. Journal Environmental Quality, 1994, 23(3): 928-943
    [104] Green M., Safrai I. and Agami M. Constructed wetlands for river reclamation: Experimental design start-up and preliminary results [J]. Bioresource Technology, 1996, 55(2): 157-162
    [105] Reed S. C. and Brown D. Subsurface flow wetlands - a performance evaluation [J]. Water Env. Res., 1995, 67(2): 244-248
    [106] U. S. EPA. Subsurface Flow Constructed Wetlands for Wastewater Treatment: A Technology Assessment. Office of water, EPA, 1993, 832-R-93-008
    [107] Cooper P. A review of the design and performance of vertical-flow and hybrid CW treatment systems [J]. Water Science and Technology, 1999, 40(3): 1-9
    [108] Michal Green, Eran Friedler, Iris Safrai. Enhancing nitrification in vertical flow constructed wetland utilizing a passive air pump [J]. Water Research, 1998, 32(12): 3513-3520
    [109]王晟,徐祖信,李怀正.潜流湿地处理生活污水时的强化方法[J].环境科学, 2006, 27(12): 2432-2438
    [110]孙亚兵,冯景伟,田园春,等.自动增氧型潜流人工湿地处理农村生活污水的研究[J].环境科学学报, 2006, 26(3): 404-408
    [111] Hunt P. G., Matheny, T. A., Szogi, A. A. Denitrification in constructed wetlands used for treatment of swine wastewater [J]. Journal of environmental quality, 2003, 32: 727-735
    [112] Sun G., Gray K. R., Biddlestone A. J. Treatment of agricultural wastewater in downflow reed beds: experimental trials and mathematical model [J]. Journal of Agricultural Engineering Research, 1998, 69(1): 63-71
    [113] Sun G., Gray K. R., Biddlestone A. J., Cooper D. J. Treatment of agricultural wastewater in a combined tidal flow-downflow reed bed system [J]. Water Science and Technology, 1999, 40(3): 139-146
    [114] HE Lian-sheng, LIU Hong-liang, Xi Bei-dou, ZHU Ying-bo. Effects of Effluent Recirculation in Vertical-flow Constructed Wetland on Treatment Efficiency of Livestock Wastewater. IWA World Water Congress, 2006
    [115] Michal Green, Eran Friedler and Iris Safrai. Enhancing nitrification in vertical flow constructed wetland utilizing a passive air pump [J]. Water Research, 1998, 32(12): 3513-3520
    [116]郭书海,台培东,孙铁珩等.组合式好氧生物处理方法AS/UABF设计与工艺研究.应用与环境生物学报, 1999, 5(增刊): 64-67
    [117]周雹.城镇污水生物处理新工艺及其应用[J].中国给水排水, 2003, 19(12): 36-39
    [118]杨健,施鼎方.城镇污水处理绿色技术及其进展[J].环境污染与防治, 2001, 23(3): 107-110
    [119]俞庭康,杨健.城镇污水处理最佳实用技术新进展[J].环境污染治理技术与设备, 2000, 10(5): 54-60
    [120] Shahnaz D. Use of a new anaerobic-aerobic sequencing batch reactor system to enhance biological phosphorus [J]. Water Science and Technology, 1997, 35(1): 137-144
    [121] Ketchum, L. H. Jr. Design and physical features of sequencing batch reactors [J]. Water Science and Technology, 1997, 35(1): 11-18
    [122] Furumai, Hiroaki, etc. Modeling long term nutrient removal in a sequencing batch reactor [J]. Water Research, 1999, 33(11): 2708-2714
    [123] .Tilche A., Bacilieri E., Bor tone G., et al. Biological phosphorus and nitrogen removal in a sequencing batch reactor treating piggery wastewater [J]. Water Science and Technology, 1999, 40(1): 199-206
    [124] Obaja D, Mace S, Costa J, etc. Nitrification, denitrifcation and biological phosphorus removal in a sequencing batch reactor treating piggery wastewater [J]. Bioresource Technology, 2003, 87(1): 103-111
    [125]王凯军,贾立敏.城市污水生物处理新技术开发和应用[M].北京:化学工业出版社, 2001:138-222
    [126]沈耀良,王宝贞.废水生物处理新技术理论与应用[M].北京:中国环境科学出版社, 1999: 77-123
    [127]熊建英,杨海真,顾国维.连续流SBR法处理城市污水试验研究[J].中国给水排水, 1999, 15(8): 9-15
    [128]赵俊明,周琪. SBR工艺处理城市污水的应用与发展[J].贵州环境科技, 2004, 10(4): 31-39
    [129]彭永臻,王淑莹. SBR法计算机自动控制系统的研究[J].给水排水, 2000, 26(3): 76-78
    [130]姚毅.城市污水的生物脱氮脱磷[J].给水排水, 1999, 25(8): 21-24
    [131]周律,钱易等.三沟式氧化沟处理城市污水的效应[J].中国给水排水, 1997, 13(5): 4-7
    [132]王凯军.可持续发展的新型高效城市污水处理技术探讨[J].给水排水, 2005, 31(2): 32-35
    [133] Bode H. Anaerobic-aerobic treatment of industrial wastewater [J]. Water Science and Technology, 1988, 20(4-5): 189-198
    [134] Dienemann E A, Kosson D S, Ahlert R C. Evaluation of serial anaerobic/aerobic packed bed bioreactors for treatment of a superfund leach ate [J]. Journal of Hazardous Materials, 1990, 23: 21-42
    [135] Rifaat A W, Hamdy M. An aerobic-aerobic treatment of meat processing wastewater [J]. The Environmental List, 1999, 19(1): 61-65
    [136] Atuanya E I, Purohit H J, Chakrabarti T. Anaerobic and aerobic biodegradation of chlorophenols using UASB bioreactors [J]. World Journal of Microbiology & Biotechnology, 2000, 16: 95-98
    [137] Malaspina F. Cheese whey and cheese factory wastewater treatment with a biological anaerobic-aerobic process [J]. Water Science and Technology, 1995, 32(12): 59-72
    [138] Ciftci T. Nine years of full scale anaerobic-aerobic treatment experiences with fermentation industry effluents [J]. Water Science and Technology, 1995, 32(12): 131-139
    [139] Imura M. Sato Y. et al. Development of a high–efficiency household biofilm reactor [J]. Water Science and Technology, 1995, 31(9): 163-171
    [140]北京市水利局水环境治理考察团.日本韩国的水环境治理[J].北京水利, 2003, (4): 30-32
    [141]董哲仁,刘蒨,曾向辉.受污染水体的生物-生态修复技术[J].水利水电技术, 2002, 33(2): 1-4
    [142]苑宏英,周琪.生物-生态联合污水处理系统[J].环境污染治理技术与设备, 2005, 6(10): 19-23
    [143]金相灿,叶春.太湖重点污染控制区综合治理方案研究[J].环境科学研究, 1999, 12(5): 1-5
    [144] Guiot S R. Single-stage an aerobic/aerobic bio treatment of resin acid containing wastewater [J]. Water Science and Technology, 1998, 38(4-5): 255-262
    [145] John G. Co-immobilized aerobic/anaerobic mixed cultures in stirred tank and gas liftloop reactors [J]. Journal of Biotechnology, 1996, 50: l15-122
    [146] Meyerhoff J. Characterization and modeling of co immobilized aerobic/anaerobic mixed cultures [J]. Chemical Engineering Science, 1997, 52(14): 23l3-2329
    [147]唐振华,余阳,李浩等.厌氧酸化-兼氧-好氧工艺处理印染废水小试实验[J].环境科学与技术, 2005, 28(z1): 135-137
    [148]王凯军.可持续发展的新型高效城市污水处理技术探讨[J].给水排水, 2005, 31(2): 32-35
    [149]牛樱,陈季华.兼氧-好氧工艺处理高浓度化工废水[J].工业水处理, 2000, 20(8): 8-10
    [150]李茵.兼氧技术应用于有机污泥的处理[J].化工环保, 2002, 22(1): 12-15
    [151]奚旦立,陈季华,刘振鸿.兼氧技术-有机废水处理的新方法[J].中国纺织大学学报, 1997, 23(4): 52-58
    [152]杨群.水产品保鲜废水回用的兼性生化工艺研究[D].武汉理工大学硕士论文, 2003
    [153] Fahmy. Anaerobic-aerobic fluidized bed biotreatmen of sulphite pulp bleaching effluents [J]. Global parameters Water Research, 1994, 28(9): l987-l996
    [154] Fahmy. Anaerobic-aerobic fluidized bed biotreatmen of sulphite pulpbleaching effluents: Fate of individual chloral phonetic compounds [J]. Water Research, 1994, 28(9): l997-2010
    [155] TakaiT. Effects of temperature and volatile fatty acids on the nitrification demystification activity in small-scale anaerobic-aerobic recalculation biofilm process [J]. Water Science and Technology, 1997, 35(6): 101-108
    [156]方建章,黄少斌.生化法处理煤气废水[J].环境污染与防治, 1999, 21(4): l0-l4
    [157]顾夏声.废水生物处理数学模式[M].北京:清华大学出版社, 1993
    [158]解清杰.隐吸双喷厌氧生化传质规律[D].武汉城市建设学院硕士论文, 1999
    [159]龙学军.隐吸双喷厌氧生化反应器两相混合流动模型[D].武汉城市建设学院硕士论文, 1999
    [160]郑元景,沈光范,部扬善.生物膜法处理污水[M].中国建工出版社, 1986
    [161]郭晓磊等.厌氧颗粒污泥及其形成机理[J].给水排水, 2000, 26(1): 33-38
    [162] Morgan J M, Forster C F. Evison L. A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges [J]. Water Research,1990, 24(6) :743-750
    [163] Bock E, Schmidt and Steven R. Nitrogen loss caused by denitrifying nitrosomons cells using ammonium or hydrogen as electron donors and nitrite as electron accepter [J]. Arch Microbial, 1995, 163(1): 16-20
    [164] Verstraete and Philips S. Nitrification denitrification processes and technologies in new contexts [J]. Environmental pollution, 1998, 102(31): 717-726
    [165] Bruce E. Rittrnann. Simultaneous denitrification with nitrification in single channel oxidation ditches [J]. Journal WPCF, 1995, 57(4): 300-308
    [166] Schon, G., Geywitz, S. and Mertens, F. Influence of Dissolved Oxygen and Oxidation Reduction Potential on Phosphate Release and Uptake by Activated Sludge from Sewage Plants with Enhance Biological Phosphorus Removal [J]. Water Research, 1993, 27(3): 349-354
    [167] Osborn, Nicholas. Optimization of the activated sludge process for the biological removal of phosphorus [J]. Prog Water Technol., 1988, 10(1/2): 261-277
    [168]赵丹,任南琪,陈坚等.生物除磷技术新工艺及其微生物学原理[J].哈尔滨工业大学学报, 2004, 36(11): 1460-1462
    [169] Comin F A. Nitrogen removal and sycling in restored wetlands used as filters of nutrients for agricultural runoff [J]. Water Science and Technology, 1997, 35(5): 255-261
    [170] Office of Water. US. EPA. Subsurface Flow Constructed Wetlands for Wastewater Treatment: A Technology Assessment. 1993, 832-R-93-008(4204)
    [171]高拯民,李宪法,王绍堂,等.城市污水土地处理利用设计手册.北京:中国标准出版社, 1990
    [172] Verhoeven J T A, Meuleman A F M Wetlands for wastewater treatment: Opportunities and limitations [J]. Ecological Engineering, 1999, 12(1-2): 5-12
    [173] Dierberg F E, De Busk T A, Jackson S D. et al. Submerged aquatic vegetation-based treatment wetlands for removing phosphorus from agricultural run off: response to hydraulic and nutrient loading [J]. Water Research, 2002, 36(6): 1409-1422
    [174]吴晓磊.人工湿地废水处理机理.环境科学, 1995, 16(3): 83-86
    [175]李科德,胡正嘉.芦苇床系统净化污水的机理.中国环境科学, 1995, 15(2): 140-144
    [176] US EPA. Design manual of constructed wetlands and aquatic plant systems for municipal wastewater treatment, 1988, EPA625/1-88/022: 23-25
    [177] Stottmeister U, WieBner A, Kuschk P, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment [J]. Biotechnology Advances, 2003, 22(122): 93-117
    [178]卢少勇,张彭义,余刚,等.农田排灌水的稳定塘-植物床复合系统处理[J].中国环境科学, 2004, 24(5): 605-609
    [179]白军红,欧阳华,邓伟,等.湿地氮素传输过程研究进展[J].生态学报, 2005, 25(2): 326-333
    [180]梁威,吴振斌.人工湿地对污水中氮磷去除机制研究进展[J].环境科学动态, 2000, 25(3): 32-37
    [181] Vymazal J. Nitrogen removal in constructed wetlands with horizontal sub-surface flow -can we determine the key process? In: Vymazal J ed. Nutrient cycling and retention in natural and constructed wetlands. Leiden: Backhuys Publishers, 1999: 1-17
    [182] Vymazal J. Brix H. Cooper P F. et al. Removal mechanisms and types of constructed wetlands. In: Vymazal J, Brix H, Cooper P F, et al eds. constructed wetlands for wastewater treatment in Europe. Leiden: Backhuys Publishers, 1998: 17-66
    [183]丁疆华,舒强.人工湿地在处理污水中的应用[J].农业环境保护, 2000, 19(5): 320-321
    [184] Gerke S, Baker L A, Xu Y. Nitrogen transformations in a wetland receiving lagoon effluent: sequential model and implications for water reuse [J]. Water Research, 2001, 35(16): 3857-3866
    [185] Fleming-Singer M S, Horne A J. Enhanced nitrate removal efficiency in wetland microcosms using an episediment layer for denitrification [J]. Environment Science Technology, 2002, 36: 1231-1237
    [186] Horne A J. Nitrogen removal from wastetreatment pond or activated sludge plant effluents with free-surface wetlands. Water Science and Technology, 1995, 31(12): 341-351
    [187]廖新,骆世明,吴银宝,等.风车草和香根草在人工湿地中迁移养分能力的比较研究[J].应用生态学报, 2005, 16(1): 56-160
    [188]朱青海,曲向荣,李秀珍.苇田养分生物循环的研究[J].生态学杂志, 2000, 19(6): 21-23
    [189] Meuleman Arthur F M, van Logtestijn Richard, Rijs Gerard B J, et al. Water andmass budgets of a vertical-flow constructed wetland used for wastewater treatment [J]. Ecological Engineering, 2003, 20(1): 31-44
    [190]张曦,吴为中,温东辉,等.氨氮在天然沸石上的吸附及解吸[J].环境化学, 2003, 22(2): 166-171
    [191]张军,周琪,何蓉.表面流人工湿地中氮磷的去除机理[J].生态环境, 2004, 13(1): 98-101
    [192] Breen Peter F, Chick Alan J. Rootzone dynamics in constructed wetlands receiving wastewater: a comparison of vertical and horizontal flow systems [J]. Water Science and Technology, 1995, 32(3): 281-290
    [193] Philippi Luiz S, da Costa Rejane H R, Sezerino Pablo H. Domestic Effluent Treatment through Integrated System of Septic Tank and Root Zone [J]. Water Science and Technology, 1999, 40(3): 125-131
    [194] McNevin D., Harrison M., King A., David K. and Mitchell C. Towards an integrated performance model for subsurface flow constructed wetlands [J]. J. Environ. Sci. Health: Special Issue in Wastewater Treatment, 2000, A35(8): 1415-1429
    [195] A. Arias, M. Delbubba, H. Brix. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds [J]. Water Research, 2001, 35(5): 1159-1168
    [196] Chris C. Tanner, Joachim D’Eugenio, Graham B. McBride, James P. S. Sukias, Keith Thompson. Effect of water level fluctuation on nitrogen removal from constructed wetland mesocosms [J]. Ecological Engineering, 1999, 19(12): 67–92
    [197] Drizo, A. Christiane Forget, Robert P. Chapuis, Yves Comeau. Phosphorus removal by electric arc furnace steel slag and serpentinite [J]. Water Research, 2006, 40(8): 1547-1554
    [198] C. A. Prochaska, A. I Zouboulis, Removal of phosphates by pilot vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate [J]. Ecological Engineering, 2006.26(3): 293–303
    [199] Defu Xu, Jianming Xu, Jianjun Wu, Akmal Muhammad. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems [J]. Chemosphere, 2006, 63: 344–352
    [200]李强.兼性生化工艺处理城市污水的小试研究[D].武汉:华中科技大学硕士论文, 2005
    [201]程丹,章北平,胡国云等.城市污水兼性生化前处理工艺原理与试验[J].华中科技大学学报(城市科学版), 2005, 22(4): 32-35
    [202]李敏.城市污水变模式生化前处理试验研究[D].武汉:华中科技大学硕士论文, 2005
    [203]程伟.大型水生植物净化生活污水的试验研究[D].武汉:华中科技大学硕士论文, 2005
    [204] Drizo, C. A. Frost, K. A. Smith, J. Grace. Phosphate and ammonium removal by constructed wetlands with horizontal subsurface flow, using shale as a substrate [J]. Water Science and Technology, 1997, 27(5): 95-102
    [205] Tanner CC and Sukias JP. Accumulation of organic solids in gravel-bed constructed wetlands [J]. Water Science and Technology, 1995, 32(3): 229-239
    [206] Gersberg RM. Role of aqutic plants in wastewater treatment by artificial wetlands [J]. Water Research, 1986, 20(3): 363-368
    [207] Kadlec RH and Knight RL. Treatment Wetlands[C]. Boca Raton, FL: Lewis-CRC Press, 1996
    [208] USEPA. Subsurface flow constructed wetlands for wastewater treatment[C]. A Technology assessment. 1993: EPA832-R 93-008
    [209] Wang W, Yu Y, Wang SH. Process and design of wasterwater treatment by constructed wetland [J]. Urban Environ. Urban Ecol., 2001, 14(1): 59-62
    [210]鲁铌.波形潜流生态湿地系统净化生活污水的试验研究[D].武汉:华中科技大学硕士论文,2005
    [211]詹德昊,吴振斌,徐光来.复合垂直流构建湿地中有机质积累与基质堵塞[J].中国环境科学, 2003, 23(5): 457-461
    [212] Maehlum T, Stalnacke P. Removal efficiency of three cold-climate constructed wetlands treating domestic wastewater: effects of temperature, seasons, loading rates and input concentrations [J]. Water Science and Technology, 1999, 40(3): 273-281
    [213] Reddy K R, DeBusk W F. Nutrient removal potential of selected aquatic mcrophytes [J]. Environ. Qual., 1985, 14(4): 459-462
    [214]何玉海.人工湿地的除污机理及提高氮磷去除率的方法[J].新疆钢铁, 2004, 43(2): 35- 38
    [215]吴晓磊.人工湿地废水处理机理[J].环境科学, 1990, 16(3): 84- 85
    [216]郭明新,李万庆.天津市城市污水自由水面构筑物湿地处理系统中污水氮去除规律的研究[J].环境化学, 1996, 15(6): 516-522
    [217]张荣社,周琪,李旭东,等.自由表面人工湿地脱氮效果中试研究[J].环境污染治理技术与设备, 2002, 3(12): 9-11
    [218] Robert A, Corbitt. Standard Handbook of Environmental Engineering[M]. McGraw-H, 1998, 6: 128-136
    [219]高平平.垃圾填理场渗滤液的处理方法综述[J].石家庄铁道学院学报, 2003, 16(2): 54-57
    [220] IWA. Constructed wetlands for pollution control: process, performance, design and operations. Scientific and Technical Report NO. 8 [M]. IWA Publishing, London, UK, 2000
    [221]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社, 1998
    [222]邱立平.曝气生物滤池处理生活污水的运行特性及生态学研究[D].哈尔滨:哈尔滨工业大学, 2003
    [223]王薇,俞燕,王世和.人工湿地污水处理工艺与设计[J].城市生态与城市环境, 2001, 14(1): 59-62

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700