用户名: 密码: 验证码:
武汉上空对流层大气气溶胶Raman/Mie激光雷达探测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国改革开放三十年的发展,目前,建立和谐、环保的两型社会是我们的目标。因此,对我们的生存环境有了前所未有的关注。其中大气污染是最为关注的一个问题。实时、定量的大气气溶胶含量是判断大气干洁度的重要指标,也是研究气候气象变化的一个重要要素。发展及时有效的探测手段是目前全国面临的一个巨大挑战。
     自从激光器件问世以来,对于大气气溶胶的研究进入了一个划时代的意义,可以实时、长期观测气溶胶的垂直分布廓线,并同时出现了天基激光雷达和地基激光雷达。在利用Mie激光雷达探测反演时,一个激光雷达方程存在两个未知数,气溶胶的消光系数和后向散射系数。所以必须假设他们两者之间的关系,才能解决问题,有了假设就必然引入了误差。而利用Raman激光雷达探测,不需要作此假设,可以精确探测气溶胶的消光系数特性。本文发展了一套地基Raman/Mie多通道激光雷达系统,能够实时、准确地探测武汉地区对流层低空大气气溶胶的光学特性,从而反映气溶胶在大气中垂直分布含量情况。
     本文首先在总结前人工作的基础上,把握大气气溶胶研究现状和发展前景,研究激光雷达探测大气气溶胶技术,并根据武汉地区大气气溶胶现状,设计一套地基Raman/Mie多通道激光雷达系统。估算各种参数值,并仿真模拟激光雷达系统的工作特性。集成整个系统,并对系统的各个硬件以及软件部分进行调节与信号的测试。保证系统的各个通道同时、有效的工作。其次,研究大气气溶胶的消光系数、后向散射系数和激光雷达比等特性的反演方法,通过仿真实验来验证反演方法的正确性与可行性。第三,利用自行研制的Raman/Mie多通道激光雷达系统,对武汉地区大气气溶胶消光系数、后向散射系数和激光雷达比等的垂直分布廓线进行实时探测,并做长期观测,以期对武汉地区大气中气溶胶的分布以及变化规律进行研究。第四,研究目前利用激光雷达探测大气边界层的方法,并利用Raman/Mie多通道激光雷达系统探测武汉上空大气边界层的情况,分析边界层的高度、变化规律等。最后,利用此系统对逆温层进行了初步的探测研究。在研究的过程中,解决了一些关键技术问题,并对一些反演算法进行了改进。由于Raman散射信号非常微弱,所以必须对背景噪声进行有效的抑制,才能保证Raman散射信号不会被淹没。我们采用磁场探测技术,对实验室周围的电磁环境进行探测,并输入软件,对电磁噪声进行扣除;利用Raman激光雷达原理可以较为准确的探测大气气溶胶的消光系数,同时结合同一个视场的后向散射Mie信号,可以反演气溶胶的后向散射系数。这里的关键点就是要保证Mie通道信号和Raman通道信号必须来自于同一个视场。利用Raman激光雷达原理反演的激光雷达比,作为Mie散射激光雷达方程的输入条件,反演气溶胶消光系数和后向散射系数。然后比较两种方法所得的结果。如果符合程度较高,说明了两个通道的信号是来自于同一个视场;大气边界层高度是边界层研究最关心的问题之一,而不同的研究者给出了不同的边界层高度的结果,也就使得边界层高度有着不同的判据。目前已经有了很多直接观测的手段,如气象塔观测、系留气球、释放气球、遥控和驾驶飞机以及一些遥感技术。利用不同的参数作为判据,来确定边界层的高度。但最为直接有效的,还是使用激光雷达作为探测工具,可以实时、连续地观测边界层高度及其变化情况。本文提出用Raman激光雷达原理来探测反演大气边界层的高度,并对常用Mie激光雷达探测边界层的SBH99法进行改进,使具有更高的精度。同时也对出现的逆温层的高度进行了探测分析。
As China's three decades of reform and opening up, establishing society of harmony, environmental protection is our present goal. Therefore, our living environment is focused on unprecedented attention. Air pollution is one of the most concerned problems. Real-time and quantitative atmospheric aerosol content is an important indicator that determines the degree of air cleaning, but also an important element of weather in the study of climate changes. Developing timely and effective detection means is urgent.
     Since the invention of laser, the study of atmosphere has beening coming into a new epoch. Lidar can make real-time and long-term observations of aerosol vertical distribution profiles. There are space-based lidar and ground-based lidar, space-based lidar can detect over a wide range of areas, but is easily interfered by the weather such as cloud. So there are often blind observation areas. In Mie Lidar equation, aerosol extinction coefficient and backscattering coefficient are two unknowns. If using Mie Lidar, there must be an assumption about the relationship of them in order to solve the equation. The assumption introduces errors. However, using Raman Lidar principle, aerosol extinction coefficient can be inversed accurately without making this assumption. This paper developed a ground-based Raman/Mie multi-channel lidar system, real-time and accurate vertical distribution of aerosol optical properties in the low troposphere over Wuhan will be detected.
     At first, the previous work is concluded and the status quo of atmospheric aerosol research and development prospects is studied. A ground-based Raman/Mie multi-channel lidar system is designed in accordance with the status quo of atmospheric aerosol over Wuhan. All system parameters are estimated and the lidar's operating characteristics are simulated. Then the entire including hardware and software are integrated and signal tests are done to make sure that signals in all channels are received well. Second, the methods of inversing atmospheric aerosol extinction coefficient, backscattering coefficient and lidar ratio are studied and the simulation experiments are done to verify the correctness and feasibility of the inversion method. Third, based on the self-developed Raman/Mie multi-channel lidar system, real-time vertical distribution profiles of atmospheric aerosol extinction coefficient, backscattering coefficient and the lidar ratio are detected. And long-term observations are done to get a view of atmospheric aerosols' distribution and variation in Wuhan area. Fourth, research the atmospheric boundary layer and detect the height of it over Wuhan by the lidar system. Finally, temperature inversion in the night is surveyed based on lidar.
     In the course of the study, some key technical issues have been solved and some method has been improved. As the Raman scattering signal is very weak and background noise must be suppressed effectively in order to ensure the Raman scattering signal will not be submerged. We use the military detection technology to measure the surrounding electromagnetic noise and then enter it into the software for subtraction; Aerosol extinction coefficient can be retrieved accurately by the Raman lidar signals. Combined with Mie scattering signals in the same field of view, aerosol backscattering coefficient can be obtained. The key point here is to ensure that Mie-channel signal and the Raman-channel signal must come from the same field of view. Lidar ratios retrieved by Raman backscatter signals, work as the input conditions for Mie lidar equation to get aerosol extinction coefficients and backscatter coefficients. Then compare the results of two methods. If they are in good agreement with each other, the two-channels are from the same field of view. Detecting the height of atmospheric boundary layer is also a greatest concern. Different researchers can give different criterion and different results. There are a lot of direct observation techniques, such as meteorological tower observations, tethered balloon, and the release of balloons, remote control and fly jet fighters as well as some remote sensing technology. But the most direct and effective means is the lidar because it can make real-time and continuous observation. In this paper, the height of atmospheric boundary layer and its changes during the night are measured based on the Raman lidar. And the method of SBH99 in the Mie lidar analyses is improved. At the same time the detection of height of temperature inversion is also carried out.
引文
1 盛裴轩,毛节泰,李建国等,大气物理学[M],北京大学出版社2003:25-28
    2 王明星,大气化学[M],北京,气象出版社,1999:166-168
    3 http://www.ieexa.cas.cn/kxcb/kpdt/200810/t20081028_1662996.html
    4 蒋维楣,空气污染气象学[M],南京大学出版社,2004:388-389
    5 http://aerosol.ees.ufl.edu/atmos_aerosol/section07.html
    6 许潇锋,中国地区气溶胶光学特性研究,南京信息工程大学理学博士学位论文,2008,7-8.
    7 Carlson T N,Wending P. Reflected radiance measured by NOAA-3 AVHRR as a function of optical depth for Saharan dust. J Appl Meteoro,1977.16:1368 - 1371.
    8 Rao C.R.N., L.L. Stowe,E.P. McClain. Remote sensing of aerosols over the oceans using AVHRR data Theory, practice and applications. International Journal of Remote Sensing, 1989.10(4):743-749.
    9 Herman J.R., P.K. Bhartia,O. Tomes, et al. Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data. Journal of Geophysical Research,1997.102(D 14):16911 - 16922.
    10赵柏林,俞小鼎.海上大气气溶胶的卫星遥感研究.科学通报,1986.31:1645-1649.
    11 Zhou M., Z. Chen, R. Huang, et al. Effects of two dust storms on solar radiation in the Beijing-Tianjin area. Geophysical Research Letters,1994.21(24):2697-2700.
    12李成才,毛节泰,A.K. HonLau,等.利用MODIS光学厚度遥感产品研究北京及周边地区的大气污染.大气科学,2003.27(5):869-880.
    13李晓静,刘玉洁,邱红,等.利用MODIS资料反演北京及其周边地区气溶胶光学厚度的方法研究.气象学报,2003.61(005):580-591.
    14唐家奎,薛勇,虞统,等MODIS陆地气溶胶遥感反演—利用TERRA和AQUA双星MODIS数据协同反演算法.中国科学D辑,2005.35
    15夏祥鳌.全球陆地上空MODIS气溶胶光学厚度显著偏高.科学通报,2006.51(19):2297-2303.
    16 King M.D., YJ. Kaufman, W.P. Menzel, et al. Remote sensing of cloud, aerosol,and water vapor properties fromthe moderate resolution imaging spectrometer (MODIS). Geoscience and Remote Sensing, IEEE Transactions on,1992.30(1):2-27.
    17 Kaufman YJ., D. Tanr, L.A. Remer, et al. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res,1997.102(17):051?7.
    18 Ichoku C., D.A. Chu, S. Mattoo, et al. A spatio-temporal approach for global validation and analysis of MODIS aerosol products. Geophys. Res. Lett,2002.29(12):8006.
    19 Chu D.A., YJ. Kaufman, C. Ichoku, et al. Validation of MODIS aerosol optical depth retrieval over land. Geophys. Res. Lett,2002.29(12):8007.
    20 Remer L.A., D. Tanr, YJ. Kaufman, et al. Validation of MODIS aerosol retrieval over ocean. Geophys. Res. Lett,2002.29(12):8008.
    21 Spinhirne J.D., S.P. Palm, W.D. Hart, et al. Cloud and aerosol measurements GLAS: Overview and initial results. Geophys. Res. Lett,2005.32:023507.
    22 Winker D.M., J. Pelon,M.P. McCormick. PICASSO-CENA:aerosol and cloud observations from combined lidar and passive instruments. Proceedings of the 20th International Laser Radar Conference:39-42.
    23毛节泰,张军华,王美华.中国大气气溶胶研究综述[J].气象学报,2002,50(5):627-628.
    24宗雪梅,邱金桓,王普才.宽带消光法反演气溶胶光学厚度与AERONE北京站探测结果的对比研究[J].大气科学,2005,29(4):646.
    25 T.J.Swissler,W.P.Chu and W.H.Fuller, Post-Volcanic Stratospheric Aerosol Decay as Measured by Lidar M.P McCormick, Jr. Journal of the Atmospheric. Sciences, Vol.35 (7), pp.1296-1303(July 1978).
    26 Welton, E., K. Voss, P. Quinn, P. Flatau, K. Markowicz, J. Campbell,J. Spinhirne, H. Gordon, and J. Johnson,2002:Measurements of aerosol vertical pro?les and optical properties during INDOEX 1999 using micro-pulse lidars. Journal of Geophysical Research,107,8019, doi:10.1029/2000JD000038.
    27 Welton, E., J. Campbell, J. Spinhirne, and V. Scott,2001:Globalmonitoring of clouds and aerosols using a network of micro-pulse lidar systems, in Lidar Remote Sensing for Industry andEnvironmental Monitoring, U. N. Singh, T. Itabe, N. Sugimoto,(eds.), Proceedings of SPIE,4153,151-158.
    28 Hoff, R. et al.,2002:Regional East Atmospheric Lidar Mesonet:REALM, in Lidar Remote Sensing in Atmospheric and Earth Sciences, edited by L. Bissonette, G. Roy, and G. Vall(R)Pe, pp.281-284, Def. R&D Can. Valcartier, Val-B(R)Plair, Que
    29 Hoff, R., J. Engel-Cox, N. Krotkov, S. Palm, R. Rogers, K. Mc-Cann, L. Sparling, N. Jordan, O. Torres, and J. Spinhirne,2004:Long-range transport observations of two large forestre plumes to the northeastern U.S., in 22nd International Laser Radar Conference, ESA Spec. Publ., SP-561,683-686.
    30 Murayama, T., N. Sugimoto, I. Uno, I., et al.,2001:Ground-based network observation of Asian dust events of April 1998 in East Asia. Journal of Geophysical Research,106, 18346-18359.
    31 Matthias V., J. Bosenberg, V. Freudenthaler, A. Amodeo, D. Balis, A. Chaikovsky, G. Chourdakis, A. Comeron, A. Delaval, F. de Tomasi, R. Eixmann, A. Hagard, L. Komguem, S. Kreipl, R. Matthey, I. Mattis, V. Rizi, J.A. Rodriguez, V. Simeonov, X. Wang, "Aerosol lidar intercomparison in the framework of the EARLINET project.1. Instruments", Appl. Opt.43, N.4,961-976,2004.
    32 Bockmann C., U. Wandinger, A. Ansmann, J. Bosenberg, V. Amiridis, A. Boselli, A. Delaval, F. De Tomasi, M. Frioud, A. Hagard, M. Horvat, M. Iarlori, L. Komguem, S. Kreipl, G. Larcheveque, V. Matthias, A. Papayannis, G. Pappalardo, F. Rocadembosch, J.A. Rodriguez, J. Schneider, V. Shcherbakov, M. Wiegner, "Aerosol lidar intercomparison in the framework of the EARLINET project.2. Aerosol backscatter algorithms", Appl. Opt.43, N.4,977-989, 2004.
    33 Pappalardo G., A. Amodeo, M. Pandolfi, U. Wandinger, A. Ansmann, J. Bosenberg, V. Matthias, V. Amiridis, F. De Tomasi, M. Frioud, M. Iarlori, L. Komguem, A. Papayannis, F. Rocadenbosch, X. Wang, "Aerosol lidar intercomparison in the framework of the EARLINET project.3. Raman lidar algorithm for aerosol extinction, backscatter and lidar ratio", Appl. Opt.,43. N.28,53705385,2004.
    34 Papayannis A., D. Balis, V. Amiridis, G Chourdakis, G. Tsaknakis, C. Zerefos, A. Castahno, S. Nickovic, S. Kazadzis, and J. Grabowski, Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,5,2065-2079, Atmos. Chem. Phys. 2005
    35 De Tomasi F., A. M. Tafuro, and M. R. Perrone, "Height and seasonal dependence of aerosol optical properties over south-east Italy", J. of Geophys. Research,,111, D10203, doi:10.1029/2005JD006779,2006.
    36 Guibert, S., Matthias, V., Schulz, M., Bosenberg, J., Eixmann, R., Mattis, I., Pappalardo, G., Perrone, M. R., Spinelli. N., Vaughan. G. The vertical distribution of aerosol over Europe-synthesis of one year of EARLINET aerosol lidar measurements and aerosol transport modeling with LMDzT-INCA. Atmos. Env.,39,2933-2943,2005.
    37 Mattis I., A. Ansmann, D. Muller, U. Wandinger, and D. Althausen:Multiyear aerosol observations with dual-wavelength Raman lidar in the framework of EARLINET. Journal of Geophysical Research 109,10.1029/2004JD004600,2004.
    38 Wandinger, U., Mattis, I., Tesche, M., Ansmann, A., Bosenberg, J., Chaikovski, A., Freudenthaler, V., Komguem, L., Linne, H., Matthias, V., Pelon, J., Sauvage, L., Sobolewski, P., Vaughan, G. and Wiegner, M., Air-mass modification over Europe:EARLINET aerosol observations from Wales to Belarus, Journal of Geophysical Research,109, doi: 10.1029/2004JD005142,2004.
    39 Halas M., Z. Blaszczak, J. Grabowski, A. Papayannis, T. Zieliski, Preliminary results of lidar based studies of the vertical aerosol distribution in the lower troposphere over urban coastal areas, Oceanologia,347-364,2004.
    40 Balin I., I. Serikov, S. Bobrovnikov, V. Simeonov, B. Calpini, Y. Arshinov, and H. Van den Bergh, "Simultaneous measurement of atmospheric temperature, humidity, and aerosol extinction and backscatter coefficients by a combined vibrational-pure-rotational Raman lidar", Applied physics B,79, pp.775-782,2004
    41 Muller, D., Ansmann, A., Mattis, I., Tesche, M., Wandinger, U., Althausen, D., Pisani, G. 2007. Aerosol-type-dependent lidar ratio observed with Raman lidar. J. Geophys. Res.,112, 2006JD008292.
    42 Bockmann C., Hybrid regularization method for the ill-posed inversion of multiwavelength lidar data to determine aerosol size distribution, Applied Optics 40,1329-1342,2001.
    43 Wang X, A. Boselli, L. D'Avino, R. Velotta, N. Spinelli, P. Bruscaglioni, A. Ismaelli, G. Zaccanti-An algorithm to determine cirrus properties from analysis of multiple-scattering influence on lidar signals-Appl. Phys.B,80,609-615,2005.
    44 Balis D., V. Amiridis, S. Kazadzis,, A. Papayannis, G. Tsaknakis, S. Tzortzakis, N. Kalivitis, M. Vrekoussis, M. Kanakidou, N. Mihalopoulos, G Chourdakis, S. Nickovic, C. Perez, J. Baldasano and M. Drakakis, Optical charachetristics of desert dust over the East Mediterranean during summer:a case study, Annales Geophysicae,24 (3),807-821,2006
    45 Amiridis V., D. Melas, D. S. Balis, A. Papayannis, D. Founda, E. Katragkou, E. Giannakaki, R. E. Mamouri, E. Gerasopoulos, and C. Zerefos, Aerosol lidar observations and model calculations of the planetary boundary layer evolution over Greece, during the March 2006 total solar eclipse, Atmos. Chem. Phys. Discuss.,7,13537-13560,2007
    46 De Tomasi F., M. R. Perrone, "PBL and dust layer seasonal evolution by lidar and radiosounding measurements over a peninsular site", Atm. Research,80,86-103,2006.
    47 Matthias V.,Bosenberg J. (2002):Aerosol climatology for the planetary boundary layer derived from regular lidar measurements, Atmospheric Research,63,221-245,2002
    48 Sicard M, Perez C, Rocadenbosch F, Baldasano JM, Garcia-Vizcaino D, Mixed-layer depth determination in the Barcelona coastal area from regular lidar measurements:Methods, results and limitations, Boundary-Layer Meteorology 119, (1):135-157 APR 2006
    49 Mona L., A. Amodeo, M. Pandolfi, G. Pappalardo-Saharan dust intrusions in the Mediterranean area:three years of lidar measurements in Potenza-J. Geophys. Res., vol. 111,
    D16203, doi:10.1029/2005JD006569,2006
    50 Tafuro A. M., F. Barnaba, F. De Tomasi, M. R. Perrone, G. P. Gobbi, Saharan dust particle properties over the Central Mediterranean, Atm. Res.,81,67-93,2006.
    51 Ansmann, A., Mattis, I., Miiller, D., Wandinger, U., Radlach, M., Althausen, D., Damoah, R. Ice formation in Saharan dust over central Europe observed with temperature/humidity/aerosol Raman lidar. J. Geophys. Res.,110,2004JD005000,2005.
    52 Papayannis A., D. Balis, V. Amiridis, G. Chourdakis, G. Tsaknakis, C. Zerefos, A. Castahno, S. Nickovic, S. Kazadzis, and J. Grabowski, Measurements of Saharan dust aerosols over the Eastern Mediterranean using elastic backscatter-Raman lidar, spectrophotometric and satellite observations in the frame of the EARLINET project,5,2065-2079, Atmos. Chem. Phys. 2005
    53 Balis D, V. Amiridis, S. Nickovic, A. Papayannis and C. Zerefos, Optical properties of Saharan dust as detected by a Raman lidar at Thessaloniki, Greece, Geophys. Res. Lett., vol.31, L13104, doi:10.1029/2004GL019881,2004
    54 Ansmann, A., Bosenberg, J., Chaikovsky, A. P., Comeron, A., Eixmann, R., Freudenthaler, V., Ginoux, P., Konguem, L., Linne, H., Marquez, M. A. L., Manoj, S., Matthias, V., Mattis, I., Mitev, V., Miiller, D., Nickovic, S., Pelon, J., Sauvage, L., Sobolewsky, P., Stohl, A., Torres, O., Vaughan, G., Wandinger, U. and Wiegner, M.,. Long-range transport of Saharan dust to northern Europe:The 11-16 October 2001 outbreak with EARLINET. Journal of Geophysical Research,108,4783, doi:10.1029/2003JD003757,2003
    55 Mattis, I., Ansmann, A., Muller, D., Wandinger, U. and Althausen, D., Dual-wavelength Raman lidar observations of the extinction-to-backscatter ratio of Saharan dust. Geophys. Res. Lett.,29, doi:10.1029/2002GL014721,2002
    56 Bockmann, C., Mironova, I., Muller, D., Scheidenbach, L., Nessler,R. Microphysical aerosol parameters from multiwavelength lidar. J. Opt. Soc. Amer. A,22,518-528,2005.
    57 Muller, D., Mattis, I., Wandinger, U., Ansmann, A., Althausen, D., Stohl, A. Raman lidar observations of aged Siberian and Canadian forest-fire smoke in the free tropospere over Germany in 2003:microphysical particle characterization, J. Geophys. Res.,110, 2004JD005756,2005.
    58 Veselovskii, I., Kolgotin, A., Muller, D., Whiteman, D. Information content of multiwavelength lidar data with respect to microphysical particle properties derived from eigenvalue analysis. Appl. Optics,44,5292-5303,2005.
    59 A. Shimizu, N. Sugimoto, I. Matsui, K. Arao, I. Uno, T. Murayama, N. Kagawa, K. Aoki, A. Uchiyama, and A. Yamazaki, Continuous observations of Asian dust and other aerosols by polarization lidar in China and Japan during ACE-Asia, J. Geophys. Res.,109, D19S17, doi:10.1029/2002JD003253,2004.
    60 N. Sugimoto, A. Shimizu, I. Matsui, U. Itsushi, K. Arao, Y. Chen, S. Zhao, J. Zhou, and C-H. Lee, Study of Dust Transport Using a Network of Continuously Operated Polarization Lidars, Water, Air, and Soil Pollution:Focus 5,145-157,2005.
    61 N. Sugimoto, A. Shimizu, I. Matsui et al. (2006), Network observations of Asian dust and air pollution aerosols using two-wavelength polarization Lidars,23rd International Laser Radar Conference, July 2006 Nara, Japan (23ILRC, ISBN 4-9902916-0-3) pp.851C854.
    62 N. Sugimoto et al., Record Heavy Asian Dust in Beijing in 2002:Observations and Model Analysis of Recent Events, Geophys. Res. Lett.30,12,1640, doi:10.1029/2002GL016349, 2003.
    63 K. Yumimoto, I. Uno, N. Sugimoto, A. Shimizu and S. Satake, Adjoint Inverse Modeling of Dust Emission and Transport over East Asia,2006GL028551R, Geophys. Res. Lett. VOL.34, L08806, doi:10.1029/2006GL028551,2007.
    64 K. Yumimoto, I. Uno, N. Sugimoto, A. Shimizu, Z. Liu, and D. M. Winker, Numerical modeling of Asian dust emission and transport with adjoint inversion using LIDAR network observations, Atmos. Chem. Phys. Discuss.,7,15955C15987,2007.
    65 I. Uno, K. Yumimoto, A. Shimizu, Y. Hara, N. Sugimoto, Z. Wang, Z. Liu, and D. M. Winker, 3D Structure of Asian Dust Transport revealed by CALIPSO Lidar and a 4D VAR Dust Model, submitted to GRL.
    66夏俊荣,张镭.Mie散射激光雷达探测大气气溶胶的进展[J].干旱气象,2006,24,4:70-71.
    67张改霞,张寅超,胡顺星,等.AML-1车载测污激光雷达探测大气边界层气溶胶[J].强激光与粒子束,2004,16(3):286-290.
    68张改霞,张寅超,胡顺星,等.车载测污激光雷达对大气边界层气溶胶的斜程测量[J].光学学报,2004,24(8):1015-1019.
    69杨陆军,张寅超,刘小勤,等.车载测污激光雷达测量大气气溶胶光学特性[J].量子电子学报,2004,21(1):88-91.
    70吴永华,胡欢陵,周军,等.L625激光雷达探测平流层气溶胶[J].光学学报,2001,21(8):1012-1015.
    71周军,岳古明,戚福第,等.大气气溶胶光学特性激光雷达探测[J].量子电子学报,1998,15(2):140-148.
    72周军,岳古明,金传佳,等.探测对流层气溶胶的双波长米氏散射激光雷达[J].光学学报,2000,20(10):1412-1417.
    73钟志庆,周军,戚福第,等.探测大气气溶胶消光系数的便携式米散射激光雷达[J].强激光与粒子束,2003,15(12):1145-1147.
    74杨辉,等.激光雷达监测北京城区夏季边界层气溶胶[J]等.中国激光,2006,3(9):1256-1259.
    75毛敏娟,等.机载激光雷达对青岛及周边海域的气溶胶探测[J].地球物 理学报,2007,50(2):371-375.
    76丁红星,等.对流层气溶胶消光特性的Mie散射激光雷达探测研究[J].广西物理,2006,27(2):25-28.
    77李洪敬,何龙庆,陈敏.基于Mie散射苏州大气气溶胶的激光雷达探测[J].南京晓庄学院学报,2008,3:23-26.
    78王宏波,等.成都地区中低云层的激光雷达探测[J].光子学报,2007,36(2):350-354.
    79 白宇波,石广玉,田村耕一,等.拉萨上空大气气溶胶光学特性的激光雷达探测[J].大气科学,2000,24(4):559-567.
    80邱金桓,郑斯平,黄其荣,等.北京地区对流层中上部云和气溶胶的激光雷达探测[J].大气科学,2003,27(1):1-7.
    81 夏俊荣.利用激光雷达探测兰州大气气溶胶辐射特性[D].兰州大学,2006.
    82刘君.大气温度及气溶胶激光雷达探测技术研究[D].西安理工大学博士学位论文.2008.3-6.
    83 R. T. H. Collis, P. B. Russell, Lidar measurement of particles and gases by elastic backscattering and differential absorption, in Laser Monitoring of the Atmosphere[M]. Hinkley E. D., ed. Spring-verlag, New York,1976, chap.4:71 - 102.
    84 J. D. Klett. Stable analytical inversion solution for processing lidar returns [J]. Appl. Opt., 1981,20 (2):211-220.
    85 F. G. Fernald. Analysis of atmospheric lidar observations:some comments [J]. Appl. Opt., 1984,23(5):652-655.
    86 Liu, Z., I. Matsui et al., High-spect ral-resolution lidar using an iodine absorption filter for atmospheric measurements, Opt. Eng.,1999,38,1661-1670.
    87 Albert Ansmann, Maren Riebesell, and Claus Weitkamp,"Measurement of atmospheric aerosol extinction profiles with a Raman lidar", Optics Letters.13,15 (1990).
    88 Fiocco G, DeWolf JB. Frequency spectrum of laser echoes from atmospheric constituent s and determination of aerosol content of air. Journal of t he Atmospheric Sciences,1968,25 (3):488-496
    89 Shipley ST, Tracy DH, Eloranta EW, et al. High resolution lidar to measure optical scattering properties of atmospheric aerosols.1:Theory and instrumentation. Applied Optics,1983,22 (23):3716-3724
    90 Sroga J T, Eloranta EW, Shipley ST, et al. High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols.2:Calibration and data analysis. Applied Optics,1983,22 (23):3725 -3732
    91 Shimizu HS, Lee A, She CY. High spectral resolution lidar system wit h atomic blocking filters for measuring atmospheric parameters. Applied Optics,1983,22 (9):1373 -1381
    92 She CY, Alvarez II RJ, Caldwell LM, et al. High spectral resolution Rayleigh2Mie lidar measurement s of aerosol and atmospheric profiles. Optics Letter,1992,17 (7):541 -543
    93 Piironen P, Eloranta EW. Demonst ration of a high spectral resolution lidar based on an iodine absorption filter. Optics Letter,1994,19 (3):234 -236
    94宋小全,等,大气气溶胶光学参数的高光谱分辨率激光雷达探测研究.自然科学进展[J],2008,18(9):1009-1014.
    95王晓宾,胡欢陵,李琛,胡顺星,Raman-Mie激光雷达探测对流层气溶胶波长指数[J].量子电子学报,2006,3(23):341-345.
    96闫顺生,胡顺星,胡欢陵,范广强,Raman激光雷达探测气溶胶消光系数求解新方法[J],应用光学,2008,29(3):533-435.
    97刘梦雨,基于激光雷达数据的大气与气溶胶光学参数反演,硕士学位论文,武汉大学,2007
    98 B.E.祖耶夫 M.B.巴卡诺夫著,殷贤湘译,光信号在地球大气中的传输[M],科学出版社,1987.8-14.
    99戴永江,激光雷达原理[M],国防工业出版社,2002.
    100 Singh, R., "C. V. Raman and the Discovery of the Raman Effect". Physics in Perspective (PIP),2002,4:399-420.
    101 Landsberg, G.; Mandelstam, L. (1928). "Eine neue Erscheinung bei der Lichtzerstreuung in Krystallen". Naturwissenschaften,Issam Al Salman 16:557.
    102 Smekal, A.. "Zur Quantentheorie der Dispersion". Naturwissenschaften,1923,11:873-875.
    103 Harris and Bertolucci. Symmetry and Spectroscopy. Dover Publications.1989
    104 "Resonance Fluorescence" (pdf). IUPAC Compendium of Chemical Terminology. IUPAC. 1997. http://www.iupac.org/goldbook/R05335.pdf. Retrieved on 2007-06-01.
    105 Jager H, Homburg F,A new aerosol background level in the stratosphere lidar observation of the period 1976 to 1997.19th ILRC,Annapolis,U.S.A.,1998,335-338.
    106 Keckhut P, Haochecocne A,et al. A critical review of the data base acquired fo the long-term surveillance of middle atmosphere by the Franch Rayleigh lidar.J.Atoms.Ocean.Tech.,1993,10:850-867.
    107 Cardner C S. Miller M S.et al,Rayleig lidar observation of gravity wave activity ing the upper stratosphere at Urbana, Illinois.J.Atmoshphere science,1989,46:1838-1854.
    108 Inaba H. Detection of Atmos and Melecules by Raman Scattering and Resonance Fluorescence. In:laser monitoring of the Atmosphere(Edited by Hinkley E D.). Spinger-Verlag Berlin.1976,153-237.
    109 Browell E.V. Lidar measurements of tropospheric gases.Opt.Eng,1982,21:128-132.
    110杨国韬,刘炳模,王嘉珉等,根据激光雷达观测结果研究中国武汉地区钠层的分别就.地球物理学报,2003,46(5):576-578.
    111王红梅,LD泵浦 KTP腔内倍频Nd:Y AG红光激光器[J].山西师范大学学报(自然科学版),2008,22(3):59-60.
    112李君,高功率全固态Nd:YAG/KTP红光激光器的研究[D].天津大学,2003,9-10.
    113 http://www.forbrf.lth.se/fileadmin/forbrf/Documents/Kurser/FBR024/Lectures/Raman_scatte ring_2009_lecture_10_.pdf.
    114阎吉祥,龚顺生,刘智深.环境监测激光雷达[M].北京:科学出版社,2001:173-176.
    115 Albert Ansmann, Maren Riebesell, and Claus Weitkamp. Measurement of atmospheric aerosol extinction profiles with a Raman lidar[J]. OPTICS LETTERS,1990,15(30):746-747.
    116 David N. Whiteman. Application of statistical methods to the determination of slope in lidar data. APPLIED OPTICS,1999,38(15):3360-3369.
    117何晓群,刘文卿.应用回归分析[M].第二版,北京:中国人民大学出版社,2007:107-108.
    118 Zhaoyan Liu, William Hunt, Mark Vaughan, Chris Hostetler, Matthew McGill,Kathleen Powell, David Winker, and Yongxiang Hu. Estimating random errors due to shot noise in backscatter lidar observations[J]. APPLIED OPTICS,2006,45(18):4437-4440.
    119 Zhaoyan Liu and Nobuo Sugimoto. Simulation study for cloud detection with space lidars by use of analog detection photomultiplier tubes[J]. APPLIED OPTICS,2002,41(9):1750-1754.
    120李兰等,武汉市空气污染状况及其与气象条件的关系。湖北气象,2004(3):18-22.
    121邱金桓,等.中国10个地方大气气溶胶1980-1994年间变化特征研究.大气科学.1997.21(6):725-733.
    122赵锦慧等,武汉市科教区冬春季气溶胶的元素组成特征及来源分析。气候变化进展,2008,4(2):117-121.
    123余长明,易帆。武汉上空平流层气溶胶的激光雷达探测结果的初步分析。空间科学学报,2004,24(4):261-266.
    124 WU Yong-hua, HU Shun-xing, QI Fu-di, et al. Raman Lidar Measurements of Aerosol and Cloud Optical Properties in the Troposphere [J].Chinese Journal of Lasers,2002, 11(1):73-78.
    125 Ansmann A, Wandinger U, Riebesell M, et al. Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar[J]. Applied Optics,1992,31(33):7113-7128.
    126 Collis, R.T.H., Lidar:anew atmosphere probe[J]. Q.J.R. Meteorol. Soc,1966,92:220-230.
    127 Klett J D. Lidar calibration and extinction coefficients[J], Appl. Opt.,1983,22(4):514:515.
    128 Klett, J.D., Lidar inversion with variable backscatter/extinction ratios[J], Appl. Opt.,1985, 24:1683-1643.
    129 Klett, J.D., Extinction boundary value algoithms for lidar inversion[J], Appl. Opt.,1986, 25:1638-2464.
    130 Fernald F.G., B.M.Herman, and J.A. Reagan, Determination of Aerosol Height Distribution by Lidar[J], Appl. Meteorol.,1972,11:482-489.
    131王治华.大气消光系数反演方法参数优化及成都地区大气边界层特性研究[D].四川大学,2006,5,40-41.
    132 Stull, R.B.,1988. An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishing, Norwell:666 pp.
    133乔娟.西北干旱区大气边界层时空变化特征及形成机理研究[D].中国气象科学研究院.2009,4:1-2.
    134赵鸣.大气边界层动力学[M].北京:高等教育出版社,2006.3-4.
    135刘明星.戈壁下垫面夏冬两季大气边界层结构及演变特征的对比研究[D].北京大学,2008,8-14.
    136 Endlich, R.M., Ludwig, F., Uthe, E.E.,1979. An automated method for determining the mixing depth from lidar observations. Atmos. Environ.13,1051-1056.
    137 Boers, R., Eloranta, E.W.,1986. Lidar measurement of the atmospheric entrainment zone and the potential temperature jump across the top of the mixed layer. Boundary-Layer Meteorol. 34,357-375.
    138 Nelson, E., Stull, R.B., Eloranta, E.W.,1989. A prognostic relation for entrainment zone thickness. J. Appl. Meteorol.28,885-903.
    139 T.M. Mok, C.Z. Rudowicz.2004. A lidar study of the atmospheric entrainment zone and mixed layer over Hong Kong. Atmospheric Research.69:147-163.
    140王珍珠,李炬,钟志庆,等.激光雷达探测北京城区夏季大气边界层.应用光学,2008,29(1):96-100.
    141王宏波,曹婷婷,何捷,等.散射激光雷达研究成都地区大气边界层特性.大气与环境光学学报,2007,2(5):340-344.
    142 Deardorff, J.W., Willis, G.E., Stockton, B.H.,1980. Laboratory studies of the entrainment zone of a convectively mixed layer. J. Fluid Mech.100,41-64.
    143 Melfi, S.H., Spinhirne, J.D., Chou, S.H., Palm, S.P.,1985. Lidar observation of vertically organized convection in the planetary boundary layer over the ocean. J. Clim. Appl. Meteorol. 24,806-821.
    144 Wilde, N.P., Stull, R.B., Eloranta, E.W.,1985. The LCL zone and cumulus onset. J. Appl. Meteorol.24,640-657.
    145 Davis, K.J., Lenschow, D.H., Oncley, P., Kiemle, O.C., Ehret, G., Giez, A.,1997. Role of entrainment in surface-atmosphere interactions over the Boreal Forest. J. Geophys. Res.102 (D24),29219-29230.
    146 Cohn, S.A., Angevine, W.M.,2000. Boundary-layer height and entrainment zone thickness measured by lidars and wind-profiling radars. J. Appl. Meteorol.39,1233-1247.
    147 Steyn, D.G., Baldi, M., Hoff, R.M.,1999. The detection of mixed layer depth and entrainment zone thickness from lidar backscatter profiles. J. Atmos. Ocean. Technol.16 (7),953-959.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700