用户名: 密码: 验证码:
铝、镁合金半固态浆料制备技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
材料的微观结构是材料科学和工程的核心内容,是材料加工和材料行为之间的关键纽带。因此对材料在成形过程中微观结构的有效控制成为材料工作者孜孜追求的目标。对于金属和合金材料,凝固是最重要的成形途径。建立在现代科学基础上的优质铸件凝固技术正成为材料成形加工的发展方向,优质铸件凝固技术包括压力铸造、精密铸造、连续铸轧、自蔓延高温合成熔铸以及半固态成形等工艺。传统铸造和挤压成形方法是利用工艺过程来获取能够提供零件使用性能的微观结构,相对来说,供给浆料必须是非枝晶结构的半固态金属加工工艺是由材料的微观结构来决定其工艺特征的。半固态金属成形具有许多独特的优点,如近(净)终成形、产品高质量和高性能以及工艺节能等,是21世纪最有前途的金属材料加工技术之一。本文总结了半固态金属加工工艺的发展,触变性结构的流变性能和非枝晶组织的形成机制,介绍了半固态加工的流变成形发展方向。在铸造工程中心的电磁材料加工这一技术研发基础上,试验研究和开发了铝、镁合金半固态浆料的制备技术。同时在国家自然科学基金(50374014)资助下,和北京有色金属研究总院合作开发了阻尼冷却管法制备铝合金半固态浆料的工艺。主要研究内容和结果如下:
     1、提出小尺寸供给料在近液相线等温处理后,利用旋转电磁场搅拌制取半固态浆料进行流变成形AZ91镁合金的加工工艺,设计并制作了一套试验装置。利用该装置试验浇注了一系列固相率为3%到40%流变成形件。完成了铸件的金相分析,研究了铸件拉性能和微观组织相互关系,并利用连续剖面的二维图像构建初生固相颗粒聚团三维结构和形貌,讨论了在该工艺下触变性结构的形成机制等。实验结果表明:金属熔体缓慢冷却过程中施加旋转电磁场进行搅拌后,在低固相率条件下,由于搅拌作用在熔体中形成了均匀的温度场和溶质浓度分布,因而形成以等轴枝晶为基体的凝固组织,同时在熔体中形成的初生相颗粒数目较少,初生相颗粒在液相基体中存活并长大,在最终凝固组织中形成松散的颗粒聚团。随着浇注温度的降低,固相率上升导致了初生相颗粒数目增多,强烈搅拌引起固相颗粒间的相互作用,造成相邻颗粒间的摩擦和塑性变形,因此形成与低固相率铸件组织中不同的初生颗粒聚团结构,亦即高固相率微观组织中的颗粒聚团结构是许多颗粒焊合在一起形成的紧密结构,在基体中链接成刚性架构。高、低固相率铸件中这种聚团结构特征决定了两者在外力作用下不同的断裂行为和拉性能;另外,固相率的增加主要是以形成新晶粒的方式来实现的。
     2、研究和分析了在液固两相区内等温处理过程中,高固相体积分数条件下AZ91镁合金的组织演变过程。结果表明:在体系自由能(界面能)降低的驱动下,晶界处的共晶组织首先熔化;随着温度的上升,次枝晶臂熔断,并重新沉淀在主干上;固相颗粒由于体表曲率差效应发生Ostwald熟化过程,枝晶组织演变成球形颗粒。熟化过程中形成晶内小液滴有两种方式:其一是由晶内富Al的质点经过熔化、扩散、合并形成;另一种就是在熟化过程中由于脱落的枝晶臂沉淀生长时搭桥形成。同时建立了枝晶在等温处理过程中演变成球形晶粒的模型,根据Gibbs-Thomson效应推出球化所需时间计算公式:
     3、研发了在高速运动的金属液内应用循环冷却手段制取半固态浆料的新工艺。循环冷却水管在和金属流体快速热交换过程中,促进金属液爆发形核并降温至两相区内,形成高密度晶核悬浮分散在液相中的半固态浆料,实现细晶化、净终形的铸件成形。实验过程中组合利用U型冷却水管和旋转电磁场来满足这一工艺要求,应用A356铝合金实验结果表明:向电磁场驱动的高速旋转的金属液中插入循环冷却水管,可以快速带走金属液的热量,促进在金属液中形成高密度晶核并降温至两相区内;旋转电磁场促进了晶核、溶质、温度在液相中的均匀分布;高密度晶核的存在为晶粒以球形方式生长和凝固组织细化提供了必要前提。
     4、应用阻尼冷却效应设计了一种半固态浆料的制备工艺,加工了一套实验装置,并进行了A356铝合金的一系列实验。实验结果表明:由于阻尼冷却管的冷却和搅拌作用,低过热度的金属液降温至两相区内,同时金属液中分布大量的游离晶核,从而形成半固态浆料。流变成形铸件的微观结构分析表明:浇注温度越低,铸件晶粒尺寸越小,并且球化程度越高。同时应用冷却斜槽工艺对比实验表明,在同一浇注温度下,阻尼冷却管法制备的铸件晶粒尺寸更加细小圆整。
     5、在本文实验的基础上,分析了高密度晶核促进非枝晶组织的形成机制。引入“晶体生长前沿形核”机制和粘性流体的边界层理论,提出“代孕机制”解释强制对流金属液中的形核增殖现象。
Microstructures are at the center of materials science and engineering. They are the strategic link between materials processing and materials behavior. Microstructure control is therefore essential for any processing activity. The most important processing route for metals and alloys is solidification. Solidification technologies of premium castings, including die-casting, investment casting, continuous casting & rolling, self-propagating high temperature synthesis and semisolid processing, etc, have been the dominant research and development. The specific microstructure, which meets the demand of performance, is conventionally obtained by casting and forging process. In comparison with those two methods, SSM(semisolid metal processing) is a new processing route, in which the processing feature depends on the thixotropic structure of the feedstock, which is so called non-dendritic microstructure. SSM is one of the most important processing technologies in 21~(st) century due to its advantages, such as near net-shape forming, high quality and performance of products, and energy-saving, to name a few.
     The development of SSM, rheological behavior of the thixotropic structures and the formation mechanism of non-dendritic microstructure are summarized, and rheoforming route, which is the developing front of SSM, is introduced in the present paper. Research and development on semisolid slurry processing technology of Magnesium- and Aluminum-based alloys is fulfilled theoretically and experimentally, based on the abundant experience of EPM(Electromagnetic processing materials) in Foundry Engineering Center. Moreover, Damper cooling method (DCT) is developed to processing semisolid slurry for rheoforming Al-alloys, which is supported by National Natural Science Foundation(50374014) and cooperated with General Research Institute for Nonferrous Metals. The present doctoral dissertation is performed on basis of the above research works. Main research details and results are as follows:
     (1) AZ91 magnesium alloy is semisolid processed under experimental conditions designed to yield from 3% to 40% of the primary particles, and the semisolid slurry is produced by electromagnetic stirring after feedstock with small dimension has been isothermally heat treated at near-liquidus temperature. The thixotropic microstructures obtained are characterized in detail and linked to the corresponding tensile properties, and serial sectioning experiments are performed to construct three dimensional morphologies of clusters consisting of conglutinated primary grains. The experimental results indicate that incompact structure agglomerating a few primary solid particles is observed within structures of low solid fraction, while a reduction in the castings' forming temperature and so increasing the fraction of primary solid phase bright out interaction among the primary particles within vigorously stirring melt, and thus causes slide and plastic deformation between or among the neighboring solid particles. In contrast with structure with low solid fraction, this slide and plastic deformation results in differently morphological 3D structures welded together with much more solid particles. The fractographic analysis reveals that fracture mechanism and corresponding morphology of the rapture surface of tensile bars depend on the solid fraction of the primary particles. Moreover, the increase in solid fraction mainly lies on the formation of new particles.
     (2) Microstructure evolution of AZ91 magnesium alloy, which is isothermally treated in solid-liquid region at a high volume fraction of solid from as-cast microstructure then transforms to semisolid state, is investigated. The results show that eutectic phase with net-work shape is first to melt, and second dendritic arms disappear or melt off and then re-precipitated on the dendritic trunk. Solid particles go through Ostwald ripening due to Gibbs-Thomson effect resulting from difference of curvatures, and transform into globular particles, and coalesce together with the time. Moreover, the entrapped liquid drops form intra-grain by two mechanisms owing to decreasing interfacial energy: one is that inclusions containing rich solute Al and Zn melt, diffuse and then coalesce together into larger liquid drops during hear treat process; and the other is that second dendrite arms, which melt off and re-precipitate on the trunk, enclose to form liquid drops by bridge-growth. In addition, a model is built and applied to calculate the spheroidizing time of dendritic grain during isothermal heat treatment, and of which calculating formula is proposed as
     (3) A novel approach is designed to obtain thixotropic structure of equiaxed or non-dendrtic grains for fine-grain and net-shape forming method, and demonstrated experimentally using A356 aluminum alloy. The circumstance in bulk liquid metal, which would burst into copious nucleation, and at the same time create homogeneous distribution of temperature and solute, is constructed by combined utilization of rotating magnetic fields and a cooling tube. Both microstructures solidified in metal mold and sand mold exhibit non-dendritic characteristic. Analyses of the rheocasting A356 microstructure indicate that high density of nuclei occurs by inserting a cooling tube into rotating slurry at liquidus temperature. In the case of slow cooling rate, mushy slurry obtained with high nuclei density keeps non-dendritic morphology of primary particles with holding time, accompanying with grain particles' coarsening and spheroidizing.
     (4) Damper cooling tube method (DCT) processing semisolid slurry is designed, and demonstrated with A356 aluminum alloy in the case of different pouring temperatures. It is shown that there is a direct relationship between the pouring temperature and the grain size and shape factor after comparing and characterizing the castings microstructure: the lower the pouring temperature, the smaller the grain size and shape factor, due to more stray nucleus produced. The reason for this is that the alloy melt is stirred and cooled by DCT. In addition, in comparison with cooling slope process, the grains of castings produced by DCT exhibit finer and more round.
     (5) The formation mechanism of non-dendritic structure resulting from high density of nuclei is analyzed in foundation on the aforementioned investigation. The theory of crystal growth front nucleation is introduced with the effect of boundary layer resulting from viscous fluid, and "surrogacy-mechanism" is proposed to explain the copious nucleation of liquid alloy with coerced convection.
引文
[1] Boettinger W J, Coriell S R, Greer A L, Karma A, Kurz W, Rappaz M and Trivedi R.Solidification microstructures: Recent developments, Future directions, Acta Mater.2000, 48: 43-70.
    
    [2] Kurz W, Trivedi R. Overview, Solidification microstructures: Recent developments,Future directions, Acta Metall. Mater., 1990, 38(1):1-17.
    
    [3] Davis Stephen H. Theory of solidification, Cambridge University Press, 2001.
    
    [4] Worster M G. Convection in mushy layers, Annual review of fluid mechanics, 1997, 29:91-122.
    
    [5] Flemings Merton C. Solidification Processing, McGraw-Hill, 1974
    
    [6] Flemings M C, Riek R G and Young K P. Rheocasting, Materials Science and Engineering1976, 25: 103-117.
    
    [7] Flemings M C. Behavior of metal alloys in the semisolid state, Metall. Trans. 1991,22A: 957-981.
    
    [8] Kirkwood D H. Semisolid metal processing, Inter. Mater. Rev., 1994, 39: 173-189.
    
    [9] Fan Z. Semisolid metal processing, Inter. Mater. Rev., 2002, 41: 49-85.
    
    [10] 谢水生,黄声宏.半固态金属加工技术及其应用,北京:冶金工业出版社,1999:13-24.
    
    [11] 康永林,毛卫民,胡壮麒.金属材料半固态加工理论与技术,北京:科学出版社,2004.
    
    [12] Proceedings of the 1st international conference on semisolid processing,Sophia-Antipolis, France, April, 1990.
    
    [13] Proceedings of the 2nd international conference on semisolid processing of alloys andcomposites, MIT, Cambridge, USA, June 1992.
    
    [14] Proceedings of the 3rd international conference on semisolid processing of alloys andcomposites, Tokyo, Japan, June 1994.
    
    [15] Proceedings of the 4th international conference on semisolid processing of alloys andcomposites, Sheffield, UK, June 1996.
    
    [16] Proceedings of the 5th international conference on semisolid processing of alloys andcomposites, Golden, Colorado, USA, June, 1998
    
    [17] Proceedings of the 6th international conference on semisolid processing of alloys andcomposites, Turin, Italy, September 2000.
    
    [18] Proceedings of the 7th international conference on semisolid processing of alloys andcomposites, Tsukuba, Japan, September 2002.
    
    [19] Proceedings of the 8th international conference on semisolid processing of alloys andcomposites, Limassol, Cyprus, September 2004.
    
    [20] Proceedings of the 9th international conference on semisolid processing of alloys and composites, Pusan, Korea, September 2006.
    
    [21] 金俊泽.电磁场作用下金属熔体成形及凝固基础研究,国家自然科学基金重大项目结题报告, 大连理工大学,2003.
    
    [22] 金俊泽,李廷举.材料电磁加工新进展,2000国外材料科学与工程发展动向研讨会,特邀报 告,大连理工大学,2003.
    
    [23] Jin Junze, Kobayashi K F and Shingu P H. The effect of fluid flow on the eutectic lamellar spacing, Metallurgical Transactions A, 1984, 15A: 307-312
    
    [24] 金俊泽,曹志强,郑贤淑,张尚儒.电磁搅拌作用下形成分离共晶的研究,金属学报,1995, 38(2):B374-B378
    
    [25] 金俊泽,王宗廷,郑贤淑,姚山.金属凝固组织形成的仿真研究,金属学报,1998,34(9): 928-932
    
    [26] Li T, Nagaya S, Sassa K, Asai S. Study of meniscus behavior and surface properties during casting in a high-frequency magnetic field, Metallurgical and Materials Transaction, 1995, 26B: 353-359
    
    [27] 李廷举,金俊泽.材料电磁加工的现状和未来,材料导报,2000,14:12-13,19.
    
    [28] 张兴国,曹志强,田正宏,金俊泽.电磁铸造铝扁锭的电磁场数值模拟,材料科学与工艺,2003, 11(4):375-378.
    
    [29] Hao hai, Zhang xingguo, Hou xiaoguang, Cao zhiqiang, Jin junze. Technological investigation of electromagnetic casting of double ingot, Trans. Nonferrous Met. Soc. China, 2003, 10(5): 590-594.
    
    [30] 曹志强,王义海,秦学智,贾非,金俊泽.高频磁场下铝合金非金属夹杂物电磁分离研究,大 连理工大学学报,2004,45(4):552-556.
    
    [31] 曹志强,任振国,张婷,陈东风.电磁搅拌对半固态Al-24%Si合金凝固过程及组织的影响, 铸造,2005,54(10):967-970
    
    [32] 王晓东.电磁力对金属熔体驱动及运动形态控制的研究(D),大连:大连理工大学,2002.
    
    [33] 谢水生,贺金宇.制备半固态合金浆料的方法及其设备[Patent],北京,200410039192.3, 2004.
    
    [34] Spencer D B, Mehrabian R, and Flemings M C. Rheological behavior of Sn-15 pct Pb inthe crystallization range, Metallurgical transactions, 1972, 3: 1925-1932
    
    [35] Dorward R C, Pritchett T R. Advanced aluminum alloys for aircraft and aerospaceapplications, Materials and Design. 1988, 9(2): 63-69.
    
    [36] Das S K, Bye R L and Gilman P S. Large scale manufacturing of rapidly solidified Aluminumalloy, Materials Science and Engineering A, 1991, 134: 1103-1106.
    
    [37] Gilman P S. High temperature aluminum alloys for aerospace application, Metal PowderReport, 1992, 47(2): 62-64.
    
    [38] Cole G S, Sherman A M. Lightweight materials for automotive applications, Materialsand Design, 1995, 35: 3-9.
    
    [39] Aghion E, Brofin B, Eliezr D. The role of the magnesium industry in protecting theenvironment, Journal of Materials Processing Technology, 2001,117: 381-385.
    
    [40] Friedrich H, Schumann S. Research for a "new age of magnesium" in the automotiveindustry, Journal of Materials Processing Technology, 2001, 117: 276-281.
    
    [41] Mordike B L, Ebert T. Magnesium Properties applications potential, Materials Scienceand Engineering, 2001, A302: 37-45.
    
    [42] Kapranos P. et al. Near net shaping by semisolid processing, Materials and Design,2000, 21: 387-394.
    
    [43] Stephen LeBeau, Joseph Maffia. Thixomolding: Plastic Injection Molding Turns to Metal,Engineered Casting Solutions, Fall 2002: 33-35.
    
    [44] Andreas Lohmüller, Martin Scharrer, Ralf Jenning, et al. Injection Molding of MagnesiumAlloys, Proceedings of the 6th International Conference Magnesium Alloys and TheirApplicatios, November, 2003: 738-743.
    
    [45] Czerwinski F. Size evolution of the unmelted phase during injection molding ofsemisolid magnesium alloys, Scripta Materialia, 2003, 48: 327-331.
    
    [46] 罗守靖,田文彤,李金平.21世纪最具发展前景的近净成形技术——半固态加工,特种铸造 及有色合金(中国压铸、挤压铸造、半固态加工学术年会论文集)2001:175-180.
    
    [47] 毛卫民,白月龙,高松福等.半固态AlSi7Mg铝合金的新型流变成形,材料研究学报,2006, 20(5):469-473.
    
    [48] 苏华钦,朱鸣芳,高志强.半固态铸造的现状及发展前景,特种铸造及有色合金,1998,5: 110-113.
    
    [49] 谢水生.半固态加工技术在镁合金零部件生产中的应用,世界有色金属,2005,2:39-48.
    
    [50] 徐骏,田战峰,石力开等.半固态铝合金设计与研究,稀有金属,2004,28(2):358-361.
    
    [51] 张奎.有色金属半固态加工技术的研究与开发,材料导报,2001,15(2):18-19.
    
    [52] 崔建忠,路贵民,刘丹等.半固态浆料制备技术的新进展,哈尔滨工业大学学报,2000,32(4): 110-113.
    
    [53] 邢书明,曾大本,马静.半固态挤压铸造——金属材料近净形成形新技术,特种铸造及有色合 金(中国压铸、挤压铸造、半固态加工学术年会论文集)2001:137-139.
    
    [54] Cantor B and Vogel A. Dendritic solidification and fluid flow, Journal of Crystal Growth,1977, 41: 109-123.
    
    [55] Molenaar JMM, Salemans F WH C, Katgerman L The structure of stircast Al-6Cu, Journalof Materials Science, 1985, 20: 4335-4344.
    
    [56] Smeulders R J. MIschgofsky F H, Frankena H J. Direct microscopy of alloy nucleation,solidification and aging (coarsening) during stir casting, Journal of Crystal Growth,1986, 76: 151-169.
    [57] Pilling J and Hellawell A. Mechanical deformation of dendrites by fluid flow, Metallurgical and Materials Transaction A, 1996, 27A: 229-232.
    [58] Mullis A. M. Growth induced dendritic bending and rosette formation during solidification in a shearing flow, Acta Mater. 1999, 47: 1783-1789.
    [59] Dragnevski K, Mullis A M, walker D J. Robert F. Cochrane, Mechanical deformation of dendrites by fluid flow during the solidification of undercooled melts, Acta Materialia, 2002, 50: 3743-3755.
    [60] Molenaar J M M, Katgerman L, Kool W H, Smeulders R J. On the formation of the stircast structure, Journal of Materials Science, 1986, 21: 389-394.
    [61] Ji S and Fan Z. Solidification behavior of Sn-15wt Pct Pb alloy under a high shear rate and high intensity of turbulence during semisolid processing, Metallurgical and Materials Transaction A, 2002, 33A: 3511-3520.
    [62] Li Tao, Lin Xin, Huang Weidong, Morphological evolution during solidification under stirring, Acta Materialia, 2006, 54: 4815-4824.
    [63] Evangelos Tzimas. Evolution of microstructure and rheological behavior of alloys in the semisolid state, Drexel University, 1997.
    [64] Chiarmetta G. Thixoforming of Automobile Components [A] D. Kirkwood, P. Kapranos [editors], Fourth International Conference on Semisolid Processing of Alloys and Composites. England, 1996: 204-207.
    [65] Basner Tim. Rheocasting of semi-solid A357 Aluminum, SAE (The engineering society for advancing mobility land sea air and space), 2000-01-0059, 1-5.
    [66] Ji S, Fan Z and Bevis M J. Semi-solid processing of engineering alloys by a twin-screw rheomoulding process, Mat. Sci. Eng. 2001, A299: 210-217.
    [67] Fang X and Fan Z. Microstructure of Zn-Pb immiscible alloys obtained by Rheomixing process, Material Science and Technology, 2005, 21 (3): 366-372.
    [68] Fan Z. Development of the rheo-diecasting process for magnesium alloys, Materials Science and Engineering A, 2005, 413-414: 72-78.
    [69] Joly P A, Mehrabian R. The rheology of a partially solid alloy, Journal of Materials Science, 1976, 11: 1393-1418.
    [70] Rice Chris S, Mendez Patricio F. Slurry-Based semisolid Die Casting, Advanced Materials & Process, 2001, 10: 49-52.
    [71] Wang N, Peng H, Wang K K, Rheomolding: A one step process for producing semi-solid metal castings with lowest porosity, Light Metals Proceedings of the 125th TMA Annual Meeting, Feb. 1996: 281-286.
    [72] Kiuchi M, Sugiyama S. Characterization of semi-solid alloys made by SCR-process. In: Kirkwood D. H. and Kapranos P. P. Proc. (editors) of the 4th Int. Conf. on semi-solid processing of alloys and composites, University of Sheffield. England. Sep. 1996: 197-201
    [73] Xia K, Tausig G. Liquidus casting of a wrought aluminum alloy 2618 for thixoforming, Mater. Sci. Eng., 1998, A246: 1-10.
    [74] Haga T, Kapranos P. Simple rheocasting processes, Journal of Materials Processing Technology, 2002, 130-131: 594-598.
    [75] Winter J, Dantziz J A, Tyler D E. Process and apparatus for making thixotropic metal slurries, US Patenet, 4434837, 1984.
    [76] Pan Q Y, Findon M. and Apelian D. The Continuous Rheoconversion Process (CRP): A Novel SSM Approach, in the Proceedings of the Eighth International Conference on Semi-Solid Processing of Metals and Alloys, Limasol, Cyprus, September 2004, in Ref. 19 from CD.
    [77] Xie Shuisheng, Yang Haoqiang, Wang Hao, et al. Damper cooling tube method to manufacture semisolid slurry of magnesium alloy. in Ref. 19 from CD.
    [78] Vogel A and Cantor B. Stability of a spherical particle growing from a stirred melt, Journal of Crystal Growth, 1977, 37: 309-316.
    [79] Doherty R D, Ho-in Lee, Feest E A. Microstructure of stir-cast metals, Materials Science and Engineering, 1984, 65: 181-189.
    [80] Qian Ma. Creation of semisolid slurries containing fine and spherical particles by grain refinement based on the Mullins-Sekerka stability criterion, Acta Materialia, 2006, 54: 2241-2252.
    [81] Haga T, Kapranos P. Thixoforming of laminate made from semisolid cast strips, Journal of Materials Processing Technology, 2004, 157-158: 508-512.
    [82] Haga T, Suzuki S. A downward drag single roll caster for casting semisolid slurry, Journal of Materials Processing Technology, 2004, 157-158: 695-700.
    [83] Martinez R A, Flemings M C. Evolution of particle morphology in semisolid processing, Metallurgical and Materials Transactions A, 2005, 36A: 2205-2210.
    [84] Ziflgen M, Hirt G. Microstructural effects of electromagnetic stirring in continuous casting of various aluminum alloys, In: editors Kirkwood D. H. and Kapranos P, Proceedings of the 4th international conference on semisolid processing of alloys and composites, Sheffield, UK, June 1996: 180-186.
    [85] Muller-Spath H, Achten M, Sahm P R. SSP-process-A new technology for homogeneous billet production, ibid, 174-179
    [86] Jorstad J L. Aluminum future technology in die casting, Die Casting Engineer, 2006, 9: 18-25.
    [87] Martinez-Ayers Raul A. Formation and processing of rheocast microstructures (D), Massachusettes Institute of Technology, Cambridge, Sep. 2004.
    
    
    [88] Martinez-Ayers Raul A. A new technique for the formation of semisolid structures, MSThesis, MIT, Cambridge, June 2001.
    
    [89] Johnston W C, Kotler G R, Tiller W A. The influence of electromagnetic stirring onthe nucleation of Tin and Tin-lead alloy, Trans. Metall. Soc. AIME, 1963, 227(4):890-896.
    
    [90] Johnston W C, Kotler G R, Tiller W A. Grain refinement via electromagnetic stirringduring solidification[J], Trans. Metall. Soc. AIME, 1965, 233 (9): 1856-1860.
    
    [91] Vives C. Effects of electromagnetic vibration on the microstructure of continuouslycast aluminum alloys, Materials science and engineering, 1993, A173: 169-172.
    
    [92] Pluchon C, Loue W R, Menet P Y, et al, Development of semi-solid metal forming feedstock and finished parts[A]. Light metals, TMS, 1995: 1233-1242.
    
    [93] 韩至成.电磁冶金学,北京,冶金工业出版社,2001.
    
    [94] Jung B I, Jung C H, Han T K, et al. Electromagnetic stirring and Sr modification inA356 alloy, Journal of Materials Processing Technology, 2001, 111: 69-73.
    
    [95] Zoqui E J, Paes M, Es-Sadiqi E. Macro- and microstructure analysis of SSM A356 producedby electromagnetic stirring, Journal of Materials Processing Technology, 2002, 120:365-373.
    
    [96] Yang Z, Kang C G, Seo P K. Evolution of the rheocasting structure of A356 alloyinvestigated by large-scale crystal orientation observation, Scripta Materialia, 2005,52: 283-288.
    
    [97] 董杰,路贵民,任栖锋,崔建忠.液相线铸造法非枝晶半固态组织形成机理探讨,金属学报, 2002,38(2):203-207.
    
    [98] 王平,路贵民,崔建忠.近液相线半连续铸造A356铝合金显微组织,金属学报,2002,38(4): 389-392.
    
    [99] 乐启炽,欧鹏,吴跃东等.AZ91D镁合金近液相线铸造研究,金属学报,2002,38(2):219-224.
    
    [100] Gianaries N J, Garfinkle G A, Myers D C, et al. Design and processing of a novel breakrotor, in Ref. 19 from CD.
    
    [101] Jorstand J L, Thieman M, Kamm R. Fundamental requirements for slurry generation inthe sub liquidus casting process and the economics of SLC processing, in Ref. 19 fromCD.
    
    [102] Jorstand J L. SSM processes: an overview, in Ref.19 from CD.
    
    [103] Van.Dam J C and Mischgosfahy F H, Stircasting of transparent organic alloys:thixotropy and rosette formation, Journal of Materials Science, 1982, 17:989-993.
    
    [104] Mullis A M, Battersby S E, and Fletcher H L, Bhasin A K, Moore J J, Young K P andMidson S. (eds.): Proceedings of the 5th international conference on semisolidprocessing of alloys and composites, Golden, Colorado, USA, June, 1998: 233-240
    [105] Molenaar J M M, Katgerman L, Kool W H, Smeulders R J. On the formation of the stircast structure, Journal of Materials Science, 1986, 21: 389-394.
    [106] Apaydin N, Prabhakar K V, Doherty R D. Special grain boundaries in rheocast Al-Mg, Mater. Sci.Eng., 1980, 46: 145-150.
    [107] Das A., Ji S and Fan Z. Morphological development of solidification structures under forced fluid flow: a Monte-Carlo simulation, Acta Mater, 2002, 50: 4571-4585.
    
    [108] 朱名芳,苏华钦,半固态等温热处理对ZA12合金组织和性能的影响,金属热处理,1996,1: 33-36.
    [109] Martin C L, Kumar P, Brown S. Constitutive modeling and characterization of the flow behavior of semi-solid metal alloy slurries-II. Structural evolution under shear deformation, Acta metall. Mater., 1994, 42(11): 3603-3614.
    [110] Voorhees P W, Glicksman M E. Ostwald ripening during liquid phase sintering-effect of volume fraction on coarsening kinetics, Metallurgical Transactions A, 1984, 15A: 1081-1088.
    [111] Tzimas Evangelos, Zavaliangos Antonios. Evolution of near-equiaxed microstructure in the semisolid state, Materials Science and Engineering, 2000, A289: 228-240.
    [112] Wan Gang, Sahm P R. Ostwald ripening in the isothermal rheocasting process, Acta Metallurgical and Materials, 1990, 38(6): 967-972.
    [113] Wan Gang. Sahm P R. Particle growth by coalescence and Ostwald ripening in rheocasting Pb-Sn, Acta Metallurgical and Materials, 1990, 38(11): 2367-2372.
    [114] Tzimas Evangelos, Zavaliangos Antonios. A comparative characterization of near-equiaxed microstructures as produced by spray casting, magnetohydrodynamic casting and the stress induced melt activated process, Materials Science and Engineering, 2000, A289: 217-227.
    [115] Annavarapu S and Doherty R D. Inhibited coarsening of solid-liquid microstructures in spray casting at high volume fractions of solid, Acta Metal. Mater, 1995, 43(8): 3207-3230.
    [116] Zoqui E J, Shehata M T, Paes M, et al. Morphological evolution of SSM A356 during partial remelting, Materials Science and Engineering, 2002, A325: 38-53.
    [117] Voorhees P W. The theory of Ostwald ripening, Journal of Statistical Physics, 1985, 381(2): 231-257.
    
    [118] Barnes HA. Thixotropy-a review, Journal of Non-newtonian Fluid Mech. 1997, 70: 1-33
    [119] Chen J Y, Fan Z. Modelling of rheological behavior of semisolid metal slurries parti-Theory, Materials Science and Technology, 2002, 18: 237-242.
    [120] Atkinson H V. Modelling the semisolid processing of metallic alloys, Progress in Materials Science, 2005, 50: 341-412.
    [121] Findon M. M. Semi-solid slurry formation via liquid metal mixing (A Thesis of Master), WIP, 2003.
    [122] Tonmukayakul N, Nguyen Q D, de Figueredo A. M., Pan Q Y. Time-dependent rheology of semi-solid Aluminum alloy A357, Proceedings of the 7th International Conference on Semisolid Processing of Alloys and Composites, Tsukuba, Japan, September 2002: 437-442.
    [123] Fan. Z, Chen J Y, Modelling of rheological behavior of semisolid metal slurry part 2-Steady state behavior, Materials Science and Technology, 2002,18(3): 243-249
    [124] Mada M, Ajersch F. Rheological model of semi-solid A356-SiC composite alloys Part I : Dissociation of agglomerate structures during shear, Materials Science and Engineer, 1996, A212: 157-170.
    [125] Burgos G R, Alexandrou A N, Entov Vladimir. Thixotropic rheology of semisolid metal suspensions, Journal of Materials Processing Technology, 2001, 110: 164-176.
    [126] Chiarmetta G. Thixoforming of automobile components, In: D.Kirkwood, P. Kapranos(Eds.), 4th International Conference on Semisolid Processing of Alloys and Composites, Sheffiled, England, 1996: 204-207.
    [127] DasGupta Rathindra. Industrial applications- The present status and challenges we face, in Ref. 19 from CD.
    
    [128] Communication with Martin Hartilieb, director of market development of Alcan Inc.
    [129] Doutre D, Langlais J, Roy S. The SEED process for semisolid forming, in Ref. 19 from CD.
    [130] Cardoso E, Atkinson H V, Jones H. Microstructural evolution of A356 during NRC processing, in Ref. 19 from CD.
    
    [131] New semisolid casting, online www.hitachi-metals.co.jp
    [132] Behrens Bernd-Arno, Fischer Dirk, Haller Bjoern, et al. Introduction of a full automated process for the production of automotive steel parts, in Ref. 19 from CD.
    [133] Lecomte-Bechers J, Rassili A, Carton M, RobeletM. Characterisation of thermophysical properties of semisolid steels for thixoforming, ibid, from CD.
    [134] Robelet M, Demurger J, Rassili A, et al. determination of the semisolid behavior of steels, ibid, from CD.
    [135] Bramann H, Afrath C, Fehlbier M, et al. High pressure die casting of steel alloys in semisolid state, ibid, from CD.
    [136] Marcel Garnier. Electromagnetic processing of liquid materials in Europe, ISIJ International, 1990, 30: 1-7.
    [137] Shigeo Asai. Challenging of EPM in Economic Mass Production, Nano-Technology and Environment Production, Proceedings of 4th International Conference on Electromagnetic Processing of Materials, Lyon, France, Oct. 2003: 1-8.
    
    
    [138] 韩至成编译,电磁流体力学在冶金生产中的应用[I],国外钢铁,1987,5:27-35.
    
    [139] 李廷举,温斌,张志峰,金俊泽,电磁场作用下材料加工新技术,大连理工大学学报,2000, 40(12):61-64.
    
    [140] Shigeo Asai. Electromagnetic processing of materials, Past, present and future, Proceedings of 5th International Conference on Electromagnetic Processing of Materials, Sendai, Japan, ISIJ, 2006: 3-8.
    
    [141] Yves Fautrelle, Electromagnetic processing of liquid metal: review of the research activity in France. Proceedings of 5th International Conference on Electromagnetic Processing of Materials, Sendai, Japan, ISIJ, 2006: 9-14.
    
    [142] Yves Fautrelle. Damien Perrier, and Jacqueline Etay, Free surface controlled by magnetic fields, Advanced Application of Electromagnetic Force to Materials Processing, ISIJ International, Special Issue, 2003, 43(6): 801-806.
    
    [143] GetselevN. Casting in an electromagnetic field, Journal of Metals, 23(10) 1972: 38-59
    
    [144] 韩至成编译.电磁流体力学在冶金生产中的应用[II],国外钢铁,1987,6:24-39.
    
    [145] 金俊泽,张兴国,曹志强,朱晓鹰.铝合金电磁铸造工艺参数的研究,材料研究学报,1996, 10(4):397-400.
    
    [146] Eiichi Takeuchi. EPM in continuous casting and its extensive prospect, Proceedings of 4th International Conference on Electromagnetic Processing of Materials, Lyon, France, Oct. 2003: 137-144.
    
    [147] 郭景杰,张铁军,苏彦庆等.电磁技术在铸造中的应用,特种铸造及有色合金,2002,3: 37-40.
    
    [148] 郭大勇,杨院生,童文辉等.电磁驱动熔体流动与枝晶变形断裂模拟,金属学报,2003, 39(9):914-919.
    
    [149] 王晓东,赵恂,李廷举等.磁力搅拌法的研究与开发, 材料科学与工艺,2000,8(4):1-5.
    
    [150] Iwai Kazuhiko, Kameyama Takashi and Rene Moreau. Alfv(?)n waves excited in a liquid metal, Proceedings of 4th international Conference on Electromagnetic Processing of Materials, Lyon, France, Oct. 2003: 75-80.
    
    [151] Cramer A, Eckert S, Heinzelmann C H, Zhang C, Gerbeth G. Efficient melt mixing due to the combined action of a rotating and a traveling magnetic field, Proceedings of 4th International Conference on Electromagnetic Processing of Materials, Lyon, France, Oct. 2003: 359-365.
    
    [152] 毕德显.电磁场理论,北京:电子工业出版社,1985:300-312.
    
    [153] 郭硕鸿.电动力学,北京:高等教育出版社,1997:135-139.
    
    [154] Nahed A. El-Mahallawy, Mohamed A. Taha, Engenius Pokora, et al. On the influence of process variables on the thermal conditions and properties of high pressure die-cast magnesium alloys, Journal of Materials Processing Technology, 1998, 73: 125-138.
    
    [155] Klein F. Production of magnesium castings with different casting processes, inB.L.Mordike, F. Hechmann(Eds.), Magnesium Alloys and Their Applications, DGMInformationsgesellschaftsverlag, Germany, 1992: 53-60.
    
    [156] Dahle A K, Sannes S, St.John D H, Westengen H. Formation of defect bands in highpressure die cast magnesium alloys, Journal of Light Metals, 2001,1(2): 99-103.
    
    [157] Vogel M, Kraft O, Dehm G, Arzt E. Quasi-crystalline grain-boundary phase in magnesiumdie-cast alloy ZA85, Scripta Materialia, 2001, 45(5): 517-524.
    
    [158] Flemings M C. SSM: Some thoughts on past milestones and on the path ahead[A]. Proc.of 6th Int. Conference,IN: Chiarmetta G, L-Rosso M. (Editors) Semi-solid Processingof Alloys and Composites[C], Turin, Italy, 2000: 11-14
    
    [159] Kleiner S, Beffort O, Wahlen A, Uggowitzer P J. Microstructure and Mechanicalproperties of squeeze cast and semi-solid cast Mg-Al Alloys[J], Journal of LightMetals, 2002, 2: 277-280.
    
    [160] Mao Weimin, Zhen Zisheng, Cheng Hongtao, Microstructures of AZ91D alloy solidifiedduring electromagnetic stirring, Trans. Nonferrous Met. Soc. China, 2005, 15(1):72-76.
    
    [161] Shehata M T, Essadiqi E, Kao V, et al. Thixocasting and thixoforging of magnesiumAZ91D alloy. In editors: Tsutsui Y, Kiuchi M, and Ichikawa K. Proc. of the 7thInternational Conference on Semi-solid Processing of Alloys and Composites, Tsukuba,Japan, 2002: 263-268.
    
    [162] Czerwinski Frank. Near-liquidus molding of Mg-Al and Mg-Al-Zn alloys, Acta Materialia,2005, 53: 1973-1984.
    
    [163] Czerwinski F. On the generation of thixotropic structures during melting ofMg-9%Al-l%Zn alloy, Acta Materialia, 2002, 50: 3265-3281.
    
    [164] L. Xiangfa, B. Xiufang, Q. Xiaogang, M. Jiaji, The heredity of Al-Si-Mg-Mn beforeand after remelting, JOM, The Journal of the Minerals, Metals and Materials Society,1997, 11: 40-41.
    
    [165] 边秀房,王伟民,李辉等.金属熔体结构,上海:上海交通大学出版社,2003.
    
    [166] 边秀房,刘相法,马家骥.铸造金属遗传学,山东:山东科学技术出版社,1999.
    
    [167] Porter David A, Easterling Kenneth E, Phase Transformation in Metals and Alloys, NewYork, USA, 1981
    
    [168] Ohno Atsumi. Solidification--The separation theory and its practical applications,Springer-Verlag Berlin, 1987
    
    [169] Nikrityuk P A, Eckert K, Grundmann R. A numerical study of unidirectionalsolidification of a binary metal alloy under influence of a rotating magnetic field,International Journal of Heat and Mass Transfer, 2006, 49: 1501-1515.
    [170] Willers B, Nikritjuk P A, Eckert K, Eckert S. Flow structures during solidification of metallic alloys affected by a rotating magnetic field, The 15th RIGA and 6th PAMIR Conference on Fundamental and Applied MHD Electromagnetic Processing of Materials, Riga, Latvia, July, 2005: 269-272.
    [171] Meyer J L, El-Kaddah N, Szekely J, Vives C, Ricou R. A comprehensive study of the induced current, the electromagnetic force field, and velocity field in a complex electromagnetically driven flow system, Metallurgical Transactions B, 1987, 18: 529-538.
    [172] Chen C P, TSAO C.-Y A. Semi-solid deformation of non-dendritic structures-I. Phenomenological behavior, Acta mater. 1997, 45(5): 1955-1968.
    [173] Ji S., Roberts K and Fan Z., Isothermal coarsening of fine and spherical particles in semisolid slurry of Mg-9Al-1Zn alloy under low shear, Scripta Materialia, 2006, 55: 971-974.
    [174] Baldan A. Review: Progress in Ostwald ripening theories and their application to nickel-base superalloys, Part 1-Ostwald ripening theories, Journal of Materials Science, 2002, 37: 2171-2202.
    [175] Celotto S. TEM study of continuous precipitation in Mg-9wt% Al-1wt% Zn alloy, Acta Mater., 2000, 48: 1775-1787.
    [176] Yang C, Ye L, Mai Y-W. Effect of constraint on tensile behavior of an AZ91 magnesium alloy, Materials Letters, 2004, 58: 3219-3221.
    [177] Mathieu S. Rapin C, Hazan J, Steinmetz P. Corrosion behavior of high pressure die-cast and semi-solid cast AZ91D alloys, Corrosion Science, 2002, 44: 2737-2756.
    [178] Song Guangling, Atrens Andrej, Dargusch Matthew. Influence of microstructure on the corrosion of die cast AZ91D, Corrosion Science, 1999, 41: 249-273.
    [179] Czerwinski F, Zielinska-Lipiec A, Pinet P J and Overeeke J. Correlating the microstructure and tensile properties of a thixomolded AZ91D magnesium alloy, Acta Materialia, 2001, 49: 1225-1235.
    [180] Gutman E M, Unigovski Ya, Levkovich M, Koren Z, Aghion E, Dangur M. Influence of technological parameters of permanent of mold casting and die casting on creep and strength of Mg alloy AZ91D, Materials Science and Engineering, 1997, A234-236: 880-883.
    [181] Avedesian Michael M, Baker Hugh. Magnesium and Magnesium Alloys, Ohio: ASM International Materials Park, 1999.
    [182] Dunlop G L, Sequeira W P, Dargusch M S, et al, Microstructure and properties of magnesium die castings, in: Proc. of 55th Meeting of the International Magnesium Association, Coronado, USA, 1998: 68-73.
    
    
    [183] Czerwinski F. The generation of Mg-Al-Zn alloys be semisolid state mixing ofparticulate precursors, Acta Materialia, 2004, 52: 5057-5069.
    
    [184] Niroumand B, Xia K. 3D study of the structure of primary crystals in a rheocast Al-Cualloy, Materials Science and Engineering, 2000, A283: 70-75.
    
    [185] Ito Y, Flemings M C, Cornie J A. Proceedings of the TMS Symposium on Nature andProperties of Semi-solid Materials, San Diego, CA, 1992: 3-17.
    
    [186] Zhang XL, Li TJ, Xie SS, et al. Microstructure analysis of rheoformed AZ91 alloyproduced by rotating magnetic fields, Journal of Alloys and Compounds,doi:10. 016/j. jallcom. 2007.06.111.
    
    [187] Hardy S C, Voorhees P W. Ostwald ripening in a system with a high volume fractionof coarsening phase, Metallurgical Transactions A, 1988, 19A: 2713-2721.
    
    [188] 李元东,郝远,闫峰云等,AZ91D镁合金在半固态等温热处理中的组织演变,中国有色金 属学报,2001,11(4):571-575.
    
    [189] 乐启炽,张建新,崔建忠等,近液相线铸造AZ91D镁合金的部分重熔,金属学报,2002,38: 1266-1272
    
    [190] Okamoto H. J phase equilibria, 1998, 19:598.
    
    [191] Kleiner S, Beffort 0, Uggowitzer P J. Microstructure evolution during reheating ofan extruded Mg-Al-Zn alloy into the semisolid state, Scripta Materialia, 2004, 51:405-410
    
    [192] Kang S S, Yoon D N. Kinetics of grain coarsening during sintering of Co-Cu and Fe-Cualloys with low liquid contents, Metallurgical Transactions A, 1982, 13A: 1405-1411.
    
    [193] Brailsford A D, Wynbatt P. The dependence of Ostwald repining kinetics on particlevolume fraction, Acta Metallurgica, 1979, 27: 489-497.
    
    [194] German R M. Sintering theory and practice, J. Wiley and Sons. Inc., N.Y., N. Y. 1996
    
    [195] Gunduz M, Hunt J D. The measurement of the solid-liquid surface energies in the Al-Cu,Al-Si, and Pb-Sn Systems, Acta Metalurgica, 1985, 33: 1651-1672.
    
    [196] Straumal B, Muschik T, Gust W, Predel B. The wetting transition in high and low energygrain boundaries in the Cu(In) system, Acta Metall. Mater. 1992, 40: 939-945.
    
    [197] Mewis J. Thixotropy ?A general review, Journal of Non-Newtonian Fluid Mechanics, 1976, 6: 1-20.
    
    [198] 胡赓祥,钱苗根.金属学,上海:上海科学技术出版社,1980.
    
    [199] online: www.intlraag.org.
    
    [200] online: www. doitpoms. ac. uk.
    
    [201] Kaufmann H, Uggowitzer P J. Review-Fundamentals of the new rheocasting process for magnesium alloys, Die Casting Engineering, 2001, 3(12): 963-967.
    
    [202] Yurko A, Martinez R A, Flemings M C. SSRTM: The spheroidal growth route to semisolidforming, ibid, from CD,
    
    [203] New semisolid casting, online www.hitachi-metals.co.jp
    
    [204] Browne D J, Hussey M J, Carr A J and Brabazoa D. Direct thermal method: New processfor development of globular alloy microstructure, International Journal of CastMaterials Research, 2003, 16(4): 418-426.
    
    [205] Wang H,Ning N L.Magnesium thixotropic structures produced by controlled nucleation method,2007年中国压铸、挤压铸造、半固态加工学术年会专刊,重庆,2007:316-319.
    
    [206] Nafisi Shahrooz, Ghomashchi Reza, Charette Andre. The influence of grain refiner on the microstructural evolution of Al-7%Si and A356 in the SEED, ibid in ref[19].
    
    [207] Fan Z, Ji S, BevisMJ, Twin-screw rheomoulding-a new semi-solid processing technology. Proc. of the 6th International Conference on Semi-solid Processing of Alloys and Composites, Turin, Italy, 2000: 61-66.
    
    [208] 王同敏,李廷举,曹志强,金俊泽,等轴球晶凝固多相体系内热溶质对流、补缩流及晶粒 运动的数值模拟:Ⅱ.模型的应用,金属学报,2006,42(6):591-598.
    
    [209] Mullins W W, Sekerka R F. Morphological stability of a particle growing by diffusionor heat flow, Journal of Applied Physics, 1963, 34(2): 323-329.
    
    [210] Kurz W and Fisher D J. Fundamentals of solidification, Trans Tech Publications, Ltd,Aedermannsdorf Switzerland, 1998.
    
    [211] Minkoff I., Solidification and cast structure, John Wiley & Sons Ltd, Chichester,Great Britain, 1986.
    
    [212] Spitzer K H, Reiter G, Schwerdtfeger K. Rotational electromagnetic stirring incontinuous casting of round strands. Metall. Trans. B 1986, 17B(3) 119-131.
    
    [213] Qin Rongshan, Zhang Yonghao. A lattice Boltzman study of the effect of stirring onthe migration rate of a curved interface in binary slurries, Computer & Fluids, 2006,35: 929-933.
    
    [214] Neupaver A J, Witsberger JC. Metal s Handbook, vol.7, 9th eds, ASM, Metal Park, OH, 1985:233-245.
    
    [215] Fan Z and Chen J Y. Modelling of rheological behavior of semisolid metal slurries.Materials Science and Technology, 2002, 18: 237-267.
    
    [216] Chalmers B. Principles of Solidification, NewYork: Wiley, 1964.
    
    [217] 胡汉起,金属凝固原理,北京:机械工业出版社,第二版(2000)128-151
    
    [218] Granasy L, Pusztai T, Borzsonyi T, et al. A general mechanism of polycrystalline growth,Nature Materials, 2004, 3: 645-650.
    
    [219] Granasy L, Pusztai T, Warren J A, et al, Growth of 'dizzy dendrites' in a randomfield of foreign particles, Nature Materials, 2003, 2: 92-96.
    
    [220] Granasy L, Pusztai T, Tegze G, et al, Growth and form of spherulites, Physical ReviewE, 2005, 72: 011605-1-15.
    
    [221] Pusztai T, Bortel G, Granasy L. Phase field modeling of polycrystalline freezing,Materials Science and Engineering, 2005, A413-414: 412-417.
    
    [222] 周尧和,胡壮麒,介万奇.凝固技术,北京:机械工业出版社,1998.
    
    [223] 章梓雄,董曾南.粘性流体力学,北京:清华大学出版社,1998.
    
    [224] 孙文策.工程流体力学,大连:大连理工大学,2003.
    
    [225] 李玉柱,贺五洲.工程流体力学,北京:清华大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700