用户名: 密码: 验证码:
先进高强塑性Q-P-T钢增塑机制及其动态力学性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现钢件轻量化和汽车节能减排,达到节约能源和资源从而保护环境等目的,需要大力研究和开发具有低成本和高强塑性的第三代先进高强度钢(AHSS)。为此,根据徐祖耀院士2007年最新提出的用于获得新一代(第三代)先进高强度钢的淬火-分配-回火(Quenching-partitioning-tempering,Q-P-T)工艺,本文设计了高强塑性的低碳Q-P-T钢的成分(Fe-0.25C-1.48Mn-1.20Si-1.51Ni-0.05Nb (wt.%))和合理的Q-P-T工艺。通过扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)和力学性能测试等实验手段系统研究了新型Q-P-T工艺和传统Q&T(淬火和回火)工艺对钢种的力学性能(包括准静态拉伸、动态力学性能和冲击力学性能)和微观组织的影响,揭示了Q-P-T钢较Q&T钢具有更佳强塑积的微观机制,探索了Q-P-T钢在不同形变温度条件下的微观组织及其对力学性能的影响。通过低碳Q-P-T钢和贝氏体钢中平均位错密度的测定和TEM的观察,验证了低碳Q-P-T钢中残余奥氏体吸收位错(DARA)效应的存在,同时发现贝氏体钢中也存在DARA新效应,从而提出了DARA效应产生的两个条件,进一步阐明了残余奥氏体增强高强度钢塑性的微观机制。主要的研究内容和成果如下:
     (1)设计了一种含Nb微合金化元素的低碳Q-P-T钢,基于Speer等人提出的“约束碳准平衡”(CCE)热力学理论模型,对室温残余奥氏体含量与淬火温度(Tq)的关系做了理论预测,继而设计出合理的Q-P-T工艺。设计的低碳Q-P-T钢展现了非常好的强塑性,抗拉强度高达1322MPa,延伸率和强塑积分别可高达16.9%和22342MPa%,显示出优良的综合力学性能。但是设计钢种经传统Q&T工艺处理后,其抗拉强度为1438MPa,但其延伸率只有12.1%,强塑积为17400MPa%,远低于Q-P-T钢。冲击实验结果表明,Q-P-T钢室温(20℃)下的纵向冲击功(A_(kv))为36J,比Q&T钢的纵向冲击功(18J)增加了近一倍,Q-P-T钢展现出较Q&T钢更好的冲击韧性。TEM表征揭示出Q-P-T钢的高强度来源于高位错密度的板条马氏体(硬相)以及马氏体基体中弥散析出的大量的细小fcc NbC合金碳化物和少部分hcp ε过渡型碳化物(沉淀强化相),而高的塑性则归因于室温下大量“薄片状”富碳残余奥氏体(软相)的稳定存在。而Q&T钢中残余奥氏体呈现“薄膜状”,其含量在2%以下,远远小于Q-P-T钢,因此其塑性显著下降。
     (2)与传统Q&T工艺相比,新型Q-P-T工艺具有较高的淬火温度,这使得Q-P-T钢较Q&T钢含有更多的残余奥氏体;同时有效减少了引起微裂纹形成的淬火内应力和马氏体相变产生的内应力,由此提高了先进高强度Q-P-T钢的塑性和韧性。而且,较高的淬火温度减小了马氏体相变的驱动力,从而使Q-P-T钢具有更均匀的马氏体板条尺寸和更细小的板条马氏体,这有利于提高Q-P-T钢的强度和韧性,部分弥补了Q-P-T钢中马氏体含量减少引起的强度下降。这就是为什么Q-P-T钢比Q&T钢具有远高的塑性和韧性,而强度稍低于Q&T钢。
     (3)通过对不同形变温度(70℃~400℃)条件下Q-P-T钢的力学性能测试与残余奥氏体量的XRD测定,发现Q-P-T钢在70℃~300℃形变温度范围内的力学性能不亚于室温(20℃)的力学性能,同时在该温度范围内,残余奥氏体展现出良好的热稳定性,因此本文研究的低碳Q-P-T钢可在70℃~300℃温度范围时使用。不同形变温度条件下Q-P-T钢的TEM微观结构表征显示:在70℃~300℃温度范围内,Q-P-T钢高的强度来自于高位错密度的马氏体板条以及马氏体基体上弥散分布的fccNbC合金碳化物和hcp ε过渡型碳化物,而高的塑性来自于大量“薄片状”富碳残余奥氏体显著的相变诱发塑性(TRIP)效应和协调形变。当在300℃以上温度时,残余奥氏体量显著减少、脆性渗碳体开始形成,两者共同导致了其力学性能急剧恶化。本文的研究揭示了Q-P-T钢中Si元素的加入可以抑制(或阻碍)脆性渗碳体(Fe3C)在300℃以下温度的形成,但不能抑制(或阻碍)在300℃以上温度残余奥氏体分解成Fe3C或ε过渡型碳化物转变成Fe3C。
     (4)不同应变条件下低碳Q-P-T钢和贝氏体钢中残余奥氏体含量的XRD测定结果表明,残余奥氏体含量都随着应变的增加而减少,TEM观察均显示出形变孪晶马氏体,两者都证明了TRIP效应的存在。基于形变过程中马氏体(或贝氏体)和残余奥氏体中平均位错密度的X射线衍射线形分析(XLPA)方法的测定和TEM的观察,验证了在中碳Q-P-T钢中最新发现的DARA效应在低碳Q-P-T钢中依然存在,同时发现贝氏体钢中也存在DARA新效应,即马氏体(或贝氏体)中的位错移动到相邻的残余奥氏体中,从而被残余奥氏体所“吸收”。DARA效应使马氏体(或贝氏体)硬相处于“软化态”或“未加工硬化态”,极大的增强了硬相马氏体(或贝氏体)与软相奥氏体的协调形变能力。
     (5)提出了DARA效应产生的两个条件:钢中应含有尽可能多的残余奥氏体(大于10%体积分数),马氏体(或贝氏体)和残余奥氏体两相应具有共格(或半共格)的界面。
     (6)形变过程中,残余奥氏体会相继产生三个效应,即DARA效应、TRIP效应和BCP(阻碍裂纹扩展)效应。三者共同构成残余奥氏体增强高强度钢塑性的微观机制。三种效应均相继增强了硬相马氏体(或贝氏体)与邻近残余奥氏体软相协调形变的能力,从而相继提高了高强度钢的塑性,同时,三种效应均随残余奥氏体量的增加而增强。足够多的残余奥氏体含量(大于10%体积分数)是确保先进高强度马氏体(或贝氏体)钢具有良好塑性的先决条件。
     (7)首次研究了新型Q-P-T钢的动态力学性能。通过对Q-P-T钢和Q&T钢进行不同应变速率下的动态力学性能测定,发现Q-P-T钢的抗拉强度和塑性较准静态都有了提高,且随着应变速率的提高,Q-P-T钢的抗拉强度和塑性均随之提高,显示出本研究Q-P-T钢具有优良的动态力学性能。相反,Q&T钢强度提高的同时伴随着塑性稍有下降。同一应变速率条件下,Q-P-T钢较Q&T钢显示出更好的综合动态力学性能。本文研究的低碳Q-P-T钢的动态力学性能不亚于准静态的力学性能,因此本文研究的Q-P-T钢可在104/s~103/s应变速率范围内使用。
     (8)分析了高应变速率条件下Q-P-T钢的力学性能较准静态强度和塑性均提高的原因。高应变速率激发更多的位错源开动和部分抑制位错的交滑移,由此提高了Q-P-T钢的强度。而动态条件下断裂方式的改变和绝热温升效应有利于塑性的提高,但高应变速率部分抑制了DARA效应、TRIP效应和BCP效应从而降低钢的塑性,两者的共同作用使Q-P-T钢的塑性较准静态稍有提高。
In an international attention of reducing carbon emissions, it is urgently required toinvestigate and develop the third generation of advanced high strength steels (AHSS) forsaving energy and raw materials as well as protecting environment. Therefore, accordingto the novel quenching-partitioning-tempering (Q-P-T) process proposed by T. Y. Hsu(Xu Zuyao) for the development of the third AHSS, both the composition and proper Q-P-T process of low carbon Q-P-T steel have been designed in this work. To compare withthe novel Q-P-T process, the low carbon steel designed has also been treated by thetraditional quenching and tempering (Q&T) process. Scanning electron microscopy (SEM),transmission electron microscopy (TEM), X-ray diffraction (XRD) and mechanical tests(quasi-static tensile test, dynamic tensile test and impact test) were employed to study theeffects of two heat treatment processes on mechanical properties and microstructures, andto study the deformation temperature dependence of mechanical properties andmicrostructures for Q-P-T steel. Based on the measurement of average dislocationdensities in both Q-P-T steel and bainitic steel combined with TEM observation, the effectof dislocation absorption by retained austenite (DARA) is verified in the low carbon steel,similar to that in the medium carbon steel proposed recently. More importantly, theDARA effect is also found in bainitic steel, from which the mechanism of retainedaustenite on ductility enhancement of high strength steel is clarified. The mainachievements are expressed below.
     (1) In this work, a low carbon Fe-0.25C-1.48Mn-1.20Si-1.51Ni-0.05Nb (wt.%) steelwas designed. Based on the “Constrained Carbon Paraequilibrium”(CCE) thermodynamicmodel proposed by Speer et al, the relationship of the theoretical retained austenite fraction at room temperature (20°C) and quenching temperature (Tq) was predicted, andsubsequently the proper Q-P-T process was designed. The tensile test results indicate thatthe designed steel through the proper Q-P-T process exhibits a high ultimate tensilestrength of1322MPa and a quite high total elongation of16.9%, accompanying a highproduct of strength and elongation of22342MPa%. However, the steel treated by thetraditional Q&T process exhibits worse comprehensive mechanical properties than Q-P-Tsteel. Moreover, the results of impact tests at room temperature show that Q-P-T steel hasbetter impact property than Q&T steel. The microstructural characterization by TEMreveals that the high strength of the Q-P-T steel results from dislocation-type martensitelaths and fcc NbC carbides and hcp ε carbides precipitated dispersively in martensitematrix, while excellent ductility is attributed to the significant transformation inducedplasticity (TRIP) effect due to considerable amount of retained austenite. However, theplasticity of the Q&T steel is very poor due to a little amount of retained austenite.
     (2) The only difference between the traditional Q&T process and the novel Q-P-Tprocess is the Tqchosen, and the Tqselected in the novel Q-P-T process is much higherthan that (room temperature,20°C) in the traditional Q&T process. Since the higher Tqcorresponds to the higher volume fraction of retained austenite and lower internal stresscaused by quenching and martensitic transformation, the Q-P-T steel exhibits betterductility and toughness. Besides, the higher Tqhas lower driving force of martensitictransformation and results in more uniform sizes of martensite blocks and laths, and theyare favorable for the increase of strength and toughness, which partially compensate thedecrease of Q-P-T steel’ strength due to the amount of martensite being lower than that inQ&T steel. This is why Q-P-T steel exhibits much better ductility and toughness thanQ&T steel, while the strength of Q-P-T steel is somewhat lower than that of Q&T steel.
     (3) The results of tensile tests and XRD at different deformation temperatures from
     70°C to400°C indicate that retained austenite exhibits high thermal stability atdeformation temperatures from70°C to300°C accompanying good mechanicalproperties. Therefore, the Q-P-T steel studied can be considered to be applied in thetemperature range from70°C to300°C. In deformation temperature range from70°C to300°C, the high ultimate tensile strength of the Q-P-T steel is attributed to martensite lathswith high density of dislocation and two kind of carbides (fcc NbC carbides and hcp ε carbides) dispersively precipitated from martensite matrix, and the good ductility resultsfrom the significant TRIP effect from considerable amount of retained austenite. However,in deformation temperature range over300°C, the weak TRIP effect and the formation ofbrittle cementite lead to the poor mechanical properties of the Q-P-T steel. The research inthis work reveals that the addition of Si in Q-P-T steels can suppress the formation ofbrittle cementite (Fe3C) in martensite matrix at deformation temperatures from70°C to300°C, but cannot prevent from the formation of Fe3C by decomposition of retainedaustenite or by transformation of transitional ε carbides at temperatures above300°C.
     (4) The retained austenite fractions as a function of strain in both the lower carbon Q-P-T steel and the bainitic steel were all measured by XRD. The XRD results indicate thatthe TRIP effect both occurs, which is verified by the decrease of retained austenite fractionwith the increase of strain and the appearance of twin-type martensite plates duringdeformation. Based on the measurement of average dislocation densities in bothmartensite (or bainite) and retained austenite by using X-ray diffraction line profileanalysis (XLPA) combined with TEM observation, the DARA effect in the low carbonsteel is verified, similar to that in the medium carbon steel proposed recently. Moreimportantly, the DARA effect is also found in the bainitic steel, which means thatdislocations in bainite move into the nearby retained austenite, namely, the dislocations inbainite are “absorbed” by the neighbouring retained austenite, causing the averagedislocation density in bainite laths to decrease. Such a DARA effect makes the hard phasemartensite (or bainite) exist in a “soft state” or a “non-work hardening state”, and thus theharmonious deformation ability of hard phase martensite (or bainite) with soft phaseaustenite is intensified.
     (5) The two conditions of DARA effect were proposed, namely, the sufficient amountof retained austenite and the coherent or semi-coherent interface between martensite (orbainite) and retained austenite.
     (6) The mechanism of retained austenite on ductility enhancement of high strengthsteel can be summarized as three successive effects during deformation: DARA effect,TRIP effect and BCP (Blocking crack propagation) effect, and these three effects one afterthe other enhance the harmonious deformation ability of hard phase martensite (or bainite)with soft phase retained austenite.
     (7) The dynamic mechanical properties of Q-P-T steel and Q&T steel at variousstrain rates were measured. It indicates that the tensile strength and ductility of Q-P-T steelare both enhanced with increasing strain rate. In contrast, the tensile strength of Q&T steelis enhanced with increasing strain rate, but the ductility slightly decreases. At the samestrain rate, the comprehensive mechanical properties of Q-P-T steel is much better thanthose of Q&T steel. Experiments show that the Q-P-T steel studied can be considered tobe applied in the strain rate range from quasi-static (104/s) to dynamic tension (103/s).
     (8) The cause of strength and ductility enhancement at high strain rate was analyzedfor the Q-P-T steel. The activation of a large number of dislocation sources and the partialsuppression of the dislocation cross-slip at high strain rate result in the increase of strength.Meanwhile, both the change of fracture mode and adiabatic temperature rise effect at highstrain rate contribute to the enhancement of ductility, but the weakening of DARA effect,TRIP effect and BCP effect of retained austenite at high strain rate reduces the ductility ofthe Q-P-T steel, and thus their combination gives rise to the improvement of ductility atsome extent comparing with low strain rate (quasi-static rate).
引文
[1] Birat J P. Alternative ways of making steel: retrospective and prospective. Revue de Métallurgie,2004,101(11):937-955.
    [2] Chabanier J. Energy and Global Warming-challenges for the steel industry: Arcelor case. Revuede Métallurgie,2005,102(1):8-11.
    [3]董翰等.先进钢铁材料.北京:科学出版社,2008.
    [4] Lagneborg R. Steel development review and prospects for the future. Scandinavian Journal ofMetallurgy,1997,26(6):255-265.
    [5] Huang T D, Conrardy C, Dong P, et al. Engineering and production technology for lightweightship structures, Part II: Distortion mitigation technique and implementation. Journal ShipProduction,2007,23(2):82-93.
    [6] Peter J, Peaslee K D, Robertson D G C. Review of progress in developing continuoussteelmaking. Iron&Steel Technlogy,2005,2(2):53-60.
    [7] Weng Y Q. Progress of theory and controlled technology of ultrafine grained steel. Iron and Steel,2005,40(3):1-8.
    [8] World steel association. Www.worldsteel.org.2012-01-23.
    [9]徐祖耀.自主创新发展超高强度钢.上海金属,2009,31(2):1-6.
    [10]马鸣图.先进汽车用钢.北京:化学工业出版社,2008.
    [11]中原孝善.高强度钢板在汽车上的应用及其成形技术.世界钢铁,2006,3:27-32.
    [12] Senuma T. Physical metallurgy of modern high steel sheets. ISIJ International,2001,41(6):520-532.
    [13]康永林.汽车轻量化先进高强钢与节能减排.钢铁,2008,43(6):1-7.
    [14]“Third Generation Advanced High Strength Steel (AHSS)”, Research and DevelopmentSolicitation. American Iron and Steel Institute, Washington, DC,2006.
    [15] Matlock D K, Speer J G. Third generation of AHSS: microstructure design concepts. In:Microstructure and texture in steels. London, Springer,2009,185-206.
    [16] Matlock D K. Microstructural aspects of advanced high strength sheet steels. Advanced SteelProcessing and Products Research Center, AHSS Workshop,2006.
    [17] Speer J G, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite aftermartensite transformation. Acta Materialia,2003,51(9):2611-2622.
    [18] Matlock D K, Br utigam V E, Speer J G. Application of the quenching and partitioning (Q&P)process to a medium-carbon, high-Si microalloyed bar steel. Materials Science Forum,2003,426-432(2):1089-1094.
    [19] Speer J G, Streicher A M, Matlock D K, et al. Quenching and partitioning: a fundamentally newprocess to create high strength TRIP sheet microstructures. In: Symposium on theThermodynamics, Kinetics, Characterization and Modeling of Austenite Formation andDecomposition. ISS and TMS, Warrendale, PA,2003,505-522.
    [20] Gerdemann F L H, Speer J G, Matlock D K. Microstructure and hardness of9260steelheat-treated by the quenching and partitioning process. In: MS&T2004Conference Proceedings.Association for Iron and Steel Technology. New Orleans,2004,439-449.
    [21] Gerdemann F L H. Microstructure and hardness of9260steel heat-treated by the quenching andpartitioning process. Diploma Thesis, Aachen University of Technology, Germany,2004.
    [22] Hsu T Y (Xu Z Y). Design of structure, composition and heat treatment process for strength steel.Materials Science Forum,2007,561-565(3):2283-2286.
    [23]徐祖耀.钢热处理的新工艺.热处理,2007,22(1):1-11.
    [24]徐祖耀.钢的组织控制与设计(一).上海金属,2007,29(1):1-8.
    [25]徐祖耀.钢的组织控制与设计(二).上海金属,2007,29(2):1-8.
    [26]徐祖耀.用于超高强度钢的淬火-碳分配-回火(沉淀)(QPT)工艺.热处理,2008,2(2):1-5.
    [27]徐祖耀.淬火-碳分配-回火(Q-P-T)工艺浅介.金属热处理,2009,34(6):1-8.
    [28] Pickering F B. Physical Metallurgy and the Design of Steels. Applied Science Publishers London,1978.
    [29]张少棠.钢铁材料手册,第2卷,低合金高强度钢.中国标准出版社,北京,2001.
    [30] Tomita Y. Development of fracture toughness of ultrahigh strength, medium carbon, low alloysteels for aerospace applications. International Materials Reviews,2000,45(1):27-37.
    [31] Krauss G. Deformation and fracture in martensitic carbon steels tempered at low temperatures.Metallurgical and Materials Transactions B,2001,32(2):205-221.
    [32] Pokrovskaya N G, Petrakov A F, Shal'kevich A B. Modern high-strength structural steels foraircraft engineering. Metal Science and Heat Treatment,2002,44(11-12):520-523.
    [33] Pokrovskaya N G, Petrakov A F, Shal'kevich A B. Modern high-strength structural steels forworkpieces of aviation engineering. Metallovedenie i Termicheskaya Obrabotka Metallov,2002,23-26.
    [34] Sha W, Cerezo A, Smith G D W. Phase chemistry and precipitation reactions in maraging steels:Part II. Co-free T-300steel. Metallurgical Transactions A,1993,24:1233-1239.
    [35] Machmeier P, Matuszewski T, Jones R, et al. Effect of chromium additions on the mechanicaland physical properties and microstructure of Fe-Co-Ni-Cr-Mo-C ultra-high strength steel: Part I.Journal of Materials Engineering and Performance,1997,6:279-288.
    [36] Qian C, Duan Z, Geng P, et al. Effect of alloying elements on the phase transformation forsecondary-hardening martensite steels enriched Co and Ni. Journal of Iron and Steel ResearchInternational,1999,11:25-29.
    [37] Davies R G. The deformation behavior of a vanadium-strengthened dual phase steel.Metallurgical Transactions A,1978,9(1):41-52.
    [38] Davies R G. Influence of martensite composition and content on the properties of dual phasesteels. Metallurgical Transactions A,1978,9(5):671-679.
    [39] Hüper T, Endo S, Ishikawa N, et al. Effect of volume fraction of constituent phases on thestress-strain relationship of dual phase steels. ISIJ International,1999,39(3):288-294.
    [40] Son Y I, Lee Y K, Park K T, et al. Ultrafine grained ferrite-martensite dual phase steels fabricatedvia equal channel angular pressing: Microstructure and tensile properties. Acta Materialia,2005,53(11):3125-3134.
    [41] Mileiko S T. The tensile strength and ductility of continuous fiber composites. Journal ofMaterials Science,1969,4:974-977.
    [42] Koo J Y, Young M J, Thomas G. On the law of mixtures in dual-phase steels. MetallurgicalTransactions A,1980,11:852-853.
    [43] Tomita Y, Okabayashi K. Tensile stress-strain analysis of cold worked metals and steels anddual-phase steels. Metallurgical Transactions A,1985,16:865-872.
    [44] Cai X L, Reed A J G, Owen W S. The development of some dual-phase steel structures fromdifferent starting microstructures. Metallurgical Transactions A,1985,16:543-557.
    [45] Zackay V F, Parker E R, Fahr D, Busch R. The enhancement of ductility in high-strength steels.Transactions of the ASM,1967,60(2):252-259.
    [46] Tomota Y, Tokuda H, Adachi Y, et al. Tensile behavior of TRIP-aided multi-phase steels studiedby in situ neutron diffraction. Acta Materialia,2004,52:5737-5745.
    [47] Sugimoto K I, Usui N, Kobayashi M, Hashimoto S I. Effects of volume fraction and stability ofretained austenite on ductility of TRIP-aided dual-phase steels. ISIJ International,1992,32:1311-1318.
    [48] Matsumura O, Sakuma Y, Takechi H. Enhancement of elongation by retained austenite inintercritical annealed0.4C-1.5Si-0.8Mn steel. Transactions ISIJ,1987,27:570-579.
    [49] Matsumura O, Sakuma Y, Takechi H. Trip and its kinetic aspects in austempered0.4C-1.5Si-0.8Mn steel. Scripta Metallurgica,1987,21(10):1301-1306.
    [50] Sugimoto K, Kobayashi M, Hashimoto S. Ductility and Strain-Induced Transformation in aHigh-Strength Transformation-Induced Plasticity-Aided Dual-Phase Steel. MetallurgicalTransactions A,1992,23:3085-3091.
    [51] Sakuma Y, Matsumura O, Takechi H. Mechanical properties and retained austenite inintercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions.Metallurgical Transactions A,1991,22(2):489-498.
    [52] Taleb L, Sidoroff F. A micromechanical modeling of the Greenwood-Johnson mechanism intransformation induced plasticity. International Journal of Plasticity,2003,19(10):1821-1842.
    [53] Jacques P J. Transformation-induced plasticity for high strength formable steels. Current Opinionin Solid State and Materials Science,2004,8(3-4):259-265.
    [54] Zaefferer S, Ohlert J, Bleck W. A study of microstructure, transformation mechanisms andcorrelation between microstructure and mechanical properties of a low alloyed TRIP steel. ActaMaterialia,2004,52(9):2765-2778.
    [55] Sugimoto K, Masahiro M, Kobayashi M, et al. Effects of second phase morphology on retainedaustenite morphology and tensile properties in a TRIP-aided dual phase steel sheet. ISIJInternational,1993,33:775-782.
    [56] Gr ssel O, Frommeyer G, Derder C, Hofmann H. Phase transformations and mechanicalproperties of Fe-Mn-Si-Al TRIP-steels. Journal De Physique IV France,1997,7:383-392.
    [57] Gr ssel O, Frommeyer G. Effect of martensitic phase transformation and deformation twinningon mechanical properties of Fe-Mn-Si-Al steels. Materials Science and Technology,1998,14(12):1213-1217.
    [58] Bouaziz O, Guelton N. Modelling of TWIP effect on work-hardening. Materials Science andEngineering A,2001,319-321:246-249.
    [59] Barnett M R. Twinning and the ductility of magnesium alloys. Part I:"Tension" twins. MaterialsScience and Engineering A,2007,464(1-2):1-7.
    [60] Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Very strong low temperature bainite.Materials Science and Technology,2002,18(3):279-284.
    [61] Garcia-Mateo C, Caballero FG, Bhadeshia H K D H. Development of hard bainite. ISIJInternational,2003,43(8):1238-1243.
    [62] Caballero F G, Bhadeshia H K D H. Very strong bainite. Current Opinion in Solid State andMaterials Science,2004,8(3-4):251-257.
    [63] Bhadeshia H K D H. High performance bainitic steels. Materials Science Forum,2005,500-501:63-74.
    [64] Garcia-Mateo C, Caballero F G, Bhadeshia H K D H. Mechanical properties of low-temperaturebainite. Materials Science Forum,2005,500-501:495-502.
    [65] Matas S, Hehemann R F. Retained austenite and the tempering of martensite. Nature,1960,187:685-686.
    [66] Rao B V, Thomas G. Transmission electron microscopy characterization of dislocated "lath"martensite. Proceeding of International Conference on Martensitic Transformations-79, MIT,1979,12-16.
    [67] Thomas G, Sarikaya M. Lath martensites in carbon steels are they bainitic? Proceeding of theInternational Conference on Solid to Solid Phase Transformations,1981, Ed H I Aaronson, D ELanghlin, R E Sekerkay and C M Wayman, TMS-AIME,1982,999-1004.
    [68] Hsu T Y, Li X M. Diffusion of carbon during the formation of low-carbon martensite. ScriptaMetallurgica,1983,17:1285-1288.
    [69] Krauss G. Steels: Heat Treatment and Processing Principles,2nd ed. ASM International,Materials Park, OH, USA,1990.
    [70] Speer J G, Edmonds D V, Rizzo F C, et al. Partitioning of carbon from supersaturated plates offerrite, with application to steel processing and fundamentals of the bainite transformation.Current Opinion in Solid State and Materials Science,2004,8(3-4):219-237.
    [71] Rizzo F C, Edmonds D V, He K, et al. Carbon enrichment of austenite and carbide precipitationduring the Quenching and Partitioning (Q&P) process. In: Proceedings of an InternationalConference on Solid-Solid Phase Transformations in Inorganic Materials2005.2005, Phoenix,AZ.
    [72] Speer J G, Matlock D K, De Cooman B C, et al. Comments on "On the definitions ofparaequilibriumand orthoequilibrium" by M. Hillert and J. gren, Scripta Materialia,50,697-9(2004). Scripta Materialia,2005,52(1):83-85.
    [73] Clarke A J, Speer J G, Miller M K, et al. Carbon partitioning to austenite from martensite orbainite during the quench and partition (Q&P) process: A critical assessment. Acta Materialia,2008,56(1):16-22.
    [74] Edmonds D V, He K, Rizzo F C, et al. Quenching and partitioning martensite-A novel steel heattreatment. Materials Science and Engineering A,2006,438-440:25-34.
    [75] Hultgren A. Isothermal transformation of austenite. Transactions of the ASM,1947,39:915-1005.
    [76] Hillert M, gren J. On the definitions of paraequilibrium and orthoequilibrium. ScriptaMaterialia,2004,50(5):697-699.
    [77] Hillert M, gren J. Reply to comments on “On the definition of paraequilibrium andorthoequilibrium”. Scripta Materialia,2005,52(1):87-88.
    [78] Zhong N, Wang X D, Rong Y H, et al. Interface migration between martensite and austeniteduring quenching and partitioning (Q&P) process. Journal of Materials Science and Technology,2006,22(6):751-754.
    [79] Speer J G, Hackenberg R E, De Cooman B C, et al. Influence of interface migration duringannealing of martensite/austenite mixtures. Philosophical Magazine Letters,2007,87(6):379-382.
    [80] Santofimia M J, Speer J G, Clarke A J, et al. Influence of interface mobility on the evolution ofaustenite-martensite grain assemblies during annealing. Acta Materialia,2009,57(15):4548-4557.
    [81] Koistinen D P, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metallurgica,1959,7(1):59-60.
    [82] Covarrubias O, Guerrero M P, Colás R, et al. Transformation behaviour of Si and Mn bearinglow carbon steels. De Cooman B C, Eds. In: International Conference on TRIP-Aided HighStrength Ferrous Alloys. Aachen: WMG, Belgium,2001,227-230.
    [83] Kim S J, Lee C G, Choi I, et al. Effects of heat treatment and alloying elements on themicrostructures and mechanical properties of0.15%C transformation-induced plasticity-aidedcold-rolled steel sheets. Metallurgical and Materials Transactions A,2001,32(3):505-514.
    [84] Mahieu J, Dooren D V, Barbé L, et al. Influence of Al, Si and P on the kinetics of interiticalannealing of TRIP-aided steels: thermodynamical prediction and experimental verification. SteelResearch,2002,73(6-7):267-273.
    [85] Speer J G, De Moor E, Findley K O, et al. Analysis of microstructure evolution in quenching andpartitioning automotive sheet steel. Metallurgical and Materials Transactions A,2011,42(12):3591-3601.
    [86] De Moor E, Matlock D K, Speer J G, Merwin M J. Austenite stabilization through manganeseenrichment. Scripta Materialia,2011,64(2):185-188.
    [87] De Moor E, Gibbs P J, Speer J G, Matlock D K. Strategies for third-generation advancedhigh-strength steel development. AIST Transactions,2010,7(3):133-144.
    [88] Thomas G A, Speer J G, Matlock D K. Quenched and partitioned microstructures produced viagleeble simulations of hot-strip mill cooling practices. Metallurgical and Materials TransactionsA,2011,42(12):3652-3659.
    [89] Santofimia M J, Zhao L, Sietsma J. Microstructural evolution of a low-carbon steel duringapplication of quenching and partitioning heat treatments after partial austenitization.Metallurgical and Materials Transactions A,2009,40(1):46-57.
    [90] Santofimia M J, Zhao L, Petrov R, et al. Microstructural development during the quenching andpartitioning process in a newly designed low-carbon steel. Acta Materialia,2011,59:6059-6068.
    [91] Gladman T. The physical metallurgy of microalloyed steels. London: The Institute of Materials,1997.
    [92]董翰.低合金钢的强化和韧化理论研究,超纯净超细晶合金化高强高韧钢(文集1).钢铁研究总院,北京,1998.
    [93] Wang C F, Wang M Q, Shi J. Effect of microstructural refinement on the toughness of lowcarbon martensitic steel. Scripta Materialia,2008,58:492-495.
    [94] Grange R A. Strengthening steel by austenite grain refinement. Transactions of the ASM,1966,59:26-48.
    [95] Morito S, Yoshida H, Maki T. Effect of block size on the strength of lath martensite in lowcarbon steels. Materials Science and Engineering A,2006,438-440:237-240.
    [96] Wang X D, Zhong N, Rong Y H, Hsu T Y. Novel ultrahigh-strength nanolath martensitic steel byquenching-partitioning-tempering process. Journal of Materials Research,2009,24(1):260-267.
    [97] Wang X D, Guo Z H, Rong Y H. Mechanism exploration of an ultrahigh strength steel byquenching-partitioning-tempering process. Materials Science and Engineering A,2011,529:35-40.
    [98] Zhong N, Wang X D, Wang L, et al. Enhancement of the mechanical properties of aNb-microalloyed advanced high strength steel treated by quenching-partitioning-temperingprocess. Materials Science and Engineering A,2009,506:111-116.
    [99]戎咏华.先进超高强度-高塑性Q-P-T钢.金属学报,2011,47(12):1483-1489.
    [100] Zhou S, Zhang K, Wang Y, et al. High strength-elongation product of Nb-microalloyedlow-carbon steel by a novel quenching-partitioning-tempering process. Materials Science andEngineering A,2011,528:8006-8012.
    [101]张柯,许为宗,郭正洪等.新型Q-P-T和传统Q-T工艺对不同C含量马氏体钢组织和力学性能的影响.金属学报,2011,47(4):489-496.
    [102] Wang X D, Xu W Z, Guo Z H, et al. Carbide characterization in a Nb-microalloyed advancedultrahigh strength steel after quenching-partitioning-tempering process. Materials Science andEngineering A,2010,527:3373-3378.
    [103] Zhong N, Wang Y, Zhang K, Rong Y H. Microstructual evolution of a Nb-microalloyedadvanced high strength steel treated by quenching-partitioning-tempering process. SteelResearch International,2011,82(11):1332-1337.
    [104] Chen S, Yu H. Investigation on martensitic steel using a quenching-partitioning-temperingprocess via electron backscatter diffraction analysis. Science China (Technological Sciences),2012,55:646-651.
    [105] Hu F, Wu K M. Nanostructured high-carbon dual-phase steels. Scripta Materialia,2011,65:351-354.
    [106]邓黎辉,汪宏斌,李绍宏等.高强韧性冷作模具钢SDC55的Q-P-T工艺及性能.金属热处理,2010,35(9):16-19.
    [107]陈卓,邓黎辉,熬影等.冷作模具钢SDC55的Q-P-T性能和微观组织研究.上海金属,2011,33(4):10-14.
    [108] Streicher A M, Speer J G, Matlock D K, et al. Quenching and partitioning response of a Si-addedTRIP sheet steel. In: J G Speer, Editor, Proceedings of the International Conference on AdvancedHigh Strength Sheet Steels for Automotive Applications, AIST, Warrendale, PA,2004,51-62.
    [109]戎咏华,王晓东.高强度钢的组织设计与控制.第七届全国固态相变及凝固会议论文摘要集.2006,53-56.
    [110] Gladman T, Dulieu D, Mclvor I D. Structure-property relationships in high-strengthmicroalloyed steel. In: M Korchynski (Ed), Microalloying75Proceedings, Union CarbideCorporation, New York,1977,32-55.
    [111]齐俊杰,黄运华,张跃.微合金化钢.北京:冶金工业出版社,2006.
    [112]科恩M.钢的微合金化及控制扎制.北京:冶金工业出版社,1990.
    [113]徐祖耀.马氏体相变与马氏体,第二版.北京:科学出版社,1999.
    [114]哈宽富编著.金属力学性质的微观理论.北京:科学出版社,1983.
    [115] Sauveur A. What is a steel? Another answer. Iron Age,1924,113:581-583.
    [116] Bhadeshia H K D H. TRIP-Assisted Steels. ISIJ international,2002,42(9):1059-1060.
    [117] Webster D. Increasing the toughness of the martensitic stainless steel AFC77by control ofretained austenite content, ausforming and strain aging. Transactions of the ASM,1968,61(4):816-828.
    [118] Morito S, Tanaka H, Konish R, et al. The morphology and crystallography of lath martensite inFe-C alloys. Acta Materialia,2003,51:1789-1799.
    [119] Kitahara H, Ueji R, Tsuji N, Minamino Y. Crystallographic features of lath martensite inlow-carbon steel. Acta Materialia,2006,54(5):1279-1288.
    [120] Morris Jr J W, Lee C S, Guo Z. The nature and consequences of coherent transformations in steel.ISIJ International,2003,43(3):410-419.
    [121] Guo Z, Lee C S, Morris Jr J W. On coherent transformations in steel. Acta Materialia,2004,52(19):5511-5518.
    [122] Morito S, Huang X, Turuhara T, et al. The morphology and crystallography of lath martensite inalloy steels. Acta Materialia,2006,54:5323-5331.
    [123] Zhang K, Zhang M H, Guo Z H, et al. A new effect of retained austenite on ductilityenhancement in high-strength quenching-partitioning-tempering-martensitic steel. MaterialsScience and Engineering A,2011,528:8486-8491.
    [124] Van Slycken J, Verleysen P, Degrieck J, et al. Characterization of the high strain rate propertiesof Advanced High Strength Steels. WIT Transactions on The Built Environment,2006,85:259-268.
    [125] Pychmintsev I Y, Savral R A, De Cooman B C, et al. International Conference On TRIP-AidedHigh Strength Ferrous Alloys. Belgium, Ghent,2002,299-302.
    [126]韦习成.高强度低合金Si-Mn系TRIP钢的动态拉伸性能.上海大学博士论文,2002.
    [127] Wei X C, Li L, Fu R Y, et al. On the tensile mechanical property of Si-Mn TRIP Steels at highstrain rate. Acta Metallurgica Sinica (English Letters),2002,15(3):285-294.
    [128] Wei X C, Fu R Y, Li L. Tensile deformation behavior of cold-rolled TRIP-aided steels over largerange of strain rates. Materials Science and Engineering A,2007,465:260-266.
    [129] Wei X C, Xie Q, Zhang M, et al. Influence of strain-induced retained austenite transformation onthe dynamic tensile behaviour of TRIP-aided steels. Steel Research International,2007,78(7):554-559.
    [130] Wei X C, Li L, Fu R Y. Effect of microstructure in TRIP steel on its tensile behavior at highstrain rate. Journal of Iron and Steel Research International,2003,10(1):49-54.
    [131] Scott C P, Drillet J. A study of the carbon distribution in retained austente. Scripta Materialia,2007,56:489-492.
    [1]徐祖耀.钢热处理的新工艺.热处理,2007,22(1):1-11.
    [2]徐祖耀.用于超高强度钢的淬火-碳分配-回火(沉淀)(QPT)工艺.热处理,2008,2(2):1-5.
    [3]戎咏华.分析电子显微学导论.北京:高等教育出版社,2006,65-67.
    [4]范雄.金属X射线学.北京:机械工业出版社,1989,159-163.
    [5] Durnin J, Ridal K A. Determination of retained austenite in steel by X-ray diffraction. Journal ofthe Iron and Steel Institute,1968,1:60-67.
    [6] Woo W, Balogh L, Ungár T, et al. Grain structure and dislocation density measurements in afriction-stir welded aluminum alloy using X-ray peak profile analysis. Materials Science andEngineering A,2008,498(1-2):308-313.
    [7] Ungár T, Li L, Tichy G, et al. Work softening in nanocrystalline materials induced by dislocationannihilation. Scripta Materialia,2011,64(9):876-879.
    [8] Li W, Xu W Z, Wang X D, et al. Measurement of microstructural parameters of nanocrystallineFe-30wt.%Ni alloy produced by surface mechanical attrition treatment. Journal of Alloys andCompounds,2009,474(1-2):546-550.
    [9] Zhang K, Zhang M H, Guo Z H, et al. A new effect of retained austenite on ductility enhancementin high-strength quenching-partitioning-tempering-martensitic steel. Materials Science andEngineering A,2011,528:8486-8491.
    [10] Lia L, Ungár T, Wang Y D, et al. Simultaneous reductions of dislocation and twin densities withgrain growth during cold rolling in a nanocrystalline Ni–Fe alloy. Scripta Materialia,2009,60(5):317-320.
    [11]滕凤恩,王煜明,姜小龙. X射线结构分析与材料性能表征.北京:科学出版社,1990:156-253.
    [12]滕凤恩.机械工程材料测试手册(物理金相卷).辽宁科学技术出版社,1999:451-452.
    [13]梁新邦,李久林,陶立英等. GB/T228-2002,金属材料室温拉伸试验方法.北京:中国标准出版社,2002.
    [14]朱林茂,高怡斐,刘卫平等. GB/T229-2007,金属材料夏比摆锤冲击试验方法.北京:中国标准出版社,2007.
    [1]徐祖耀.马氏体相变与马氏体,第二版.北京:科学出版社,1999.
    [2]中国机械工程学会热处理专业分会热处理手册编委会.热处理手册,第1卷工艺基础.北京:机械工业出版社,2001.
    [3] Gordon P, Cohen M, Rose R S. Effect of quenching-bath temperature on the tempering of highspeed steel. Transactions of the ASM,1944,33:411-454.
    [4] Speer J G, Matlock D K, De Cooman B C, et al. Carbon partitioning into austenite after martensitetransformation. Acta Materialia,2003,51(9):2611-2622.
    [5] Matlock D K, Br utigam V E, Speer J G. Application of the quenching and partitioning (Q&P)process to a medium-carbon, high-Si microalloyed bar steel. Materials Science Forum,2003,426-432(2):1089-1094.
    [6] Speer J G, Streicher A M, Matlock D K, et al. Quenching and partitioning: a fundamentally newprocess to create high strength TRIP sheet microstructures. In: Symposium on theThermodynamics, Kinetics, Characterization and Modeling of Austenite Formation andDecomposition. ISS and TMS, Warrendale, PA,2003,505-522.
    [7] Gerdemann F L H, Speer J G, Matlock D K. Microstructure and hardness of9260steel heat-treatedby the quenching and partitioning process. In: MS&T2004Conference Proceedings. Associationfor Iron and Steel Technology. New Orleans,2004,439-449.
    [8] Gerdemann F L H. Microstructure and hardness of9260steel heat-treated by the quenching andpartitioning process. Diploma Thesis, Aachen University of Technology, Germany,2004.
    [9] Speer J G, Edmonds D V, Rizzo F C, et al. Partitioning of carbon from supersaturated plates offerrite, with application to steel processing and fundamentals of the bainite transformation. CurrentOpinion in Solid State and Materials Science,2004,8(3-4):219-237.
    [10] Speer J G, Matlock D K, De Cooman B C, et al. Comments on "On the definitions ofparaequilibriumand orthoequilibrium" by M. Hillert and J. gren. Scripta Materialia,50,697-9(2004). Scripta Materialia,2005,52(1):83-85.
    [11] Gladman T. The physical metallurgy of microalloyed steels. London, The Institute of Materials.1997.
    [12]董翰.低合金钢的强化和韧化理论研究,超纯净超细晶合金化高强高韧钢(文集1).钢铁研究总院,北京,1998.
    [13] Wang C F, Wang M Q, Shi J. Effect of microstructural refinement on the toughness of low carbonmartensitic steel. Scripta Materialia,2008,58:492-495.
    [14] Grange R A. Strengthening steel by austenite grain refinement. Transactions of the ASM,1966,59:26-48.
    [15] Morito S, Yoshida H, Maki T. Effect of block size on the strength of lath martensite in low carbonsteels. Materials Science and Engineering A,2006,438-440:237-240.
    [16]惠卫军,董瀚,翁宇庆.42CrMoVNb细晶高强度钢的力学行为.材料热处理学报,2005,26:57-61.
    [17] Hsu T Y (Xu Z Y). Design of structure, composition and heat treatment process for strength steel.Materials Science Forum,2007,561-565(3):2283-2286.
    [18] Zhong N, Wang X D, Wang L, et al. Enhancement of the mechanical properties of aNb-microalloyed advanced high strength steel treated by quenching-partitioning-temperingprocess. Materials Science and Engineering A,2009,506:111-116.
    [19] Wang X D, Zhong N, Rong Y H, Hsu T Y. Novel ultrahigh-strength nanolath martensitic steel byquenching-partitioning-tempering process. Journal of Materials Research,2009,24(1):260-267.
    [20] Sakuma Y. Recent achievements in manufacturing and application of high-strength steel sheets forautomotive body structure. In: Baker M A ed, Proceedings of International Conference onAdvanced High Strength Sheet Steels for Automotive Applications. Warrendale: Association forIron Steel Technology,2004:11-18.
    [21] Sugimoto K, Kobayashi M, Hashimoto S. Ductility and Strain-Induced Transformation in aHigh-Strength Transformation-Induced Plasticity-Aided Dual-Phase Steel. MetallurgicalTransactions A,1992,23:3085-3091.
    [22] Gr ssel O, Frommeyer G, Derder C, Hofmann H. Phase transformations and mechanical propertiesof Fe-Mn-Si-Al TRIP-steels. Journal De Physique IV France,1997,7:383-392.
    [23]徐祖耀.钢热处理的新工艺.热处理,2007,22(1):1-11.
    [24]徐祖耀.钢的组织控制与设计(一).上海金属,2007,29(1):1-8.
    [25]徐祖耀.钢的组织控制与设计(二).上海金属,2007,29(2):1-8.
    [26]徐祖耀.用于超高强度钢的淬火-碳分配-回火(沉淀)(QPT)工艺.热处理,2008,2(2):1-5.
    [27]徐祖耀.淬火-碳分配-回火(Q-P-T)工艺浅介.金属热处理,2009,34(6):1-8.
    [28]戚正风.金属热处理原理.北京:机械工业出版社,1987.
    [29] Liu C, Zhao Z B, Northwood D O, Liu Y X. A new empirical formula for the calculation of Mstemperatures in pure iron and super-low carbon alloy steels. Journal of Materials ProcessingTechnology,2001,113(1):556-562.
    [30] Koistinen D P, Marburger R E. A general equation prescribing the extent of the austenite-martensite transformation in pure iron-carbon alloys and plain carbon steels. Acta Metallurgica,1959,7(1):59-60.
    [31] Krauss G. Steels: Heat Treatment and Processing Principles,2nd ed. ASM International, MaterialsPark, OH, USA,1990.
    [32] Bhadeshia H K D H. Driving force for martensitic transformation in steels. Metal Science,1981,15(4):175-177.
    [33] Edmonds D V, He K, Rizzo F C, et al. Quenching and partitioning martensite-A novel steel heattreatment. Materials Science and Engineering A,2006,438-440:25-34.
    [34] He K, Edmonds D V, Speer J G, et al. Martensite tempering behaviour relevant to the quenchingand partitioning process. In: Richter S, Schwedt A, editors, EMC200814th European MicroscopyCongress. Aachen, Germany: Springer Berlin Heidelberg,2008,341-342.
    [35] Clarke A J, Speer J G, Miller M K, et al. Carbon partitioning to austenite from martensite or bainiteduring the quench and partition (Q&P) process: A critical assessment. Acta Materialia,2008,56(1):16-22.
    [36] Clarke A J, Speer J G, Matlock D K, et al. Influence of carbon partitioning kinetics on finalaustenite fraction during quenching and partitioning. Scripta Materialia,2009,61:149-152.
    [37] Santofimia M J, Zhao L, Sietsma J. Model for the interaction between interface migration andcarbon diffusion during annealing of martensite-austenite microstructures in steels. ScriptaMaterialia,2008,59:159-162.
    [38] Santofimia M J, Speer J G, Clarke A J, et al. Influence of interface mobility on the evolution ofaustenite-martensite grain assemblies during annealing. Acta Materialia,2009,57(15):4548-4557.
    [39] De Moor E, Lacroix S, Clarke A J, et al. Effect of retained austenite stabilized via quench andpartitioning on the strain hardening of martensitic steels. Metallurgical and Materials TransactionsA,2008,39:2586-2595.
    [40] Hsu T Y, Li X M. Diffusion of carbon during the formation of low-carbon martensite. ScriptaMetallurgica,1983,17(11):1285-1288.
    [41] Kelly P M, Jostsons A, Blake R G. The orientation relationship between lath martensite andaustenite in low carbon, low alloy steels. Acta Metallurgica et Materialia,1990,38(6):1075-1081.
    [42] Kelly P M. Crystallography of lath martensite in steels. Materials Transactions, JIM,1992,33(3):235-242.
    [43] Baker R G, Nutting J. ISI Special Report No.64. London: The Iron and Steel Institute,1959.
    [44] Jack K H. Structural transformations in the tempering of high-carbon martensitic steels. Journal OfThe Iron And Steel Institute,1951,169(9):26-36.
    [45] Wilson D V, Russell B. The contribution of precipitation to strain aging of low carbon steels. ActaMetallurgica,1960,8(7):468-479.
    [46] Li H Y, Lu X W, Wu X C, et al. Bainitic transformation during the two-step quenching andpartitioning process in a medium carbon steel containing silicon. Materials Science andEngineering A,2010,527(23):6255-6259.
    [47] Canale L C F, Mesquita R A, Tootten G E. Failure analysis of heat treated steel components. ASMInternational, Materials Park, Ohio, USA,2008,255-284.
    [48] Callister Jr W D. Materials Science and Engineering: An Introduction,2th ed. John Wiley&Sons,New York,1985.
    [49] Zackay V F, Parker E R, Fahr D, Busch R. The enhancement of ductility in high-strength steels.Transactions of the ASM,1967,60(2):252-259.
    [50] Webster D. Increasing the toughness of the martensitic stainless steel AFC77by control of retainedaustenite content, ausforming and strain aging. Transactions of the ASM,1968,61(4):816-828.
    [51] Morito S, Tanaka H, Konish R, et al. The morphology and crystallography of lath martensite inFe-C alloys. Acta Materialia,2003,51:1789-1799.
    [52] Kitahara H, Ueji R, Tsuji N, Minamino Y. Crystallographic features of lath martensite inlow-carbon steel. Acta Materialia,2006,54(5):1279-1288.
    [53] Morris Jr J W, Lee C S, Guo Z. The nature and consequences of coherent transformations in steel.ISIJ International,2003,43(3):410-419.
    [54] Guo Z, Lee C S, Morris Jr J W. On coherent transformations in steel. Acta Materialia,2004,52(19):5511-5518.
    [55] Morito S, Huang X, Turuhara T, et al. The morphology and crystallography of lath martensite inalloy steels. Acta Materialia,2006,54:5323-5331.
    [56] Matlock D K, Speer J G. Lee H C ed, The3rd International Conference on Advanced StructuralSteels. Korea: The Korean Institute of Metals and Materials,2006,774.
    [57] Lu L, Sui M L, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature.Science,2000,287:1463-1466.
    [58] Tsuktani I, Hashimoto S I, Inoue T. Effects of Silicon and Manganese Addition on MechanicalProperties of High-strength Hot-rolled Sheet Steel Containing Retained Austenite. ISIJInternational,1991,31:992-1000.
    [59] Sakuma Y, Matlock D K, Krauss G. Intercritically annealed and isothermally transformed0.15PctC containing1.2Pct Mn and4Pct Ni: part two: Effect of testing temperature on stress-strainbehavior and deformation-induced austenite transformation. Metallurgical Transaction A,1992,23(4):1233-1241.
    [60] Jiménez J A, Carsí M, Ruano O A, Frommeyer G. Effect of testing temperature and strain rate onthe transformation behaviour of retained austenite in low-alloyed multiphase steel. MaterialsScience and Engineering A,2009,508:195-199.
    [61] Sugimoto K, Iida T, Sakaguchi J, Kashima T. Retained austenite characterisitics and tensileproperties in a TRIP type bainitic sheet steel. ISIJ International,2000,40(9):902-908.
    [62] Sugimoto K, Kobayashi M, Nagasaka A, Hashimoto S. Warm stretch-formability of TRIP-aideddual-phase sheet steels. ISIJ International,1995,35(11):1407-1414.
    [63] Krauss G. Deformation and fracture in martensitic carbon steels tempered at low temperatures.Metallurgical and Materials Transactions B,2001,32(2):205-221.
    [64] Ohmori Y, Tamura I. Epsilon carbide precipitation during tempering of plain carbon martensite.Metallurgical Transaction A,1992,23(10):2737-2751.
    [65] Li H Y, Lu X W, Li W J, et al. Microstructure and Mechanical Properties of an Ultra-high Strength40SiMnNiCr Steel during the one-step Quenching and Partitioning Process. Metallurgical andMaterials Transactions A,2010,41(5):1284-1300.
    [66] Edmonds D V, He K, Miller M K, et al.5th International Conference on Processing andManufacturing of Advanced Materials. Vancouver, Canada,2006:4819-4825.
    [67] Gr ssel O, Krüger L, Frommeyer G, Meyer L W. High strength Fe-Mn-(Al, Si) TRIP/TWIP steelsdevelopment-properties-application. International Journal of Plasticity,2000,16:1391-1409.
    [1] Wang X D, Zhong N, Rong Y H, Hsu T Y. Novel ultrahigh-strength nanolath martensitic steel byquenching-partitioning-tempering process. Journal of Materials Research,2009,24(1):260-267.
    [2] Wang X D, Guo Z H, Rong Y H. Mechanism exploration of an ultrahigh strength steel byquenching-partitioning-tempering process. Materials Science and Engineering A,2011,529:35-40.
    [3] Zhong N, Wang X D, Wang L, et al. Enhancement of the mechanical properties of aNb-microalloyed advanced high strength steel treated by quenching-partitioning-temperingprocess. Materials Science and Engineering A,2009,506:111-116.
    [4] Zhou S, Zhang K, Wang Y, et al. High strength-elongation product of Nb-microalloyed low-carbonsteel by a novel quenching-partitioning-tempering process. Materials Science and Engineering A,2011,528:8006-8012.
    [5] Zhang K, Xu W Z, Guo Z H, et al. Effects of novel Q-P-T and traditional Q-T processes on themicrostructure and mechanical properties of martensitic steels with different carbon content. ActaMetallurgica Sinica,2011,47(4):489-496.
    [6] Zhong N, Wang Y, Zhang K, Rong Y H. Microstructual evolution of a Nb-microalloyed advancedhigh strength steel treated by quenching-partitioning-tempering process. Steel ResearchInternational,2011,82:1332-1337.
    [7] Speer J G, De Moor E, Findley K O, et al. Analysis of microstructure evolution in quenching andpartitioning automotive sheet steel. Metallurgical and Materials Transactions A,2011,42(12):3591-3601.
    [8] De Moor E, Matlock D K, Speer J G, Merwin M J. Austenite stabilization through manganeseenrichment. Scripta Materialia,2011,64(2):185-188.
    [9] Thomas G A, Speer J G, Matlock D K. Quenched and partitioned microstructures produced viagleeble simulations of hot-strip mill cooling practices. Metallurgical and Materials Transactions A,2011,42(12):3652-3659.
    [10] Santofimia M J, Zhao L, Sietsma J. Microstructural evolution of a low-carbon steel duringapplication of quenching and partitioning heat treatments after partial austenitization.Metallurgical and Materials Transactions A,2009,40(1):46-57.
    [11] Santofimia M J, Zhao L, Petrov R, et al. Microstructural development during the quenching andpartitioning process in a newly designed low-carbon steel. Acta Materialia,2011,59:6059-6068.
    [12] Caballero F G, Bhadeshia H K D H, Mawella K J A, et al. Very strong low temperature bainite.Materials Science and Technology,2002,18(3):279-284.
    [13] Garcia-Mateo C, Caballero F G, Bhadeshia H K D H. Development of hard bainite. ISIJInternational,2003,43(8):1238-1243.
    [14] Caballero F G, Bhadeshia H K D H. Very strong bainite. Current Opinion in Solid State andMaterials Science,2004,8(3-4):251-257.
    [15] Bhadeshia H K D H. High performance bainitic steels. Materials Science Forum,2005,500-501:63-74.
    [16] Garcia-Mateo C, Caballero F G, Bhadeshia H K D H. Mechanical properties of low-temperaturebainite. Materials Science Forum,2005,500-501:495-502.
    [17] Zackay V F, Parker E R, Fahr D, Busch R. The enhancement of ductility in high-strength steels.Transactions of the ASM,1967,60(2):252-259.
    [18] Webster D. Increasing the toughness of the martensitic stainless steel AFC77by control of retainedaustenite content, ausforming and strain aging. Transactions of the ASM,1968,61(4):816-828.
    [19] Morris Jr J W, Lee C S, Guo Z. The nature and consequences of coherent transformations in steel.ISIJ International,2003,43(3):410-419.
    [20] Morito S, Tanaka H, Konish R, et al. The morphology and crystallography of lath martensite inFe-C alloys. Acta Materialia,2003,51:1789-1799.
    [21] Morito S, Huang X, Turuhara T, et al. The morphology and crystallography of lath martensite inalloy steels. Acta Materialia,2006,54:5323-5331.
    [22] Kitahara H, Ueji R, Tsuji N, Minamino Y. Crystallographic features of lath martensite inlow-carbon steel. Acta Materialia,2006,54(5):1279-1288.
    [23] Guo Z, Lee C S, Morris Jr J W. On coherent transformations in steel. Acta Materialia,2004,52(19):5511-5518.
    [24] Zhang K, Zhang M H, Guo Z H, et al. A new effect of retained austenite on ductility enhancementin high-strength quenching-partitioning-tempering-martensitic steel. Materials Science andEngineering A,2011,528:8486-8491.
    [25] Hollomon J H. Tensile deformation. Transactions AIME,1945,162:268-290.
    [26]杨王玥,强文江.材料力学行为.北京:化学工业出版社,2009.
    [27] Heimendahl M V. Electron Microscopy of Materials: An Introduction. New York: Academic Press,1980,185.
    [28] Kim Y S, Kim S S, Cheong Y M, Im K S. Determination of dislocation density and composition ofβ-Zr in Zr-2.5Nb pressure tubes using X-ray and TEM. Journal of nuclear materials,2003,317(2-3):117-129.
    [29] Woo W, Balogh L, Ungár T, et al. Grain structure and dislocation density measurements in afriction-stir welded aluminum alloy using X-ray peak profile analysis. Materials Science andEngineering A,2008,498(1-2):308-313.
    [30] Ungár T, Li L, Tichy G, et al. Work softening in nanocrystalline materials induced by dislocationannihilation. Scripta Materialia,2011,64(9):876-879.
    [31] Li W, Xu W Z, Wang X D, et al. Measurement of microstructural parameters of nanocrystallineFe-30wt.%Ni alloy produced by surface mechanical attrition treatment. Journal of Alloys andCompounds,2009,474(1-2):546-550.
    [32] Lia L, Ungár T, Wang Y D, et al. Simultaneous reductions of dislocation and twin densities withgrain growth during cold rolling in a nanocrystalline Ni-Fe alloy. Scripta Materialia,2009,60(5):317-320.
    [33] Stokes A. A numerical Fourier-analysis method for the correction of widths and shapes of lines onX-ray powder photographs. Proceedings of the Physical Society,1948,61:382-391.
    [34] Kelly P M, Jostsons A, Blake R G. The orientation relationship between lath martensite andaustenite in low carbon, low alloy steels. Acta Metallurgica et Materialia,1990,38(6):1075-1081.
    [35] Kelly P M. Crystallography of lath martensite in steels. Materials Transactions, JIM,1992,33(3):235-242.
    [36] Lu L, Sui M L, Lu K. Superplastic extensibility of nanocrystalline copper at room temperature.Science,2000,287:1463-1466.
    [37] Wasserb ch W. Plastic deformation and dislocation arrangement of Nb-34at.%Ta alloy singlecrystals. Philosophical Magazine A,1986,53(3):335-356.
    [38] Rhee M, Zbib H M, Hirth J P, et al. Models for long-/short-range interactions and cross slip in3Ddislocation simulation of BCC single crystals. Modelling and Simulation in Materials Science andEngineering,1998,6:467-492.
    [39] Mitchell T E, Spitzig W A. Three-stage hardening in tantalum single crystals. Acta Metallurgica,1965,13(11):1169-1179.
    [40] Zhang M-X, Kelly P M. Accurate orientation relationship between ferrite and austenite in lowcarbon martensite and granular bainite. Scripta Materialia,2002,47:749-755.
    [41] Pancholi V, Krishnan M, Samajdar I S, et al. Self-accommodation in the bainitic microstructure ofultra-high-strength steel. Acta Materialia,2008,56:2037-2050.
    [42] Beladi H, Adachi Y, Timokhina I, Hodgson P D. Crystallographic analysis of nanobainitic steels.Scripta Materialia,2009,60:455-458.
    [43] Zhang M-X, Kelly P M. Crystallography of carbide-free bainite in a hard bainitic steel. MaterialsScience and Engineering A,2006,438-440:272-275.
    [44] Verlinden B, Bocher Ph, Girault E, Aernoudt E. Austenite texture and bainite/austenite orientationrelationships in TRIP steel. Scripta Materialia,2001,45(8):909-916.
    [45] Miyamoto G, Takayama N, Furuhara T. Accurate measurement of the orientation relationship oflath martensite and bainite by electron backscatter diffraction analysis. Scripta Materialia,2009,60:1113-1116.
    [46]徐祖耀,刘世楷.贝氏体相变与贝氏体.北京:科学出版社,1991.
    [47] Bhadeshia H K D H. Bainite in steels,2nd ed. Institute of Materials, London,2001.
    [48] Gubicza J, Chinh N Q, Horita Z, Langdon T G. Effect of Mg addition on microstructure andmechanical properties of aluminum. Materials Science and Engineering A,2004,387-389:55-59.
    [49] Wang J, Hoagland R G, Liu X Y, Misra A. The influence of interface shear strength on the glidedislocation-interface interactions. Acta Materialia,2011,59:3164-3173.
    [50] Wang J, Misra A. An overview of interface-dominated deformation mechanisms in metallicmultilayers. Current Opinion in Solid State and Materials Science,2011,15:20-28.
    [1] Van Slycken J, Verleysen P, Degrieck J, et al. Characterization of the high strain rate properties ofAdvanced High Strength Steels. WIT Transactions on The Built Environment,2006,85:259-268.
    [2] Pychmintsev I Y, Savral R A, De Cooman B C, et al. International Conference On TRIP-AidedHigh Strength Ferrous Alloys. Belgium, Ghent,2002,299-302.
    [3]韦习成.高强度低合金Si-Mn系TRIP钢的动态拉伸性能.上海大学博士论文,2002.
    [4] Wei X C, Li L, Fu R Y, et al. On the tensile mechanical property of Si-Mn TRIP Steels at highstrain rate. Acta Metallurgica Sinica (English Letters),2002,15(3):285-294.
    [5] Wei X C, Xie Q, Zhang M, et al. Influence of strain-induced retained austenite transformation onthe dynamic tensile behaviour of TRIP-aided steels. Steel Research International,2007,78(7):554-559.
    [6] Wei X C, Li L, Fu R Y. Effect of microstructure in TRIP steel on its tensile behavior at high strainrate. Journal of Iron and Steel Research International,2003,10(1):49-54.
    [7] Wei X C, Fu R Y, Li L. Tensile deformation behavior of cold-rolled TRIP-aided steels over largerange of strain rates. Materials Science and Engineering A,2007,465:260-266.
    [8] Scott C P, Drillet J. A study of the carbon distribution in retained austente. Scripta Materialia,2007,56:489-492.
    [9] Wang X D, Zhong N, Rong Y H, Hsu T Y. Novel ultrahigh-strength nanolath martensitic steel byquenching-partitioning-tempering process. Journal of Materials Research,2009,24(1):260-267.
    [10] Wang X D, Guo Z H, Rong Y H. Mechanism exploration of an ultrahigh strength steel byquenching-partitioning-tempering process. Materials Science and Engineering A,2011,529:35-40.
    [11] Zhong N, Wang X D, Wang L, et al. Enhancement of the mechanical properties of aNb-microalloyed advanced high strength steel treated by quenching-partitioning-temperingprocess. Materials Science and Engineering A,2009,506:111-116.
    [12] Zhong N, Wang Y, Zhang K, Rong Y H. Microstructual evolution of a Nb-microalloyed advancedhigh strength steel treated by quenching-partitioning-tempering process. Steel ResearchInternational,2011,82(11):1332-1337.
    [13] Gr ssel O, Krüger L, Frommeyer G, Meyer L W. High strength Fe-Mn-(Al, Si) TRIP/TWIP steelsdevelopment-properties-application. International Journal of Plasticity,2000,16:1391-1409.
    [14]吴志强,唐正友,李华英,张海东.应变速率对低C高Mn TRIP/TWIP钢组织演变和力学行为的影响.金属学报,2012,48(5):593-600.
    [15]潘金生,仝健民,田民波.材料科学基础.北京:清华大学出版社,1998.
    [16] Morris Jr J W, Lee C S, Guo Z. The nature and consequences of coherent transformations in steel.ISIJ International,2003,43(3):410-419.
    [17] Morito S, Tanaka H, Konish R, et al. The morphology and crystallography of lath martensite inFe-C alloys. Acta Materialia,2003,51:1789-1799.
    [18] Morito S, Huang X, Turuhara T, et al. The morphology and crystallography of lath martensite inalloy steels. Acta Materialia,2006,54:5323-5331.
    [19] Kitahara H, Ueji R, Tsuji N, Minamino Y. Crystallographic features of lath martensite inlow-carbon steel. Acta Materialia,2006,54(5):1279-1288.
    [20] Guo Z, Lee C S, Morris Jr J W. On coherent transformations in steel. Acta Materialia,2004,52(19):5511-5518.
    [21] Wu C C, Wang S H, Chen C Y, et al. Inverse effect of strain rate on mechanical behavior and phasetransformation of superaustenitic stainless steel. Scripta Materialia,2007,56(8):717-720.
    [22] Xue Q, Liao X Z, Zhu Y T, Gray G T. Formation mechanisms of nanostructures in stainless steelduring high-strain-rate severe plastic deformation. Materials Science and Engineering A,2005,410-411:252-256.
    [23] Wronsri A, Pineau A. The Effects of temperature and plastic strain on the cleavage fracture stress.International Journal of Fracture,1987,33: R43-R46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700