用户名: 密码: 验证码:
超声椭圆振动—化学机械复合抛光硅片技术的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在深入分析国内外化学机械抛光和超声加工技术研究现状的基础上,针对硅片传统化学机械抛光技术现状及其存在问题,特别是随着硅片直径不断增大,硅片抛光表面质量和抛光效率成为一个亟待解决和提高的问题,提出了超声椭圆振动—化学机械复合抛光硅片新技术的研究课题。该复合抛光技术是将超声加工和化学机械抛光加工综合为一体的新型加工技术,它在传统化学机械抛光基础上,将超声椭圆振动施加在抛光工具上,利用抛光工具产生的超声椭圆振动,提高了化学机械抛光中所使用抛光液的效能,达到改善抛光效果的目的。本文通过试验研究与理论分析相结合的方法,对复合抛光加工机理与工艺进行了深入研究,其主要研究内容及创新点包括:
     1.介绍了抛光工具超声椭圆振动产生的工作原理,推导了抛光工具超声椭圆运动的理论模型。研制了用于硅片表面及其边缘抛光的抛光工具,并实际测试了抛光工具的频率-阻抗特性和椭圆运动特性。
     2.研制了能够实现传统化学机械抛光,抛光工具做超声纵向振动、超声切向振动和超声椭圆振动等不同振动方式的复合抛光方法的试验系统。
     3.基于化学机械抛光和超声振动加工技术,进行了复合抛光加工机理研究。应用接触力学理论,建立了硅片表面与抛光垫之间的接触力学模型。在系统地研究化学机械抛光中各主要输入参数对加工表面质量影响的基础上,建立了简单实用的复合抛光材料去除率理论模型。对抛光工具做超声纵向振动、超声切向振动和超声椭圆振动等三种复合抛光方法,进行了材料去除机理及加工表面质量的理论研究,结果显示抛光工具的超声椭圆振动更有利于硅片综合抛光效果的改善。
     4.研究了一种在不破坏被加工件表面的情况下,对硅片等硬脆性材料微小去除量进行简易、快速的测量方法。
     5.进行了抛光工具的超声性能、抛光压力、抛光速度、抛光液供给量和抛光垫等,对硅片表面形貌、表面粗糙度和材料去除率等抛光试验研究。
     6.研究的超声椭圆振动—化学机械复合抛光方法的工艺规律表明,在相同的抛光条件下,复合抛光技术与传统化学机械抛光技术相比,抛光表面质量明显提高,材料去除率有较大增加,并且引入的描述抛光表面质量的不平整率KR也得到明显改善。
     总之,复合抛光方法相对于传统的化学机械抛光,无论在保证硅片抛光表面质量还是材料去除率等方面都有了一定的提高,为丰富超精密加工理论、提高硬脆性材料的超精密加工技术等具有重要的理论意义和工程应用价值。
On the basis of analyzing the present situation of chemical mechanical polishing (CMP) and ultrasonic machining (USM) at home and aboard, according to technical status and existing problems of traditional CMP, especially for the diameter of silicon wafer increasing, constantly, the surface quality and efficiency of silicon wafer polishing are becoming an urgent problem to be solved and improved, so the research subject of ultrasonic elliptic vibration chemical-mechanical hybrid polishing(UEVCMHP) new technique is proposed. The compound polishing technique is novel processing technique that ultrasonic processing and chemical mechanical polishing are integrated. The ultrasonic elliptic vibration polishing technique was applied to polishing tool based on the traditional CMP technique. For utilization of the ultrasonic elliptic vibration from the polishing tool, the performance of polishing slurry is improved in the process of CMP, and the object is implemented to improve polishing result. By means of theoretical analysis combined with experimental research, the processing mechanism and technology of integrate polishing was studied systematically and thoroughly, and the main contents and innovations were included:
     1. The principle of the ultrasonic elliptic vibration polishing was introduced, and a theory model for designing the polishing tool was established. A polishing tool used in silicon wafer top surface and edge treatment was studied, then frequency-impedance and elliptical motion characteristics of polishing tools were tested.
     2. The experimental equipment of integrate polishing was developed based on traditional CMP, in order to realize different vibrations, such as ultrasonic longitudinal vibration, ultrasonic shear vibration and ultrasonic elliptic vibration.
     3. Base on CMP and USM, the mechanism of integrate polishing was analyzed systematically. According to the contact mechanics theory, the contact model between the wafer and the pad was built. On the basis of systematical studies for the influence of each main input parameters in machine polishing to quality characteristics of process surface, a simple and practical theoretical model for the material removing of integrate polishing was established. The fundamental researches of material remove mechanism and processing surface quality was developed based on three integrate polishing methods including ultrasonic longitudinal vibration, ultrasonic shear vibration and ultrasonic elliptic vibration. The results showed that the ultrasonic elliptic vibration of polishing tools was more advantageous to improve the effect of silicon chip synthesis polishing.
     4. In the situation of non-destructive work piece surface, a simple, practical and fast measurement method for micro-remove rate from the hard-brittle materials was studied.
     5. The experiments were studied on input process parameters, i.e., ultrasonic performance of polishing tool, polishing pressure, slurry supplying, wafer velocity at polishing point, polishing pad, which acted on the surface quality characteristics, surface roughness and material removal rate(MRR).
     6. The process rules of UEVCMHP were studied. The results showed that the integrate polishing technique could obtain better polishing surface qualities, more material removal and better no-smooth rate KR rate than the traditional chemistry machine polishing in the same conditions.
     In summary, hybrid polishing technique compared with tradition CMP has some improvement, whether in polishing surface quality or in MRR. There will be a important theory significance and project applicative values,which is rich in ultra-precise processing theory and enhances ultra-precise processing technique for the hard-brittle material.
引文
[1] P.O. Hahn. The 300mm silicon wafer-A cost and technology challenge. Microelectronic Engineering, 200l,56(1-2):3-l3
    [2] Sami Franssila. Introduction to microfabrication. Finland: John Wiley & Sons, Itd., 2004
    [3]朱秉晨.微电子技术与21世纪经济.微处理机,1999,(4):1-6
    [4]吕玉山,蔡光起,华雷.单晶硅片的区域载荷法平坦化抛光.沈阳工业学院学报,2003,22(3):1-4
    [5]郭东明,康仁科,苏建修等.超大规模集成电路制造中硅片平坦化技术的未来发展.机械工程学报,2003,39(10):100-105
    [6]吴明明,周兆忠,巫少龙.单晶硅片的制造技术.制造技术与机床,2005,(5):72-75
    [7] P.S. Sreejith, G. Udupa, Y.B.M. Noor, et al. Recent Advances in machining of silicon wafers for semiconductor applications. International journal of advanced manufacturing technology, 2001,17:157-162
    [8]方厚政.日本超大规模集成电路项目的启示.日本学刊,2006,(3):110-116
    [9]郭东明,康仁科,金沫吉.大尺寸硅片的高效超精密加工技术.WMEM,2003,(1):35-40
    [10]河西敏雄.シリユン基板の加工技術と加工品質.表面科学,2000,21(11):688-695
    [11]阿部耕三.ゥェーハの平坦化加工裝置.電子材料,2001,11:60-68
    [12] Pietsch G J. Theatomic-scalere removal methanism during chemomechanical polishing of Si(100) and Si(111). Surface Science, 1995,395:331-333
    [13]苏建修,康仁科,郭东明.超大规模集成电路制造中硅片化学机械抛光技术分析.半导体技术, 2003,28(10):27-32
    [14]赵永武,王永光.基于单分子层去除机理的芯片化学机械抛光材料去除模型.江南大学学报(自然科学版),2007,6(1):86-90
    [15]王春安,安伟,赵永武.基于AFM的化学机械抛光磨粒模拟研究.润滑与密封,2006,183(11):96-98
    [16]蒋建忠,赵永武,雒建斌.一种基于非晶层粘性流动的机械化学抛光模型.中国机械工程,2006, 17(24下):2540-2546
    [17]力伯民,赵波.现代磨削技术.北京:机械工业出版社,2003
    [18]荣烈润.超精密研磨抛光方法.航空精密制造技术,2005,41(2):4-8
    [19]陈杨,陈建清,陈志刚.超光滑表面抛光技术.江苏大学学报(自然科学版),2003,24(5):55-59
    [20]于兆勤,杨忠高,黄志刚等.超光滑表面加工技术的发展及应用.机床与液压,2007,35(6):217- 220
    [21] J.M. Chen, Y.C. Fang. Hydrodynamic characteristics of the thin fluid film in chemical- mechanical polishing. IEEE Transactions on Semiconductor Manufacturing, 2002,15(1):39-44
    [22] J.D. Kim, I.H. Choi. Micro surface phenomenon of ductile cutting in the ultrasonic vibration cutting of optical plastics. Journal of Materials Processing Technology, 1997,68:89-98
    [23] T.B. Thoe, D.K. Aspinwall, M.L.H. Wise. Review on Ultrasonic Machining. International Journal of Machine Tools Manufacture, 1998,38(4):239-255
    [24] A.R. Jones, J.B. Hull. Ultrasonic flow polishing. Ultrasonics, 1998,36,97-101
    [25] Jianxin Deng, Taichiu Lee. Effect of ultrasonic surface finishing on the strength and thermal shock behavior of the EDMed ceramic composite. International Journal of Machine Tools and Manufacture, 2002,42:245-250
    [26] H. Hocheng, K.L. Kuo. Fundamental study of ultrasonic polishing of mold steel[J]. International Journal of Machine Tools and Manufacture, 2002,42:7-13
    [27]吴雁,朱训生,赵波.工件横向施振超声振动磨削力特性试验研究.机械科学与技术,2003, 25(2):146-148
    [28]社本英二,马春翔,森脇俊道.椭圆振动切削.精密工学会誌,1999,65(4):586-591
    [29]马春翔,胡德金.超声波椭圆振动切削技术.机械工程学报,2003,39,(12):67-70
    [30] Brinksmeier E, Gl?be R. Elliptical vibration cutting of steel with diamond tools. In: Proc. of 14th Annual ASPE Meeting,USA,1999:163-166
    [31]袁巨龙.功能陶瓷的超精密加工技术.哈尔滨:哈尔滨工业大学出版社,2000,8
    [32]卡斯帕(德).硅锗的性质.北京:国防工业出版社,2002,9
    [33]苑伟政,马炳和.微机械与微机械加工技术.西安:西北工业大学出版社,2000,8
    [34]田业冰.硅片超精密磨削表面质量和材料去除率的研究[硕士学位论文].大连理工大学, 2005,3
    [35]厥端麟,陈修治.硅材料科学与技术.浙江:浙江大学出版社,2000
    [36]康仁科,田业冰,郭东明等.大直径硅片超精密磨削技术的研究与应用现状.金刚石与磨料磨具工程,2003,136(4):13-18,25
    [37] Lei Hong, Zhang Pengzhen. Application of Chemical Mechanical Polishing Technology on the Finish Machining. Journal of Shanghai University(English Edition),2004,8(1):19-23
    [38]刘玉岭,檀柏梅,张楷亮.超大规模集成电路衬底材料性能及加工测试技术工程.北京:冶金工业出版社,2002
    [39]张朝辉,雒建斌,温诗铸.化学机械抛光流动性能分析.润滑与密封,2004,(4):3l-33
    [40]李庆忠,于秀坤,苏建修.IC制造中平坦化技术的性能与分析.沈阳航空工业学院学报,2006,23(1):27-31
    [41] J. Xu, J.B. Luo, L.L. Wang, et al. The crystallographic change in sub-surface layer of the silicon single crystal polished by chemical mechanical polishing. International journal of advanced manufacturing technology, 2001,17:157-162
    [42]曹凤国,张勤俭.超声加工技术.北京:化学工业出版社,2004
    [43]张云电.超声加工及其应用.北京:国防工业出版社,1995
    [44] Z.J. Pei, N. Khanna, P M. Ferrira. Rotary ultrasonic machining of structural ceramics- A review. Ceramic Engineering and Science Proceedings, 1995,16:259-278
    [45] P. Legge. Ultrasonic drilling of ceramics. Industrial Diamond Review,1964,24(278):20-24
    [46]曾伟民.旋转超声钻削先进陶瓷的基础研究[博士学位论文].华侨大学,2006,4
    [47]轧钢,秦伟华,许永华等.旋转超声波加工的试验研究.航空制造技术,2000,(6):56-69
    [48]肖德贤,赵福令,冯冬菊等.旋转超声波加工中延性去除模式的实验研究.电加工与模具,2004,(4):27-30
    [49] Z.J. Pei, P.M. Ferreira, S.G. Kapoor, et al. Rotary ultrasonic machining for face milling of ceramics. International Journal of Machine Tools & Manufacture,1995,35(7):1033-1046
    [50] http://www.takesho.co.jp
    [51] http://www.dmgchina.com
    [52]丁仕燕.数控展成超声磨削陶瓷型面的基础研究[博士学位论文].南京航空航天大学,2006,5
    [53]荣烈润.制造领域的主导技术-复合加工技术.机电一体化,2007,(2):9-14,24
    [54]张建华,张勤河,贾志新.复合加工技术.北京:化学工业出版社,2005
    [55] S.R. Ghabriel, S.M. Saleh, A. Kohail, et al. Problems associated with electrodes charge machined electrochemically machined and ultrasonically machined surfaces. Wear, 1982,83:275-283
    [56] V.F. Kazantsev, L.D. Rozenberg. The mechanicsm of ultrasonic cutting. Ultrasonics, 1965,3: 166-174
    [57] M. C. Shaw. Ultrasonic grinding. Microtechnic, 1956,10(6):257-265
    [58] A.I. Markov. Kinematics of the dimensional ultrasonic machining method. Machines & Tooling, 1959,30(10):28-31
    [59]曹凤国,张勤俭.超声加工技术的研究现状及其发展趋势.电加工与模具,2005,增刊:25-31
    [60] V.K. Astashev etc. Ultrasonic cutting as a nonlinear(vibro-impact) process. Ultrosonic,1998, 36:89-96
    [61] D. Prabhakar, Z.J. Pei, P.M. Ferreira and et al. A theoretical model for predicting material removal rates in rotary ultrasonic machining of ceramics. Transactions of the North American Manufacturing Research Institution of SME, 1993, XXI: 167-172
    [62] Z.J. Pei, D. Prabhakar, P.M. Ferreira, et al. A mechanistic approach to the prediction of material removal rates in rotary ultrasonic machining. Manufacturing Science and Engineering, 1995, 64:167-172
    [63] Z.J. Pei, P.M. Ferreira. Modeling of Ductile-mode Material Removal in Rotary Ultrasonic machining. International Journal of Machine Tools & Manufacture, 1998, 38:1399-1418
    [64] T.C. Lee, C.W. Chan. Mechanism of the ultrasonic machining of ceramic composites. Journal of Materials Processing Technology, 1997,71(2): 195-201
    [65]吴雁,孙爱国,赵波等.超声振动磨削陶瓷材料高效去除机理研究.制造技术与机床, 2006, (4):59-62
    [66]张洪丽,张建华.超声振动磨削运动学分析.制造技术与机床,2006,(6):63-64
    [67]林滨.工程陶瓷超精密磨削机理与实验研究[博士学位论文].天津大学,1999
    [68]范国良,陈传梁.超声加工概况和未来展望.电加工,1994,(6):7-11
    [69]艾枫.一种新颖的超声振动加工技术.制造技术与机床,2007,(3):25-27
    [70] Y. Wu, Y. Fan , M. Kato, et al. Development of an ultrasonic elliptic-vibration shoe centerless grinding technique. Journal of Materials Processing Technology, 2004,155-156: 1780-1787
    [71] Y. Wu, T. Kondo, M. Kato. A new centerless grinding technique using a surface grinder. Journal of Materials Processing Technology, 2005,162-163: 709-717
    [72] Y. Wu, Y. Fan , M. Kato. A feasibility study of microscable fabrication by ultrasonic-shoe centerless grinding. Processing Engineering, 2006,30:201-210
    [73]温任林,严景平.超声振动切削技术与误差补偿技术的综合应用.工具技术,1997,31(8):3-6
    [74]杨继先,郭伟光,杨素梅等.陶瓷材料超声振动车削实验研究.兵工学报,1995,(1):90-93
    [75]杨智勇.超声振动切削系统的建立及变幅杆性能的仿真研究[硕士学位论文].哈尔滨工业大学, 2006
    [76]吴雁,朱训生,赵波.SiCp/AL复合材料超声振动切削加工表面质量试验研究.机械制造, 2004,42(8):15-17
    [77]张勤河,张建华.超声振动钻削加工陶瓷的研究.新技术新工艺,l997,(2):17-18
    [78]李健中.精密陶瓷的超声波振动磨削加工机理研究[硕士学位论文].河北工学院,1992
    [79]辛志杰,刘钢.超声波振动内圆磨削:M114W磨床实现超声磨削的探讨.华北工学院学报, 1996,17(2):185-188
    [80]徐家文,丁仕燕,郑建新等.工程陶瓷叶片型面数控展成蠕动超声磨削工艺及装置. CN200510094277.6,公开时间:2006.3.15
    [81] J.W. Xu, J.X. Zheng. The Basic Experimental Research on the NC-Creep Feed Ultrasonic Grinding Ceramics. 15th International Symposium on Electromaching(ISEM) Proceedings, Pittsburgh, USA, 2007
    [82]郑建新,徐家文,吕正兵.陶瓷材料延性域磨削机理.硅酸盐学报,2006,34(1):102-106
    [83]詹建明,赵继,祝佩兴.机器人超声研抛自由曲面的精加工系统.中国机械工程,2000,11(8):852-854
    [84] A.R. Jones, J.B. Hull. Ultrasonic flow polishing. Ultrasonics, 1998, 36, 97-101
    [85] W.J. Rodney, E.M. Fawzy. Combined EDM and ultrasonic drilling. UK Patent GB2224684A
    [86] Kremer D, LebrunJ L, Hosari B, et a1. Effects of ultrasonic vibrations on the performances in EDM. Annals of the CIRP, 1989,38(1):199-202
    [87]贾志新,张建华,艾兴.超声频间隙脉冲放电加工的放电特性和加工特性的理论研究.电加工与模具,1994,(6):25-28
    [88]徐明刚,张建华,张勤河等.超声振动辅助气体介质电火花加工研究.中国机械工程,2006, 17(14):1147-1150
    [89]钱军,高长水.工件激振式复合电火花微细孔加工.航空精密制造技术,1997,33(5):l8-20
    [90]杨大春,云乃彰,严德荣.硬脆金属的超声电解复合加工研究.电加工与模具,2002,(2):3l-33
    [91]张云鹏,赵伟,任中根.复杂型面的复合光整加工实验研究.电加工与模具,2007,(1):30-33
    [92]苏建修.IC制造中硅片化学机械抛光材料去除机理研究[博士学位论文].大连理工大学, 2006,7
    [93] X.S. Han. Study micromechanism of surface planarization in the polishing technology using numerical simulation method. Applied Surface Science, 2007,43: 6211-6216
    [94] Y.W. Zhao, L. Chang, S.H. Kim. A mathematical model for chemical–mechanical polishing based on formation and removal of weakly bonded molecular species. Wear, 2003,254:332-339
    [95] F.W. Preston. Optimization of computer controlled polishing. Glass Tech 1927,11: 214-219
    [96] F.W. Preston. The theory and design of plate glass polishing machine. Soc Glass Technology, 1927,11,214-256
    [97] F.G. Shi, B. Zhao. Modeling of chemical-mechanical polishing with soft pads. Applied Physics A (Materials Science & Processing), 1998,67(2):249-252
    [98] F.G. Shi, B. Zhao, Shi-Qing Wang. A new theory for CMP with soft pads. IITC 1998,7:73-75
    [99] L. Sudheendra, A.R. Raju. Peptide-induced formation of silica from tetraethylorthosilicate at near-neutral pH. Mater Res Bull, 2002,37(1):151-159
    [100] G.B Basim, B.M Moudgil. Effect of soft agglomerates on CMP slurry performance. J Colloid Inter Sci, 2002,256(1):137-142
    [101] G.B Basim, I.U Vakarelski. Role of interaction forces in controlling the stability and polishing performance of CMP slurries. J Colloid Inter Sci, 2003,263(2): 506-515
    [102] A. Miyoshi, H. Nakagawa, K. Matsukawa. Simulation on chemical mechanical polishing using atomic force microscope. Microsyst Technol, 2005,11:1102-1106
    [103] M. Bielmann, U. Mahajan, R.K. Singh. Effect of particle size during tungsten chemical mechanical polishing. Electrochemical and Solid-State Letters, 1999,2(8):401-403
    [104]库黎明,李耀东,周旗钢等.双面抛光工艺中压力对300mm硅片表面形貌的影响.稀有金属, 2006,30(2):134-137
    [105]韩荣久,孙恒德,张云等.单晶硅片的低温抛光技术.光学精密工程,1998,6(5):104-109
    [106]韩荣久,孙恒德,张云等.光学材料的浅低温抛光方法.航空精密制造技术,1999,35(6):1-5
    [107] Tani Y, Semba T, Sato H. Development of a High-Efficiency Finishing Process Using“Liquid- Bond W heel”. Annals of the CIRP, 1986,35(1):215-218
    [108] C.B. Zarowin. Comparison of the Smothing and Shaping of Optics by Plasma-assisted Chemical Etching and Ion Milling Using the Surface Evolution. Theory Applied Optics, 1999,32 (16):2984-2991
    [109] Seiichi Kondo. Abrasive-free polishing for copper damascene interconnection. J. Electrochem. Soc., 2000,147(10):3907-3913
    [110] Thomas Laursen, Malcolm Grief. Characterization and optimization of copper chemical mechanical planarization. J. Electronic Mater., 2002,31(10):1059-1065
    [111]王亮亮,路新春,潘国顺等.硅片化学机械抛光中表面形貌问题的研究.润滑与密封, 2006,(2):66-68,75
    [112]陈建清,陈杨,陈志刚等.超细CeO2磨料对硅片的抛光性能研究.中国机械工程,2004,15(8下) :743-745
    [113]陈杨,陈建清,陈志刚等.纳米磨料对硅晶片的超精密抛光研究.摩擦学学报,2004,24(4): 332-335
    [114]狄卫国,杨明,刘玉岭.超大规模集成电路制备中硅衬底抛光液研究.石家庄铁道学院学报, 2003,16(4):38-41
    [115]狄卫国,刘玉岭,司田华.ULSI硅衬底的化学机械抛光.半导体技术,2002,27(7):18-22
    [116] B. Mullany, G. Byrne. The effect of slurry viscosity on chemical–mechanical polishing of silicon wafers. Journal of Materials Processing Technology, 2003,132:28-34
    [117] Li. Weidan, W.S. Dong. The effect of the polishing pad treatment on the chemical-mechanical of Si02 films. Thin Solid Films, 1995,270:601-606
    [118] Ravi Saxena, Dipto, G. Thakurta, et al. A feature scale model for chemical mechanical planarization of damascene structures. Thin Solid Films, 2004,449(1-2):192-2096
    [119]赵文宏,周兆忠,吕冰海.化学机械抛光过程中抛光垫修整的研究.新技术新工艺,2007,(3):24- 27
    [120]张朝辉,杜永平,常秋英等.化学机械抛光中抛光垫作用分析.北京交通大学学报,2007, 31(1):18- 21
    [121] E. Estragnat, G. Tang, H. Liang, et al. Experimental Investigation on Mechanisms of Silicon Chemical Mechanical Polishing. Journal of Electronic Materials, 2004, 33(4):334-339
    [122] X. Lin, J.L. Yuan, B.H. Lu. Research on ultraprecision po1ishing technology for functional ceramics. 6th International Conference on Progress of Machining Technology. 2002, Sep., Xi an: 236-241
    [123] M. Forsberg. Effect of process parameters on material removal rate in chemical mechanical polishing of Si[100]. Microelectronic Engineering, 2005,77(3-4):319-326
    [124] G.B. Basim, J.J. Adler, U Mahajan, et a1. Effect of particle size of chemical mechanical polishing slurries for enhanced polishing with minimal defects. Electrochem. Soc, 2000, 147(9):3523-3528
    [125] M.G. John, D. Chris. Polishing pad surface characterisation in chemical mechanical planarisation. Journal of Materials Processing Technology, 2004,153-154:666-673
    [126]林明献.硅晶圆导体材料技术.台北:台北全华科技图书股份有限公司,2000
    [127]王建荣,林必窕,林庆福.半导体平坦化CMP技术.台北:台北全华科技图书股份有限公司,1999
    [128] R Kolenknow, R Nagahara. Chemical-mechanical wafer polishing and planarization in batch systems. Solid State Technology,1992,12:112-114
    [129] H. fusstter, A. Schnegg, et al. Impzct of chemomechanical polishing on the chemical composition and morphology of the silicon surface. Mat Res Soc Symp Proc, 1995, 386:97-108
    [130]李娟,陈秀芳,马德营等.SiC单晶片的超精密加工.功能材料,2006,37(1):70-72
    [131]薛群基,刘维民.摩擦化学的主要研究领域及其发展化学进展趋势.化学进展,1997,9(3):311-318
    [132]李生华,周春红,张瑞军等.摩擦化学进展-化学的地位与作用.摩擦学学报,2002,22(1):74-80
    [133] S.W. Park, C.B. Kim, S.Y. Kim, et al. Design of experimental optimization for ULSI CMP process applications. Microelectronic Engineering, 2003,66(1-4):488-495
    [134]何进,陈星弼,杨传仁等.直接键合硅片的亲水处理及其表征.半导体技术,1999,24(5):23-25,29
    [135] J.M. Steigerwald, R. Zirpoli, S.P. Murarka, et al. Pattern Geometry Effects in the Chemical- Mechanical Polishing of Inlaid Copper Structures. J Electrochem Soc, 1994,141(10):2842-2848
    [136]张楷亮,宋志棠,封松林等.ULSI关键工艺技术-纳米级化学机械抛光.微纳电子技术,2005, 42(7):336-339
    [137] Scott R.Runnels and L.Michael Eyman. Tribology analysis of chemical-mechanical polishing. Journal of the Electrochemical Society, 1994,141(6):1698-1701
    [138] T.C. Chang, T.M. Tsai, P.T. Liu, et al. CMP of ultra low-k material porous- polysilazane (PPSZ) for interconnect applications .Thin Solid Films,2004,447,524-530
    [139] J.B. Chid, C.C. Yu, S.H. Shen. Application of soft landing to the process control of chemical mechanical polishing. Microelectronic Engineering,2003,65(3):345-356
    [140] Y.W. Zhao, L. Chang. A micro-contact and wear model for chemical- mechanical polishing of silicon wafers. Wear, 2002,252:220–226
    [141] J. Tich, T. John, A. Joseph, et al. Contact mechanics and lubrication hydrodynamics modeling for chemical-mechabical polishing. Journal of the Electrochemical Society, 1999,146(4):1523-1528
    [142] Guanghui Fu, Abhijit Chandra. A model for wafer scale variation of material removal rate in chemical mechanical polishing based on viscoelestic pad deformation. Journal of Electronic Materials, 2002, 31(10): 1066-1073
    [143] Q. Luo, S. Ramarajan, S.V. Babu. odification of the Preston equation for the chemical mechanical polishing of copper. Thin Solid Films, 1998,335(3):160-167
    [144] Maury, D. Ouma, D. Boning, et al. A modification to Preston’s equation and impact on pattern density effect modeling. Program Abstracts, Advanced Metalization and Interconnect Systems for ULSI Applications, Sept. 30-Oct. 2,1997
    [145] P. Wrschka, J. Hernandez, Y. Hsu, et al. Polishing parameter dependencies and surface oxidation of chemical mechanical polishing of Al thin films. Journal of the Electrochemical Society, 1999,146(7): 2689–2696
    [146] Goodarz A, Xia Xun. A Model for Mechanical Wear and Abrasive Particle Adhesion during the Chemical Mechanical Polishing Process. Journal of Electrochemical Society, 2001,148(3):99-109
    [147] Luo Jianfeng, Dornfeld D.A. Material Removal Mechanism in Chemical Mechanical Polishing: Theory and Modeling. IEEE Transactions on Semiconductor Manufacturing, 2001,14(2):112-133
    [148] Qin K, Moudgil B, Park C.W. A Chemical Mechanical Polishing Model Incorporating both the Chemical and Mechanical Effects. Thin Solid Films, 2004,446(2):277-286
    [149]陈杨,陈志刚,李霞章等.硅晶片化学机械抛光材料去除机制与模型.润滑与密封,2006, 176(4):119-122,126
    [150] T. Yu, C. Yu, M. Orlowski. A statistical polishing pad model for chemical–mechanical polishing. IEEE International Electron Devices Meetings, 1993,5-8:865-868
    [151] L.M. Cook. Chemical processes in glass polishing. Journal of Non-crystalline Solids,1990, 120(1): 152-171
    [152] C.W. Liu, B.T. Dai, W.T. Tseng, et al. Modeling of the wear mechanism during chemical- mechanical polishing. Journal of the Electrochemical Society, 1996, 143(2):716-721
    [153] K. Qin, B. Moudgil, C.W. Park. A chemical mechanical polishing model incorporating both the chemical and mechanical effects. Thin Solid Films,2004,446(1-2):277-286
    [154] Chi-Wen Liu, Bau-Tong Dai, Wei-Tsu, et al. Modeling of wear mechanical during chemical mechanical polishing. Journal Electrochem. Soc.,1996,143(2):716-721
    [155] Scott R.Runnels. Feature-scale fluid-based erosion modeling for chemical-mechanical polishing. Journal of the Electrochemical Society, 1994,141(7):1900-1904
    [156] J. Larsen-Basse, H. Liang. Probable role of abrasion in chemical mechanical polishing Tungsten. Wear, 1999,233-235:647–654
    [157] G.T. Dipto, L.B. Christopher, W.S. Donald, et al. Three-dimensional chemical mechanical planarization slurry flow model based on lubrication theory. Journal of the Electrochemical Society, 2001,148 (4):207-214
    [158] G.T. Dipto, W.S. Donald, J.G. Rouald, et al. Three-dimensional wafer-scale copper chemical mechanical planarization model. Thin Solid Films, 2002,414(1):78-90
    [159] C.H. Cho, S.S. Park, Y. Ahn. Three-dimensional wafer scale hydrodynamic modeling for chemical mechanical planarization. Thin solid Films, 2001,389(1-2):254-260
    [160] S. Sundararajan, D.G. Thakurta, D.W. Schwendeman, et a1. Two-Dimensional Wafer-Scale Chemical Mechanical Planarization Models Based on Lubrication Theory and Mass Transport. Journal of The Electrochemical Society,1999,146(2):761-766
    [161] N. Gerd, E.C. Lawrence. Modeling of chemical mechanical polishing-A Review. IEEE Transactions on Semiconductor Manufacturing, 1995,8(4):382-389
    [162] Lei Shah, Joseph Levert, Lome Meade. Interfacial fluid mechanics and pressure prediction in chemical mechanical polishing. Journal of Tribology, 2000,122(3):539-543
    [163] Lei Shan, Chunhong zhou, Steven Danyluk. Mechanical interactions and their effects on chemical mechanical polishing. IEEE Transactions on Semiconductor Manufacturing, 2001,14(3):207-213
    [164] Chunhong Zhou, Lei Shan, J. Robert Hight, et al. Fluid pressure and its effects on chemical mechanical polishing. Wear, 2002,253:430–437
    [165] Tich J, John Tichy, Joseph A. Contact mechanics and lubrication hydrodynamics modeling for chemical-mechabical polishing. Journal of the Electrochemical Society, 1999,146(4):1523-1528
    [166] H.N. Sum, C.F. Higgs, Y. Inho, et al. An analysis of mixed lubrication in chemical mechanical polishing. Journal of Tribology. 2005,127(2):287-292
    [167] T.K. Yu, C. Yu, Marius Orlows.A statistic polishing pad model for chemical-mechanical polishing. IEEE IEDM Washington DC,Dec,5-8, 1993:865-868
    [168]王勇光,赵永武,吴燕玲.超精密抛光材料的非连续去除机理.中国机械工程,2007,18(24):1032-1035
    [169]王永光,赵永武.基于分子量级的化学机械抛光界面动力学模型研究.摩擦学学报,2007, 27(3):259-263
    [170]王永光,赵永武.基于分子量级的化学机械抛光材料去除机理.半导体学报,2007,28(2):308- 312
    [171] Xuesong Han. Study micromechanism of surface planarization in the polishing technology using numerical simulation method. Applied Surface Science, 2007,253:6211-6216
    [172]郭晓光,郭东明,康仁科等.单晶硅超精密磨削过程的分子动力学仿真.机械工程学报,2006, 42(6):46-50
    [173]罗熙淳,梁迎春,董申等.分子动力学在纳米机械加工技术中的应用.中国机械工程,1999, 10(6):692-696
    [174] V. Soundararejan, V. Radhakrishnan. An experimental investigation on the basic mechanisms involved in ultrasonic machining. International Journal of Machine Tool Design and Research, 1986, 26(3):307-321
    [175] E.W. Pentland, J.A. Ektermanis. Improving ultrasonic machining rates-somefeasibility studies. Journal of Engineering for Industry, Transactions of the ASME, 1965, Feb., 87, Series B:39-46
    [176]张福学,王丽坤.现代压电学.北京:科学出版社,2001
    [177]栾桂冬,张金铎,王仁乾.压电换能器和换能器阵(上册).北京:北京大学出版社,1990
    [178]國枝正春.実用機械振動學.東京:理工學社,1993
    [179]许纯舫.代数和初等函数学习指导.北京:中国青年出版社,1979
    [180]見城尚志,指田年生.超音波モータ入門.東京:総合電子出版社,1991
    [181]圧電セラミックスハンドブック.東京:富士セラミックス株式会社,1988
    [182]韩荣久,安贵生,刘要武等.光学材料的浅低温抛光方法.航空精密制造技术,1999,35(6):1-5
    [183] B. Hader, O. Weis. Precision measurements of material removal rates in super polishing Sapphire. SPIE,1988,1015,114-121
    [184] T.G. Bifano, T.A. Dow, R.O. Scattergood. Ductile-regime grinding: a new technology for machining brittle materials. Trans. of the ASME, J. of Eng. for Ind., 1991,113:184-189
    [185] K. Lindesy. Tetraform grinding. Proc. SPIE, 1991,1573:129-135
    [186] T.G. Bifano, J.B. Hosler. Precision grinding of ultrathin quartzwafers. Trans. of the ASME, J. of Eng. for Ind., 1993,115:285-262
    [187]冯冬菊.超声波铣削加工原理及相关技术研究[博士学位论文].大连理工大学,2005,6
    [188]史兴宽,滕霖,李雅卿.硬脆材料延性域磨削的临界条件.航空精密制造技术,1996,32(4): l0-13
    [189] M. Zhou, B.K.A. Ngoi, Z.W. Zhong, et al. Brittle-ductile transition in diamond cutting of silicon single crystals. Materials and Manufacturing Processes, 2001,16(4):447-460
    [190] Nadir Patir, H.S. Cheng. An average flow model for determining effects of three dimensional roughness on partial hydrodynamic lubrication. Journal of Lubrication, 1987, 100(1): 12-17
    [191]张建华,张勤河,贾志新等.超声加工后期陶瓷孔的破损.山东工业大学学报,1996(2):104-108
    [192]赵波,郑玉歌.超声珩磨难加工材料精密表面的高效特性研究.中国机械工程,1998,9(8):61-64
    [193] G. Y, H.W. Qin, S.C. Yang, et al. Analysis of the rotary ultrasonic machining mechanism. Journal of Materials Processing Technology, 2002,129:182-185
    [194]袁志发,周静芋.实验设计与分析.北京:高等教育出版社,2003,4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700