用户名: 密码: 验证码:
先进复合材料格栅结构软模辅助共固化工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
先进复合材料格栅结构(AGS)是一种综合了材料技术与结构设计优点的新型空间点阵结构,具有轻质高强、耐腐蚀、可设计、高损伤容限与环境鲁棒性等优点,已被广泛应用于航空、航天、轮船等运载器中,成为具有发展前景的新型承力结构构型之一。但由于其在制备过程中出现极其复杂的多物理场耦合行为,导致其制备工艺设计复杂、产品良品率低等问题,限制了其应用范围的扩大。本论文首先对AGS的制备工艺开展了相应的研究,在此基础上,提出了一种以硅橡胶为整体芯模的软模辅助共固化工艺改进方案;然后,分别采用实验和数值仿真的方法对其在制备过程中出现的多物理场耦合行为进行了研究,以验证该工艺方案的可行性,并提出了改进制备工艺的措施;最后,开发了相应的集成分析软件包AGSCURE,此软件包将为AGS的制备工艺参数设计提供一个有效的分析工具。本论文工作是国家自然科学基金重点项目“面向近空间飞行器的多功能超轻质结构设计优化理论”(90816025)和国家自然科学基金面上项目“先进复合材料网格结构共固化工艺与软模成型参数优化分析”(10702012)课题中的重要研究内容之一
     论文的主要研究内容和成果如下:
     1.硅橡胶为整体芯模的软模辅助共固化工艺的实验研究和光纤布拉格光栅为传感器的在线监测方案探讨
     (1)通过对典型AGS的软模辅助共固化工艺制备实验说明,硅橡胶整体芯模降低了芯模的制备、装配和定位要求,开槽底部连续硅橡胶产生的膨胀压力促进了肋骨预浸料中纤维床的压实,提高了网格肋骨与蒙皮间的连接质量,并简化了脱模操作。
     (2)由布置于试件内自封装增敏型光纤布拉格光栅温度传感器和应变传感器监测结果证明,软模辅助共固化工艺在AGS制备中具有可行性与有效性。
     2.先进复合材料格栅结构软模辅助共固化工艺的数值仿真研究
     (1)由于目前先进复合材料的工艺力学研究,大部分分析模型仅考虑了先进复合材料结构,忽略了模具、辅助材料对其固化行为的影响,在某些情况下,这种简化模型将对软模辅助共固化工艺中AGS的温度传导问题产生较大误差。为此,作者提出了一种采用接触约束描述模具与辅助材料对AGS固化行为影响的方法,并以典型AGS的软模辅助共固化工艺为例,提出了实现在数值仿真中分析精度与计算效率间平衡的措施。
     (2)由于在制备过程中树脂基体热力学性能变化、增强纤维与树脂基体间热力学性能不匹配和组成结构的各构件刚度差异等因素的影响,导致了先进复合材料结构成型后其残余应力分布的复杂性,为此,本文采用考虑松弛效应的等效弹性方法和复合材料细观力学理论实现了各向异性先进复合材料黏弹性行为的模拟,提高了现有先进复合材料残余应力发展分析模型的效率与精度,并以该模型研究了软模辅助共固化工艺中AGS残余应力的发展规律。
     (3)在软模辅助共固化工艺中,准确确定工艺间隙是先进复合材料结构受到均匀、同步固化压力的保障,为此,本文采用弹性接触理论的有限元方法来设计硅橡胶芯模尺寸,并以典型算例研究了工艺间隙对AGS所受膨胀压力分布规律的影响。通过对比已有的热弹性方法设计结果,说明了该方法的优越性。
     3.先进复合材料格栅结构软模辅助共固化工艺的集成分析程序包AGSCURE的开发和制备工艺参数研究
     (1)基于上述实验和数值仿真研究的成果,开发了模拟AGS软模辅助共固化工艺过程的集成分析程序包AGSCURE,该软件包可用于AGS的工艺参数设计
     (2)基于AGSCURE软件包通过对典型AGS制备工艺过程的仿真和工艺参数研究,发现了AGS的几何因素对其固化行为和树脂流动行为影响的规律,如肋骨宽度对温度场分布的影响比肋骨高度明显,而树脂粘度变化对肋骨高度更敏感;热压釜提供的固化压力无法驱使尺寸较大AGS预浸料内发生有效的树脂流动与纤维床压实行为。
     本论文所提出的软模辅助共固化工艺方案、分析模型、理论和所得到的结论将对AGS低成本、整体化制备工艺的设计和研究具有一定的工程和科学价值。
Advanced composite grid-stiffened structure (AGS) is a new type of lattice structures which combines the characteristics of material technique and structure design. Due to the advantages such as light weight, high strength, corrosion resistance, high damage tolerance and environmental robust, the structure has been widely used in aviation, aerospace, shipping etc. and became a kind of competing engineering structure, However, its application would be discouraged because of the extremely complicated coupling behavior between curing, temperature and pressure field etc. during the manufacturing process, and due to the complex fabrication process, low quality product, difficult process design and etc. factors. Therefore, the research of technical mechanics during the manufacturing process for AGS has been carried out in the thesis. Firstly, based on the review of existing manufacturing process, an improved technical scheme called soft-mold assisted co-curing process was proposed, which employs an integrated silicon mold as the mandrel. Then, the multi-fields coupling behavior was studied by experiments and numerical simulations, respectively to examine the feasibility of the provided scheme. Lastly, by the integrated software package AGSCURE developed by author, a numerical simulation of a typical AGS component in the scheme was worked out, and some suggestions for the co-curing process execution were proposed. The research contents in the thesis are a part of the project of National Key Science Foundation in China "The research of multifunction super lightweight structural design theory and optimization for the near space aerocraft"(90816025) and the National Natural Science Foundation in China "The study of soft-mold aided co-curing process and parameters optimization for the advanced composite grid-stiffened structures"(10702012).
     The main research contents and achievements can be summarized as follows:
     1. Experimental study on soft-mold aided co-curing process and establish the on-line monitoring scheme with embedded fiber Brag grating sensors.
     (1) The experimental study of AGS specimens manufactured by the soft-mold aided co-curing process indicates that (a) reducing the requirements of molds assembly and position by employing a silicon rubber mandrel,(b) simplified the de-molding operation,(c) enhancing the compaction of fibers bed and quality of the interface between skin and grids. Hence, it demonstrates the feasibility of the provided scheme.
     (2) An on-line monitoring scheme employing embedded improved fiber Brag grating sensors was proposed for acquiring the variations of temperature and strain in AGS during the manufacturing process, and the acquired data shows the feasibility and effectiveness of the soft-mold aided co-curing process.
     2. Numerical simulate the multi-fields coupling behavior of soft-mold aided co-curing process of AGS.
     (1) In the study of advanced composite manufacturing process, most of the analysis models just focus on advanced composite structure parts and ignore the effect of molds and aided materials on the curing behavior of advanced composite. However, the simplified model is inappropriate for the thermal conduction research of soft-mold aided co-curing process for AGS. Therefore, the author suggested that the issue would be solved by defining a contact constraint between the molds and AGS. It was proved that the model would counterpoise the requirements between analysis precision and simulation efficiency by the simulation of the soft-mold aided co-curing process for an AGS component.
     (2) The variation of resin thermo-mechanical properties, mismatch of thermo-mechanical properties between reinforced fiber and resin matrix and different of stiffness between sub-structures etc. are the sources of residual stresses in an advanced composite structure. In this thesis, an equivalent elastic method combining the laxation effect of resin and mesomechanics model of composite for depicting the anisotropic viscoelastic properties of advanced composite materials was proposed and applied in the analysis for improving the accuracy and effectiveness of the residual stresses prediction. Employing the model, the feature of residual stresses development in AGS during the soft-mold aided co-curing process was investigated by a series of numerical simulations.
     (3) A precise technologic gap is the guarantee for applying a uniform and synchronous pressure on AGS during the soft-mold aided co-curing process. Therefore, an improved means for design the silicon rubber mandrel was proposed which combines the elastic contact theory and finite element method, the effect of technologic gap on the distribution of contact pressure provided by the swelling soft-mold was investigated by a series of numerical simulations, and the advantages of it was shown by contrasting to the traditional thermal elastic means.
     3. Develop an integrated software package AGSCURE for simulating the scheme of soft-mold aided co-curing process, and discuss the effect of technical parameters on the product quality of AGS.
     (1) Based on the results of experiments and numerical simulations, an integrated software package AGSCURE for simulating the soft-mold aided co-curing process was developed. The software package would be useful for the process design for AGS.
     (2) Based on a parametric study employing the AGSCURE, the discipline of geometric size of AGS on the curing and resin flow behavior was investigated. For example, the distribution of temperature is mainly effected by the width of ribs while the variation of resin viscosity is mainly effected by the height of ribs, and the autoclave pressure can't drive the resin flow and fiber bed compaction in an AGS effectively.
     The scheme, analysis models, method and conclusions of soft-mold aided co-curing process proposed in the thesis would be benefit for engineers in design a low-cost and integral manufacturing process of AGS.
引文
[1]沈观林,胡更开.复合材料力学[M].北京:清华大学出版社,2006.
    [2]赵渠森.先进复合材料及其应用[J].航空制造技术.2002(10):22-27.
    [3]赵稼祥.先进复合材料的发展与展望[J].材料工程.2000(10):40-44.
    [4]赵稼祥.航天先进复合材料的现况与展望[J].飞航导弹.2000(1):58-63.
    [5]陈绍杰,申屠年.先进复合材料的近期发展趋势[J].高科技纤维与应用.2004(1):1-7.
    [6]陈绍杰.无人机上复合材料的应用与研究[J].飞机设计.2003(3):26-30.
    [7]陈绍杰.复合材料与民用航空[J].高科技纤维与应用.2002(1):1-8.
    [8]郑锡涛,陈浩远,李泽江,等.先进复合材料在未来飞行器中的应用[J].航空工程进展.2011(2):181-187.
    [9]张志峰.先进复合材料格栅加筋结构优化设计与损伤分析[D].大连理工大学,2008.
    [10]杨乃宾.新一代大型客机复合材料结构[J].航空学报.2008(3):596-604.
    [11]Poulsen M C. Geodetic Construction. How the Vickers-Armstrong Wellington Is Built:Solving Novel and Sometimes Difficult Production Problems. [J]. Aircraft Production.1940:180-188.
    [12]Vasiliev V V, Barynin V A, Rasin A F. Anisogrid lattice structures-survey of development and application[J]. Composite Structures.2001,54(2):341-348.
    [13]Vasiliev V V, Razin A F. Anisogrid composite lattice structures for spacecraft and aircraft applications[J]. Composite Structures.2006,69(11):1896-1903.
    [14]Huybrechts S, Meink T E. Advanced grid stiffened structures for the next generation of launch vehicles[C]. IEEE Aerospace Conference Proceeding.1997:263-270.
    [15]杜善义,章继峰,张博明.先进复合材料格栅结构(AGS)应用与研究进展[J].航空学报.2007(2):419-424.
    [16]Steven H. Analysis and behavior of grid structures[D]. Stanford:Stanford University,1995.
    [17]Huybrechts S, Tsai S W. Analysis and behavior of grid structures [J]. Composites Science and Technology.1996,19(6):471-472.
    [18]Han D, Tsai S W. Interlocked composite grids design and manufacturing[J]. Journal of Composite Materials.2003,37:287-316.
    [19]范华林,金丰年,方岱宁.格栅结构力学性能研究进展[J].力学进展.2008(1):35-52.
    [20]Huybrechts S M, Hahn S E, Meink T E. Grid stiffened structures:a survey of fabrication, analysis and design methods[C].1999.
    [21]张志峰,陈浩然,李煊,等.先进复合材料格栅圆柱壳优化设计的混合遗传算法[J].复合材料学报.2005(2):166-171.
    [22]白瑞祥,李泽成,陈浩然.基于累积失效法的含损伤格栅加筋板非线性屈曲状态分析[J].力学季刊.2006(2):240-246.
    [23]陈浩然,周柏华,白瑞祥.含多分层损伤的先进复合材料格栅加筋圆柱壳(AGS)的热-机耦合非线性屈曲分析[J].工程力学.2008(8):58-63.
    [24]范华林,杨卫,方岱宁,等.新型碳纤维点阵复合材料技术研究[J].航空材料学报.2007(1):46-50.
    [25]Zhang B, Zhang J, Wu Z, et al. A load reconstruction model for advanced grid-stiffened composite plates[J]. Composite Structures.2008,31(8):879-887.
    [26]燕瑛,刘玉佳,廖宝华,等.先进复合材料格栅结构与大型飞机[J].航空制造技术.2009(2):26-29.
    [27]吴德财,徐元铭,万青.先进复合材料格栅加筋板的总体稳定性分析[J],复合材料学报.2007(2):168-173.
    [28]张志峰,陈浩然,白瑞祥.含初始缺陷复合材料格栅加筋圆柱壳的鲁棒优化设计[J].固体力学学报.2006(1):58-64.
    [29]Hou A, Gramoll K. Fabrication and compressive strength of the composite attachment fitting for launch vehicle[J]. Journal of advanced materials.2000,32(1):39-45.
    [30]Kim T D. Fabrication and testing of composite isogrid stiffened cylinder[J]. Composite Structures. 1999.49(1):21-25.
    [31]Kim T D. Fabrication and testing of thin composite isogrid stiffened panel[J]. Composite Structures. 2000.45(1):1-6.
    [32]Li G, Velamarthy R C. Fabricating, testing, and modeling of advanced grid stiffened fiber reinforced polymer tube encased concrete cylinders[J]. Journal of Composite Materials.2008,42: 1103-1124.
    [33]陈绍杰.浅谈空客A380的复合材料应用[J].高科技纤维与应用.2008(4):1-4.
    [34]Asian Z, rahin M. Buckling behavior and compressive failure of composite laminates containing multiple large delaminations[J]. Composite Structures.2009,58(2):249-258.
    [35]Orifici A C, de Zarate Alberdi I O, Thomson R S, et al. Compression and post-buckling damage growth and collapse analysis of flat composite stiffened panels[J]. Composites Science and Technology.2008,68(15-16):3150-3160.
    [36]Orifici A C. Thomson R S, Degenhardt R, et al. Degradation investigation in a postbuckling composite stiffened fuselage panel[J]. Composite Structures.2008,82(2):217-224.
    [37]Walker A C, Mccall S. Experimental investigation of damaged stiffened cylindrical shells[J]. Thin-Walled Structures.1998,30(1-4):79-94.
    [38]Chen H, Tsai S W. Analysis and optimum design of composite grid structures[J]. Journal of Composite Materials.1996.30:503-534.
    [39]Hao W, Ying Y, Wei Y, et al. Adaptive approximation-based optimization of composite advanced grid-stiffened cylinder[J]. Chinese Journal of Aeronautics.2010,23(4):423-429.
    [40]Huybrechts S M. Meink T E, Wegner P M, et al. Manufacturing theory for advanced grid stiffened structures[J]. Composites Part A.2002,33(2):155-161.
    [41]Han D. Design and manufacturing of interlocked composites grids[D]. Stanford University.2001.
    [42]Yoon K J, Park H C, Lee H J, et al. Composite grid structure with near-zero thermally induced de flection[J]. AIAA.2001,39(3):487-490.
    [43]陈绍杰.浅谈复合材料的整体成型技术[J].高科技纤维与应用.2005(1):6-9.
    [44]王永贵,梁宪珠.复合材料整体结构与整体成形技术[Z].中国湖南长沙:2010,616-623.
    [45]张纪奎,郦正能,程小全,等.复合材料整体结构在大型民机上的应用[J].航空制造技术.2007(9):38-40.
    [46]叶金蕊.面向制造成本的复合材料加筋壁板结构设计方法研究[D].哈尔滨工业大学,2009.
    [47]岳广全.整体化复合材料壁板结构固化变形模拟及控制方法研究[D].哈尔滨工业大学,2010.
    [48]罗楚养,益小苏,李伟东,等.整体成型复合材料模型机翼设计、制造与验证[J].航空材料学报.2011(4):56-63.
    [49]白江波,熊峻江,李雪芹,等.复合材料机翼整体成型技术研究[J].复合材料学报.2011(3):185-191.
    [50]益小苏.复合材料结构整体化技术研究进展[J].航空科学技术.2011(2):4-8.
    [51]常海峰,梁宪珠,李黎.复合材料前机身典型结构件整体成型[J].航空制造技术.2009:48-49.
    [52]杜刚.复合材料推力筒设计与整体制备技术研究[D].国防科学技术大学,2007.
    [53]尹昌平,张明龙,刘钧,等.硅橡胶气囊辅助RTM工艺成型复合材料裙段研究[J].材料工程.2006(S1):290-293.
    [54]黄其忠,任明法,陈浩然.复合材料网格结构软模共固化成型工艺数值仿真[J].复合材料学报.2010(1):25-31.
    [55]Kim J S, Lee D G. Development of an autoclave cure cycle with cooling and reheating steps for thick thermoset composite laminates[J]. Journal of Composite Materials.1997,31:2264-2282.
    [56]Oh J H, Lee D G. Cure cycle for thick Glass/Epoxy composite laminates[J]. Journal of Composite Materials.2002,36:19-45.
    [57]Bogetti T A, Gillespie J W. Two-dimensional cure simulation of thick thermosetting composites[J]. Journal of Composite Materials.1991,25(3):239-273.
    [58]杨正林,陈浩然.层合板在固化全过程中瞬态温度场及固化度的有限元分析[J].玻璃钢/复合材料.1997(3):3-7.
    [59]Park H C, Lee S W. Cure simulation of thick composite structures using the finite element method[J]. Journal of Composite Materials.2001,35:188-201.
    [60]Park H C, Goo N S, Min K J, et al. Three-dimensional cure simulation of composite structures by the finite element method[J]. Composite Structures.2003,4(5):487-502.
    [61]Guo Z, Du S, Zhang B. Temperature field of thick thermoset composite laminates during cure process[J]. Composites Science and Technology.2005,40(19):5297-5302.
    [62]Yue G, Zhang B, Dai F, et al. Three-dimensional cure simulation of stiffened thermosetting composite panels[J]. Journal of Materials Science & Technology.2010,26(5):467-471.
    [63]Kim H S, Park S W, Lee D G. Smart cure cycle with cooling and reheating for co-cure bonded steel/carbon epoxy composite hybrid structures for reducing thermal residual stress[J]. Composites Part A.2006,75(1):276-288.
    [64]左德峰,朱金福,黄再兴.树脂基复合材料固化过程中温度场的数值模拟[J].南京航空航天大学学报.1999(6):701-705.
    [65]Capehart T W, Kia H G, Abujoudeh T. Cure simulation of thermoset composite panels[J]. Journal of Composite Materials.2007,41:1339-1360.
    [66]Rabearison N, Jochum C, Grandidier J C. A cure kinetics, diffusion controlled and temperature dependent, identification of the Araldite LY556 epoxy[J]. Journal of Materials Science.2011, 46(3):787-796.
    [67]Shin D D, Hahn H T. A consistent cure kinetic model for AS4/3502 graphite/epoxy[J]. Composites Part A.2000,44(17):4839-4852.
    [68]Dufour P, Michaud D J, Touri Y, et al. A partial differential equation model predictive control strategy:application to autoclave composite processing[J]. Computers & Chemical Engineering. 2004,27(11):1533-1542.
    [69]Bebamzadeh A, Haukaas T, Vaziri R. et al. Response sensitivity and parameter importance in composites manufacturing[J]. Journal of Composite Materials.2009,43:621-659.
    [70]张纪奎,郦正能,关志东,等.热固性树脂基复合材料固化变形影响因素分析[J].复合材料学报.2009(1):179-184.
    [71]王永贵,梁宪珠,曹正华,等.热压罐工艺成型先进复合材料构件的温度场研究综述[J].玻璃钢/复合材料.2009(3):81-85.
    [72]李君,姚学锋,刘应华,等.复合材料固化过程中温度及应变场分布的解析解[J].清华大学学报(自然科学版)网络.预览.2009(5):126-130.
    [73]Loos A C, Springer G S. Curing of epoxy matrix composites[J]. Journal of Composite Materials. 1983,17(2):135.
    [74]Gutowski T G, Morigaki T, Cai Z. The consolidation of laminate composites[J]. Journal of Composite Materials.1987,21:172-188.
    [75]Buggy M, Temimhan T, Braddell O. Curing of carbon fibre reinforced epoxy matrix composites[J]. Journal of Materials Processing Technology.1996.55(3):448-456.
    [76]Young W. Compacting pressure and cure cycle for processing of thick composite laminates[J]. Composites Science and Technology.1995,5(3):175-221.
    [77]Costa V A F, Sousa A C M. Modeling of flow and thermo-kinetics during the cure of thick laminated composites[J]. International Journal of Thermal Sciences.2003.59(1):115-129.
    [78]Hoa S V, Naji M 1. Curing of thick angle-bend thermoset composite part:curing cycle effect on thickness variation and fiber volume fraction[J]. Journal of Reinforced Plastics and Composites. 1999,18:702-723.
    [79]Hubert P, Vaziri R, Poursartip A. A two dimensional flow model for the process simulation of complex shape composite laminates[J]. International Journal for Numerical methods in Engineering.1999,44(1).
    [80]Li M, Tucker Iii C L. Modeling and simulation of two-dimensional consolidation for thermoset matrix composites[J]. Composites Part A:Applied Science and Manufacturing.2002,33(6): 877-892.
    [81]Blest D C. Duffy B R, Mckee S, et al. Curing simulation of thermoset composites[J]. Composites Part A.1999,59(16):2297-2313.
    [82]Heardman E, Lekakou C, Bader M G. Flow monitoring and permeability measurement under constant and transient flow conditions[J]. Composites Science and Technology.2004,38(3): 954-962.
    [83]Xin C, Li M, Gu Y, et al. Study on the resin flow and fiber compaction of tapered composite laminates during autoclave processing[J]. Journal of Reinforced Plastics and Composites.2011.
    [84]孙正军,宋焕成.复合材料固化过程树脂流动模型[J].宇航材料工艺.1993(6):18-22.
    [85]张纪奎,郦正能,关志东,等.复合材料层合板固化压实过程有限元数值模拟及影响因素分析[J].复合材料学报.2007(2):125-130.
    [86]李艳霞,张佐光,李敏,等.复合材料等厚层板热压成型中树脂流动过程数值模拟[J].复合材料学报.2008(2):47-51.
    [87]Yan X. Consolidation and cure simulations for laminated composites[J]. Journal of Composite Materials.2006,40(1):1853-1869.
    [88]Li Y, Zhang Z, Li M, et al. Numerical simulation of flow and compaction during the cure of laminated composites[J]. Journal of Reinforced Plastics and Composites.2007,26:251-268.
    [89]龚颖,张佐光,顾轶卓,等.热压工艺参数对单向复合材料层板密实状态的影响[J].复合材料学报.2006(1):12-16.
    [90]刘勇,吴颂平.复合材料热压工艺多物理场耦合数学模型[J].复合材料学报.2008(2):94-100.
    [91]谢富原,王雪明,李敏,等.T形加筋板热压罐成型过程压力分布与树脂流动实验研究[J].复合材料学报.2009(6):66-71.
    [92]White S R, Kim Y K. Process-induced residual stress analysis of AS4/3501-6 composite material[J]. Mechanics of Advanced Materials and Structures.1998(2).
    [93]White S R, Hahn H T. Process modeling of composite materials:residual stress development during cure. Part Ⅰ. model formulation[J]. Journal of Composite Materials.1992,26:2402-2422.
    [94]White S R, Hahn H T. Process modeling of composite materials:residual stress development during Cure. Part Ⅱ. experimental validation[J]. Journal of Composite Materials.1992,26:2423-2453.
    [95]Chen H, Yang Z, Jemah A K, et al. Process-induced stress analysis of composite laminates using semi-analytical Hamiltonian method[J]. Composite Structures.1998,6(3):139-151.
    [96]Madhukar M S, Genidy M S, Russell J D. A new method to reduce cure-induced stresses in thermoset polymer composites, Part Ⅰ:test method[J]. Journal of Composite Materials.2000,34: 1882-1904.
    [97]Genidy M S, Madhukar M S, Russell J D. A new method to reduce cure-induced stresses in thermoset polymer composites, Part Ⅱ:closed loop feedback control system[J]. Journal of Composite Materials.2000,34:1905-1925.
    [98]Russell J D, Madhukar M S, Genidy M S, et al. A new method to reduce cure-induced stresses in thermoset polymer composites, Part Ⅲ:correlating stress history to viscosity, degree of cure, and cure shrinkage[J]. Journal of Composite Materials.2000,34:1926-1947.
    [99]Johnston A, Vaziri R, Poursartip A. A plane strain model for process-induced deformation of laminated composite structures [J]. Journal of Composite Materials.2001,35:1435-1469.
    [100]Zhu Q, Geubelle P H, Li M, et al. Dimensional accuracy of thermoset composites:simulation of process-induced residual stresses[J]. Journal of Composite Materials.2001,35:2171-2205.
    [101]Lahtinen H. Calculation of residual stresses of cross-ply laminates[J]. Journal of Composite Materials.2003,37:945-966.
    [102]Svanberg J M, Holmberg J A. Prediction of shape distortions Part Ⅰ. FE-implementation of a path dependent constitutive model[J]. Composites Part A.2004,35(6):723-734.
    [103]Svanberg J M, Holmberg J A. Prediction of shape distortions. Part Ⅲ. Experimental validation and analysis of boundary conditions[J]. Composites Part A.2004,35(6):711-721.
    [104]Kamali M M S S, Theoretical and experimental studies on residual stresses in laminated polymer composites[J]. Journal of Composite Materials.2005,39:2213-2225.
    [105]Garstka T, Ersoy N. Potter K D, et al. In situ measurements of through-the-thickness strains during processing of AS4/8552 composite[J]. Composites Part A:Applied Science and Manufacturing. 2007,38(12):2517-2526.
    [106]Dong C. A parametric study on the process-induced deformation of composite T-stiffener structures[.l]. Composites Part A:Applied Science and Manufacturing.2010,41(4):515-520.
    [107]寇哲君,龙国荣,万建平,等.热固性树脂基复合材料固化变形研究进展[J].宇航材料工艺.2006(S1):7-11.
    [108]李敏,张宝艳.不对称铺层复合材料变形规律的实验研究[J].玻璃钢/复合材料.2006(5):28-31.
    [109]岳广全,张博明,戴福洪,等.固化过程中模具与复合材料构件相互作用分析[J].复合材料学报.2010(6):167-17].
    []]O]岳广全,张博明,戴福洪,等.固化工艺规范对复合材料固化残余应力影响的实验研究[J].玻璃钢/复合材料.2010(2):52-55.
    [111]温磊.复合材料层压板残余应力的研究[D].北京航空材料研究院,2000.
    [112]李君,姚学锋,刘应华,等.复合材料T型整体化结构固化翘曲变形模拟[J].复合材料学报.2009(1):156-161.
    [113]万里冰,武湛君,张博明,等.光纤布拉格光栅监测复合材料固化[J].复合材料学报.2004(3):1-5.
    [114]戴福洪,张博明,杜善义.复合材料非对称正交薄层板的固化变形[J].复合材料学报.2006(4):164-168.
    [1]5]李艳霞,李敏,张佐光,等.L形复合材料层板热压工艺密实变形过程的数值模拟[J].复合材料学报.2008(3):78-83.
    [116]李艳亮,益小苏,唐邦铭.复合材料层压板的变形:树脂基体,增强纤维与非对称正交铺层变形的关系[J].玻璃钢/复合材料.2010(001):20-23.
    [117]官霆,孙良新,邢丽英.复合材料叠层板固化成型后的变形分析计算[J].宇航材料工艺.2006(1):34-37.
    [118]胡照会,王荣国,赫晓东,等.复合材料层板固化全过程残余应变/应力的数值模拟[J].航空材料学报.2008(2):55-59.
    [119]Kardos J. Dudukovi C M, Dave R. Void growth and resin transport during processing of thermosetting—Matrix composites[J]. Epoxy Resins and Composites Ⅳ.1986:101-123.
    [120]Ledru Y, Bernhart G, Piquet R, et al. Coupled visco-mechanical and diffusion void growth modelling during composite curing[J]. Composites Science and Technology.2010,70(15): 2139-2145.
    [121]Lundstr O M T S, Holmgren A. Dissolution of voids during compression molding of SMC[J]. Journal of Reinforced Plastics and Composites.2010,29(12):1826-1837.
    [122]Costa M L, Rezende M C, Almeida S. Critical void content for polymer composites laminates[J]. AIAA Journal.2005,43(6):1336-1341.
    [123]苏玉堂.孔隙含量对复合材料力学性能的影响[J].复合材料学报.1988(3):55-61.
    [124]朱洪艳,李地红,张东兴,等.孔隙对纤维增强聚合物基复合材料层压板力学性能影响的研究进展[J].中国机械工程.2009(13):1619-1624.
    [125]朱洪艳,李地红,张东兴,等.碳/环氧复合材料层压板孔隙的形态研究[J].材料科学与工艺.2010(5):657-661.
    [126]刘玲,张博明,王殿富,等.聚合物基复合材料中孔隙率及层间剪切性能的实验表征[J].航空材料学报.2006(4):115-118.
    [127]林莉,张翔,陈军,等.基于随机介质理论的复合材料孔隙二维形貌几何仿真[J].失效分析与预防.2010(4):204-209.
    [128]张翔,林莉,陈军,等.基于确定性和随机性原理的复合材料二维孔隙模型比较[J].航空材料学报.2010(6):93-97.
    [129]Fernlund G, Rahman N, Courdji R, et al. Experimental and numerical study of the effect of cure cycle, tool surface, geometry, and lay-up on the dimensional fidelity of autoclave-processed composite parts[J]. Composites Part A:Applied Science and Manufacturing.2002,33(3): 341-351.
    [130]Wisnom M R, Potter K D, Ersoy N. Shear-lag analysis of the effect of thickness on spring-in of curved composites[J]. Journal of Composite Materials.2007,41:1311-1324.
    [131]Twigg G, Poursartip A, Fernlund G R. Tool-part interaction in composites processing. Part Ⅰ: experimental investigation and analytical model[J]. Composites Part A:Applied Science and Manufacturing.2004,35(1):121-133.
    [132]Twigg G, Poursartip A, Fernlund G R. Tool-part interaction in composites processing. Part Ⅱ: numerical modelling[J]. Composites Part A:Applied Science and Manufacturing.2004,35(1): 135-141.
    [133]Cho M, Kim M, Choi H S, et al. A study on the room-temperature curvature shapes of unsymmetric laminates including slippage effects[J]. Journal of Composite Materials.1998,32:460-482.
    [134]Sarrazin H, Beomkeum K, Ahn S H. Effects of the processing temperature and layup on springback[J]. Journal of Composite Materials.1995,29(10):1278-1294.
    [135]王永贵,梁宪珠,王巍.先进复合材料构件成型模具和工装技术发展趋势[J].航空制造技术.2009(S1):13-15.
    [136]张铖,梁宪珠,王永贵,等.热压罐工艺环境对于先进复合材料框架式成型模具温度场的影响[J].材料科学与工程学报.2011(4):547-553.
    [137]Grattan K, Sun T. Fiber optic sensor technology:an overview[J]. Sensors & Actuators:A. Physical. 2000,82(1-3):40-61.
    [138]Karalekas D, Cugnoni J, Botsis J. Monitoring of process induced strains in a single fibre composite using FBG sensor:A methodological study[J]. Composites Part A.2008,157(1):77-83.
    [139]王殿富,万里冰,张博明,等.光纤传感器在复合材料固化监测中的应用[J].哈尔滨工业大学学报.2002(5):710-714.
    [140]Li C, Cao M, Wang R, et al. Fiber-optic composite cure sensor:monitoring the curing process of composite material based on intensity modulation[J]. Composites Science and Technology.2003, 100(2):160-164.
    [141]Lekakou C. Cook S, Deng Y, et al. Optical fibre sensor for monitoring flow and resin curing in composites manufacturing[J]. Composites Part A.2006.33(4):341-346.
    [142]Lekakou C, Cook S, Deng Y, et al. Optical fibre sensor for monitoring flow and resin curing in composites manufacturing[J]. Composites Part A:Applied Science and Manufacturing.2006, 37(6):934-938.
    [143]张博明,冷劲松.多模光纤传感器复合材料固化实时监测研究[J].高技术通讯.1998,8(10):35-39.
    [144]王科,张佐光,扎姆阿茹娜,等.光纤微弯压力测试系统实时监测复合材料热压成型过程[J].复合材料学报.2005(2):67-70.
    [145]庞博,王振清.光纤微弯传感器在复合材料成型表征中的应用[J].计算机测量与控制.2004(4):398-400.
    [146]Dawood T A, Shenoi R A, Sahin M. A procedure to embed fibre Bragg grating strain sensors into GFRP sandwich structures[J]. Composites Part A.2007,19(1):45-57.
    [147]Mulle M, Collombet F. Olivier P, et al. Assessment of cure-residual strains through the thickness of carbon-epoxy laminates using FBGs Part Ⅱ:Technological specimen[J]. Composites Part A: Applied Science and Manufacturing.2009,40(10):1534-1544.
    [148]Kang H K, Kang D H. Bang H J. et al. Cure monitoring of composite laminates using fiber optic sensors[J]. Smart Materials and Structures.2002,11:279-287.
    [149]Kuang K S C, Kenny R, Whelan M P, et al. Embedded fibre Bragg grating sensors in advanced composite materials[J]. Composites Science and Technology.2001,61(10):1379-1387.
    [150]饶云江,曾祥楷,朱永,等.非本征型法布里珀罗干涉仪光纤布拉格光栅应变温度传感器及其应用[J].光学学报.2002(1):85-88.
    [151]Kang H, Ryu C, Hong C, et al. Simultaneous measurement of strain and temperature of structures using fiber optic sensor[J]. Journal of Intelligent Material Systems and Structures.2001,12: 277-281.
    [152]钱玉林.复合材料的热膨胀模塑法成型工艺简介[J].玻璃钢/复合材料.1985(1):13-15.
    [153]杜刚,曾竟成,张长安,等.硅橡胶热膨胀模塑成型法制备碳/环氧复合材料管研究[J].纤维复合材料.2003(2):26-28.
    [154]尹昌平,刘钧,曾竟成,等.硅橡胶在聚合物基复合材料成型中的应用[J].材料导报.2006(11):35-39.
    [155]鞠金山.轻质复合材料软模成型工艺技术及应用[J].现代电子.1997(4):62-66.
    [156]苑玲,甄华生.软模热膨胀法成型发动机燃烧室壳体贴壁内衬[J].宇航材料工艺.1993(2):38-41.
    [157]靳武刚.热膨胀硅橡胶在复合材料成型工艺中的应用[J].塑料科技.2003(2):4-6.
    [158]尹昌平,刘钧,曾竟成,等.硅橡胶在聚合物基复合材料成型中的应用[J].材料导报.2006(11):35-39.
    [159]Ren L, Chen J, Li H N, et al. Design and application of a fiber Bragg grating strain sensor with enhanced sensitivity in the small-scale dam model[J]. Smart Materials and Structures.2009,18: 35015.
    [160]Bogetti T A, John W. Gillespie J. Process-induced stress and deformation in thick-section thermoset composite laminates[J]. Journal of Composite Materials.1992,26:626-660.
    [161]Davies L W, Day R J, Bond D, et al. Effect of cure cycle heat transfer rates on the physical and mechanical properties of an epoxy matrix composite[J]. Composites Science and Technology. 2007,67(9):1892-1899.
    [162]杨咸启,李晓玲.现代有限元理论技术与工程应用[M].北京航空航天大学出版社,2007.
    [163]张平,宣益民,李强.界面接触热阻的研究进展[J].化工学报.2012(2):335-349.
    [164]Yovanovich M M. Conduction and thermal contact resistances (conductances)[J]. Handbook of Heat Transfer.1998,3:1-3.
    [165]王安良,赵剑锋.接触热阻预测的研究综述[J].中国科学:技术科学.2011(5):545-556.
    [166]Yovanovich M M. Four decades of research on thermal contact, gap, and joint resistance in microelectronics[J]. Components and Packaging Technologies, IEEE Transactions on.2005,28(2): 182-206.
    [167]张洪武,廖爱华,张昭,等.具有界面热阻的接触传热耦合问题的数值模拟[J].机械强度.2004(4):393-399.
    [168]赵淑媛,张博明,杜善义.接触热阻对纤维隔热毡传热行为的影响研究(英文)[J]Chinese Journal of Aeronautics.2009(5):569-574.
    [169]陈龙淼,钱林方.接触热阻对复合材料身管热性能影响分析[J].玻璃钢/复合材料.2008(5):28-33.
    [170]Kim J, Moon T J, Howell J R. Cure kinetic model, heat of reaction, and glass transition temperature of AS4/3501-6 graphite-epoxy prepregs[J]. Journal of Composite Materials.2002,36(21):2479.
    [171]戴夫,Dave R. S.,卢斯,等.高分子复合材料加工工程[M].化学工业出版社材料科学与工程出版中心,2004:1.
    [172]Gillham J K. Award address formation and properties of network polymeric materials[J]. Polymer Engineering & Science.1979,19(10):676-682.
    [173]张明,安学锋,唐邦铭,等.高性能双组份环氧树脂固化动力学研究和TTT图绘制[J].复合材料学报.2006(1):17-25.
    [174]Dave R. A unified approach to modeling resin flow during composite processing[J]. Journal of Composite Materials.1990,24:22-41.
    [175]Li Y, Li M, Gu Y, et al. Numerical and experimental study of the bleeder flow in autoclave process[J]. Applied Composite Materials.2010:1-10.
    [176]顾轶卓,张佐光,李敏.复合材料热压成型过程的树脂压力测试系统[J].复合材料学报.2007(2):23-27.
    [177]郭战胜,杜善义,张博明,等.先进复合材料用环氧树脂的固化反应和化学流变[J].复合材料学报.2004(4):146-151.
    [178]Eckert E R G, Drake Jr R M. Analysis of heat and mass transfer[M]. New York:McGraw-Hill, 1972.
    [179]何平笙,周志强.固化环氧树脂中残余应力的研究[J].工程塑料应用.1987(1):33-37.
    [180]王雪明,谢富原,李敏,等.热压罐成型复合材料复杂结构对制造缺陷的影响规律[J].航空学报.2009(4):757-762.
    [181]息志臣,郭兆璞,陈浩然.复合材料层合板的固化残余应力和变形分析[J].复合材料学报.1996(1):105-110.
    [182]郭兆璞,陈浩然,段滋华.复合材料层合板粘弹性固化残余应力分析[J].计算结构力学及其应用.1996(4):25-31.
    [183]戴棣,乔新.粘弹性基体复合材料层合板的固化残余应力和曲率变化[J].复合材料学报.2000(3):38-41.
    [184]张纪奎,郦正能,关志东,等.热固性树脂基复合材料固化变形影响因素分析[J].复合材料学报.2009(1):179-184.
    [185]White S R, Hahn H T. Process modeling of composite materials:residual stress development during cure. Part I. model formulation[J]. Journal of Composite Materials.1992,26:2402-2422.
    [186]White S R, Hahn H T. Cure cycle optimization for the reduction of processing-induced residual stresses in composite materials[J]. Journal of Composite Materials.1993,27:1352-1378.
    [187]Fernlund G, Poursartip A, Twigg G, et al. Residual stress, spring-in and warpage in autoclaved composite parts[J]. Society of Manufacturing Engineers.2003.
    [188]Ersoy N, Garstka T, Potter K, et al. Modelling of the spring-in phenomenon in curved parts made of a thermosetting composite[J]. Composites Part A:Applied Science and Manufacturing.2010, 41(3):410-418.
    [189]Ersoy N, Garstka T, Potter K, et al. Development of the properties of a carbon fibre reinforced thermosetting composite through cure[J]. Composites Part A:Applied Science and Manufacturing. 2010,41(3):401-409.
    [190]Dong C. Process-induced deformation of composite T-stiffener structures[J]. Composite Structures. 2010,41(4):515-520.
    [191]寇哲君,戴棣,曹正华.复合材料结构固化变形预测[J].材料工程.2007(S1):225-228.
    [192]Prasatya P. Mckenna G B, Simon S L. A viscoelastic model for predicting isotropic residual stresses in thermosetting materials:effects of processing parameters[J]. Journal of Composite Materials. 2001,35:826-848.
    [193]Zhu Q. Dimensional accuracy of thermoset polymer composites:process simulation and optimization[D]. University of Illinois,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700