用户名: 密码: 验证码:
Salen配合物的设计合成及其催化二氧化碳/环氧丙烷交替共聚的行为
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文合成了一系列的席夫碱钴/铬的配合物。首次报道了SalenCoIII-OPh(NO2)2这类配合物的晶体结构。这些配合物和季铵盐组成双功能催化剂体系,可以在温和的条件下高效催化CO2/rac-PO的不对称交替共聚反应,并表现出优异的催化活性、化学选择性、区域与立体化学控制;聚合反应几乎专一性地生成聚碳酸酯,聚合物呈现完美的交替共聚结构并具有良好的区域和立体规整度。
     通过系统考察配合物的电子效应和空间效应对聚合反应的影响,提出了高效双功能催化体系的设计原则;通过系统研究助催化剂季铵盐结构对聚合反应的影响,确立了助催化剂的设计原则;通过讨论催化体系两组分的摩尔比、聚合温度和CO2的压力等反应条件对聚合反应的影响,优化了聚合的反应条件。用IR、GPC、DSC和NMR等测试手段对合成的聚合物结构进行表征。
     通过聚合机理的的研究,季铵盐的N原子与活性钴/铬金属中心配位。这种配位作用使得金属烷氧键或金属碳酸酯键弱化,提高了金属烷氧键或金属碳酸酯键的亲核性,相应的提高了环氧丙烷单体开环的选择性,从而实现了PPC区域规整性的提高。
Carbon dioxide is the most fundamental carbon resource and is indispensable for the existence of all living organisms on Earth, including mankind, via photosynthesis by green plants. But excessive CO2 from industrial emission leads to the greenhouse effect. Therefore, recycling CO2 and chemical fixation of CO2 are receiving increased attention. On the other hand, chemical utilization of carbon dioxide has been rather limited. The synthesis of biodegradable aliphatic polycarbonates using carbon dioxide as raw materials is one of the most challenging works in carbon dioxide fixation field, among which, Poly(propylene carbonate) (PPC) from alternate copolymerization of carbon dioxide and propylene oxide (PO), have been given the most attention. Though transparent film having low gas permeability can be made from PPC, its thermal and mechanical properties are poor, one reason lies in that PPC is a weak polar hydrophobic polymer with weak molecular chain interaction, and the existence of many weak polar, flexible C-O-C blonds in the backbone leads to its amorphous state, enhancing molecular chain interaction of PPC is therefore badly needed, and one possible way is to control its chain structure.The synthesis of biodegradable aliphatic polycarbonates using carbon dioxide as raw materials is one of the most challenging works in carbon dioxide fixation field, among which, Poly(propylene carbonate) (PPC) from alternate copolymerization of carbon dioxide and propylene oxide (PO), have been given the most attention. Although there is growing effect to develop the effective cata1yst for the copolymerization of CO2 and epoxide, some problems still plague these catalyst systems, such as low molecular weight and polydispersity indices, inferior polymer selectivity, irregular region- and stereo- chemistry and so on. The metal Schiff base catalyst is an efficient catalyst for the alternating copolymerization of CO2 with epoxides. Some problems still plague these catalyst systems, such as low catalyst activity, inferior Polymer selectivity, irregular region- and stereo- chemistry and so on. Although the kind of catalysts is suited to control molecular weights and molecular weight distributions of the produced copolymer as well as to regulate selective formation of the polycarbonates. The X-ray crystal structure of the cobalt/Schiff base complex has not been reported. So it is difficult to explain the copolymerization mechanism.
     In this dissertation, One series of complexes (salenCoIII X) was synthesized, and the X-ray crystal structure of some complexes was presented. Based on the X-ray crystal structure and results of copolymerization of CO2 and propylene oxide, the copolymerization mechanism was examined further.The binary catalyst systems composed of SalenCoIII X and ionic ammonium salt as cocatalyst can efect1vely promote the asymmetric copolymerization of CO2 and racemic propylene oxide(rac-PO) to produce poly(propylene carbonate) (PPC) with excellent activity, >95% head-to-tail connectivity, and >99% carbonate linkages. The achievements will besummarized below:
     First, the recent advance in the catalytic asymmetric epoxidation and its corresponding structural studies were reviewed.
     One series salen complexes were designed, synthesized and charaterized by IR, NMR, element analysis etc. Among them, some complexes were also charaterized by X-ray diffraction analysis. The catalytic behaviors of these complexes for CO2/rac-PO alternating copolymerization were investigated. The influences of the ligand architecture, molecular configuration and electronic effects on the polymerization performances were demonstrated in detail.The axial X group of complex played a role in determining the order of the catalytic activity of these catalysts. The electronic effect of the axial X group in terms of greater advantages for producing linear polycarbonates by successive insertion of CO2/rac-PO towards the M–X bond as compared with the formation of cyclic carbonates by a back-biting reaction from the propagating alkoxide played important role. The electronic effect of the substituents R on the phenolates of the ligand also affected the catalytic activity of catalyst. While the PPC/PC selectivity as well as polymer head-to-tail linkages increases in the opposition order The bulky substituents R on the phenolates of the ligand influence the ring-opening position of the rac-PO incorporated next to the growing polymer chain and thus significantly influence the selectivity of PPC and polymer head-to-tail linkages. Both the axial group X of the complex and the substituents on the ligand do not have a clear effect on the resulting copolymer molecular weights.
     X-ray diffraction analysis confirmed that complex was triclinic species with a six-coordinated central cobalt octahedron in their solid. Complex 2 is triclinic with a six-coordinated cobalt atom in the center. CobaltIII center is coordinated by two phenolate oxygens, two imine nitrogens of the salen ligand and by the two oxygen atoms of 2,4-dinitrophenoxy, which occupy the axial positions of a distorted octahedral coordination geometry.
     The effect on reaction temperature, pressure, time, the molar ratio of cocatalyst to catalyst on fCO2 of copolymer, and effect of preparative method of catalyst on efficiency were thoroughly investigated. The results showed that the good copolymerzation conditions of CO2 and rac-PO should be generated at 2 MPa, 40-60°C. The influence of temperature on the copolymerization is also obvious. At a lower temperature, the catalyst was deactivated with carbonate linkages nearly 100%. At an increased temperature, the activities of catalyst were greatly enhanced with the same carbonate linkages. However, cyclic carbonates were additionally produced at elevated temperatures. Catalyst system kept their catalytic activity at low CO2 pressures. Even at 0.2 MPa, it was also active maintaining almost 50% of its optimal TOF. However, the increase of the pressure to 4 MPa resulted in a significant drop-off in reaction rate.
     Alternating copolymerization of carbon dioxide with epoxides to make aliphatic polycarbonates is one of the significant achievements for the chemical fixation of carbon dioxide. These polycarbonates not only exhibit attractive properties, but also display great potential as biodegradable polymeric materials, which have brought them extensive concerns as CO2-based materials. Great efforts have been dedicated directly toward the development of catalysts and mechanism of this copolymerization during the past forty years. By analyzing all of these investigations mentioned herein, such a noticeable conclusion can be drawn definitely, that is, activities and selectivity of the copolymerization catalyzed by tetradentate ligand complexes can be remarkably enhanced in the presence of cocatalysts, most of which are N-containing compounds.
     The molar ratio of monomer to catalyst as well as cocatalyst to catalyst was also studied here. It showed that higher molar ratio of monomer to catalyst increased the catalytic efficiency of catalyst. Additionally, the observed results also showed a pronounced dependence on the cocatalyst loading when keeping the concentration of catalyst constant. As indicated in the experimental results, the activities were substantially enhanced upon initially increasing the concentration of ionic ammonium salt. However, there was a dramatic decrease in the activities of catalyst as well as an increase in polyether linkages at a higher cocatalyst loading (more than 30 equiv). Reasonable explanations have been presented in this dissertation combining the proposed mechanism.
     High yield of turnover frequency and high molecular weight of 72.5 kg/mol were achieved at an appropriate combination of all variables. The structures of as-prepared products were characterized by the IR, 1H NMR, 13C NMR measurements. The linear carbonate linkage, highly regionselectivity and almost 100 % carbonate content of the resulting polycarbonate were obtained with the help of these effective catalyst systems under facile conditions.
引文
[1]李昆俞. CO2的应用及产品开发.天然气化工(C1化学与化工),1996, 21(3):40- 43.
    [2]曲格平.关于我国参加联合国环境与发展大会的情况报告-迈向21世纪.北京:中国环境科学出版社.1992.
    [3]王建伟,钟顺和. CO2吸附活化的研究进展.化学进展, 1998, 10(4): 374.
    [4] Culter, A.R., Hanna, P. K.; Vites, J. C.,Carbon Monoxide and Carbon Dioxide Fixation: Reaction C1 and C2 Ligand Reaction Emphasizing(η'-C5H5)Fe-Containing Complexes, Chem. Rev, 1988,1363.
    [5]杨瑞娜,候益民,胡晓院,金斗满,过渡金属配合物催化的二氧化碳的固定,化学进展,2000, 12(l), 41.
    [6]Gibson, D. H.,The Organometallic Chemistry of Carbon Dioxide, Chem. Rev. 1996,2063.
    [7]钱延龙,徐敏之,金如人,有机过渡金属化合物与CO2的反应,有机化学,1984, (3), 181.
    [8] Inoue, S.; Koinuma, K., Catalytic Fixation of Carbon Dioxide by Metal Compolexes, Rev. In. Inorg. Chem, 1984,(6),291.
    [9]邓祥贵,叶碧兰,CO2化学应用的研究进展,天然气化工,1986,(3),30.
    [10]许勇,周卫红,吴善良,二氧化碳化学的发展和应用,化工进展,1989,(4),23.
    [11] Kihara, N.; Hara, N.; E ndo, T., Catalytic Activity of Various Salts in the Reaction of 2, 3-Epoxypropyl Phenyl Ester and Carbon Dioxide under Atmospheric Pressure, J Org Chem, 1993, 58, 6198-6202.
    [12] Leiter, W., Carbon Dioxide as a Raw Material: The Synthesis of Formic acid and Its Derivatives from CO2, A ngrew. Chem. Int. Ed. Engl, 1995, 34, 2207-2221.
    [13] Kruper, W. J.; Deller, D. V., Catalytic Formation of Cyclic carbonates from Epoxide and CO2 with Chromium Metalloporphrinates, J. Org, Chem, 1995, 60, 725.
    [14] Iwasaki, T.; Kihara, N.; Endo, T., Reaction of Various Oxiranes and Carbon Dioxide. Synthesis and Aminolysis of Five-Membered Cyclic Carbonates, Bull. Chem. Soc. Jpn, 2000, 73, 713.
    [15] Inoue, S.; Koinuma, H.; Tsuruta, T. J Polym Sci Part B: Polym Lett 1969, 7, 287–292.
    [16] Inoue, S.; Tsuruta, T.; Furukawa, J Makromol Chem 1962, 53, 215–218.
    [17] Tsuruta, T.; Matsuura, K.; Inoue, S. Makromol Chem 1964, 75, 211–214.
    [18] Kuran, W.; Rokicki, A.; Pasynkiewicz, S. J Organomet Chem 1978, 157, 135-143.
    [19] Gorecki, P.; Kuran, W. J Organomet Chem 1986, 312, 1-11.
    [20] Inoue, S.; Tsuruta, T.; Takeda, T.; Miyazaki, N. Kanbe, M.; Takaoka, J Appl Polym Sci Appl Polym Symp 1975, 26, 257-267.
    [21] Inoue S., Koinuma H., Tsuruta T., "Copolymerization of carbon dioxide and epoxide with organometallic compounds".Die Makromolekulare Chemie 1969, 130, 210.
    [22] Inoue S., Koinuma H., Tsuruta T., "Copolymerization of carbon dioxide and epoxide".Journal of Polymer Science Part B-Polymer Letters 1969, 7, 287.
    [23] Kobayashi M., Tang Y., Tsuruta T., Inoue S., "Copolymerization of carbon dioxide and epoxide using dialkylzinc/dihydric phenol system as catalyst".Die Makromolekulare Chemie 1973, 169, 69.
    [24] Kobayashi M., Inoue S., Tsuruta T., "Diethylzinc-Dihydric Phenol System as Catalyst for the Copolymerization of Carbon Dioxide with Propylene Oxide".Macromolecules 1971, 4, 658.
    [25] Inoue S., Kobayashi M., Koinuma H., Tsuruta T., "Reactivities of some organozinc initiators for copolymerization of carbon dioxide and propylene oxide".Die Makromolekulare Chemie 1972, 155, 61.
    [26] Kobayashi M., Inoue S., Tsuruta T., "Copolymerization of carbon dioxide and epoxide by the dialkylzinc-carboxylic acid system".Journal of Polymer Science Part B-Polymer Letters 1973, 11, 2383.
    [27] Kuran W., Pasynkiewicz S., Skupinska J., Rokicki A., "Alternating copolymerization of carbon dioxide and propylene oxide in the presence of organometallic catalysts".Die Makromolekulare Chemie 1976, 177, 11.
    [28] Gorecki P., Kuran W., "Diethylzinc-trihydric phenol catalysts for copolymerization of carbon dioxide and propylene oxide: Activity in copolymerization and copolymer destruction processes".Journal of Polymer Science Part C-Polymer Letters 1985, 23, 299.
    [29] Soga K., Uenishi K., Hosoda S., Ikeda S., "Copolymerization of carbon dioxide and propylene oxide with new catalysts".Die Makromolekulare Chemie 1977, 178, 893.
    [30] Soga K., Hyakkoku K., Ikeda S., "Copolymerization of carbon dioxide and epoxypropane by using cobalt(II) acetate and acetic acid".Die Makromolekulare Chemie 1978, 179, 2837.
    [31] Rokicki A., Kuran W., "The Application of Carbon-Dioxide as a Direct Material for Polymer Syntheses in Polymerization and Polycondensation Reactions".Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics 1981, C21, 135.
    [32] Kuran W., Pasynkiewicz S., Skupinska J., "Organozinc catalyst systems for the copolymerization of carbon dioxide with propylene oxide".Die Makromolekulare Chemie 1977, 178, 47.
    [33] Kuran W., "Coordination polymerization of heterocyclic and heterounsaturated monomers".Progress in Polymer Science 1998, 23, 919.
    [34] Ree M., Bae J. Y., Jung J. H., Shin T. J., "A new copolymerization process leading to poly(propylene carbonate) with a highly enhanced yield from carbon dioxide and propylene oxide".Journal of Polymer Science Part a-Polymer Chemistry 1999, 37, 1863.
    [35] Kim J. S., Ree M., Shin T. J., Han O. H., Cho S. J., Hwang Y. T., Bae J. Y., Lee J. M., Ryoo R., Kim H., "X-ray absorption and NMR spectroscopic investigations of zinc glutarates prepared from various zinc sources and their catalytic activities in thecopolymerization of carbon dioxide and propylene oxide".Journal of Catalysis 2003, 218, 209.
    [36]陈立班,彭汉,陈海生,林间, "二氧化碳和环氧丙烷共聚用的双金属催化体系".应用化学1988, 5, 7.
    [37] Chen X. H., Shen Z. Q., Zhang Y. F., "New Catalytic-Systems for the Fixation of Carbon-Dioxide .1. Copolymerization of CO2 and Propylene-Oxide with New Rare-Earth Catalysts-Re(P204)3-Al(I-Bu)3-R(Oh)N".Macromolecules 1991, 24, 5305.
    [38] Guo J. T., Wang X. Y., Xu Y. S., Sun J. W., "Copolymerizations of carbon dioxide and Epoxides in the presence of rare earth coordinate catalyst".Journal of Applied Polymer Science 2003, 87, 2356.
    [39] Tan C. S., Hsu T. J., "Alternating copolymerization of carbon dioxide and propylene oxide with a rare-earth-metal coordination catalyst".Macromolecules 1997, 30, 3147.
    [40] Hsu T.-J., Tan C.-S., "Synthesis of polyethercarbonate from carbon dioxide and cyclohexene oxide by yttrium-metal coordination catalyst".Polymer 2001, 42, 5143.
    [41] Hsu T. J., Tan C. S., "Block copolymerization of carbon dioxide with cyclohexene oxide and 4-vinyl-1-cyclohexene-1,2-epoxide in based poly(propylene carbonate) by yttrium-metal coordination catalyst".Polymer 2002, 43, 4535.
    [43] Liu B. Y., Zhao X. J., Wang X. H., Wang F. S., "Copolymerization of carbon dioxide and propylene oxide with neodymium trichloroacetate-based coordination catalyst".Polymer 2003, 44, 1803.
    [44] Quan Z. L., Wang X. H., Zhao X. J., Wang F. S., "Copolymerization of CO2 and propylene oxide under rare earth ternary catalyst: design of ligand in yttrium complex".Polymer 2003, 44, 5605.
    [45] Quan Z. L., Min J. D., Zhou Q. H., Xie D., Liu J. J., Wang X. H., Zhao X. J., Wang F. S., "Synthesis and properties of carbon dioxide - Epoxides copolymers from rare earth metal catalyst".Macromolecular Symposia 2003, 195, 281.
    [46] Xie D., Wang X. H., Zhao X. J., Wang F. S., "Influence of dialkylzinc in rare-earth ternary catalyst on the copolymerization of carbon dioxide and propylene oxide".Chinese Journal of Polymer Science 2005, 23, 671.
    [47] Takeda N., Inoue S., "Polymerization of 1,2-epoxypropane and copolymerization with carbon dioxide catalyzed by metalloporphyrins".Die Makromolekulare Chemie 1978, 179, 1377.
    [48] Takeda N., Inoue S., "Activation of Carbon dioxide by Tetraphenylporphinatoaluminum Methoxide Reaction with Epoxide".Bulletin of the Chemical Society of Japan 1978, 51, 3564.
    [49] Aida T., Ishikawa M., "Alternating Copolymerization of Carbon-Dioxide and Epoxide Catalyzed by the Aluminum Porphyrin-Quaternary Organic Salt or Triphenylphosphine System: Synthesis of Polycarbonate with Well-Controlled Molecular-Weight".Macromolecules 1986, 19, 8.
    [50] Darensbourg D. J., Holtcamp M. W., "Catalytic Activity of Zinc(II) Phenoxides Which Possess Readily Accessible Coordination Sites. Copolymerization and Terpolymerization of Epoxides and Carbon Dioxide".Macromolecules 1995, 28, 7577.
    [51] Darensbourg D. J., Holtcamp M. W., Struck G. E., Zimmer M. S., Niezgoda S. A., Rainey P., Robertson J. B., Draper J. D., Reibenspies J. H., "Catalytic Activity of a Series of Zn(II) Phenoxides for the Copolymerization of Epoxides and Carbon Dioxide".Journal of the American Chemical Society 1999, 121, 107.
    [52] Darensbourg D. J., Wildeson J. R., Yarbrough J. C., Reibenspies J. H., "Bis 2,6-difluorophenoxide Dimeric Complexes of Zinc and Cadmium and Their Phosphine Adducts: Lessons Learned Relative to Carbon Dioxide/Cyclohexene Oxide Alternating Copolymerization Processes Catalyzed by Zinc Phenoxides".Journal of the American Chemical Society 2000, 122, 12487.
    [53] Darensbourg D. J., Wildeson J. R., Lewis S. J., Yarbrough J. C., "Solution and Solid-State Structural Studies of Epoxide Adducts of Cadmium Phenoxides. Chemistry Relevant to Epoxide Activation for Ring-Opening Reactions".Journal of the American Chemical Society 2002, 124, 7075.
    [54] Cheng M., Lobkovsky E. B., Coates G. W., "Catalytic Reactions Involving C1 Feedstocks: New High-Activity Zn(II)-Based Catalysts for the Alternating Copolymerization of Carbon Dioxide and Epoxides".Journal of the American Chemical Society 1998, 120, 11018.
    [55] Cheng M., Moore D. R., Reczek J. J., Chamberlain B. M., Lobkovsky E. B., Coates G. W., "Single-site beta-diiminate zinc catalysts for the alternating copolymerization of CO2 and epoxides: Catalyst synthesis and unprecedented polymerization activity".Journal of the American Chemical Society 2001, 123, 8738.
    [56] Cheng M., Lobkovsky E. B., Coates G. W., "Catalytic reactions involving C-1 feedstocks: New high-activity Zn(II)-based catalysts for the alternating copolymerization of carbon dioxide and epoxides".Journal of the American Chemical Society 1998, 120, 11018.
    [57] Allen S. D., Moore D. R., Lobkovsky E. B., Coates G. W., "High-Activity, Single-Site Catalysts for the Alternating Copolymerization of CO2 and Propylene Oxide".Journal of the American Chemical Society 2002, 124, 14284.
    [58] Moore D. R., Cheng M., Lobkovsky E. B., Coates G. W., "Electronic and Steric Effects on Catalysts for CO2/Epoxide Polymerization: Subtle Modifications Resulting in Superior Activities".Angewandte Chemie International Edition in English 2002, 41, 2599.
    [59] Suzuki M., JP Patent 09,259,930, 1997.
    [60] Kroger M., Folli C., Walter O., Doring M., "Alternating copolymerization of cyclohexene oxide and CO2 catalyzed by zinc complexes with new 3-amino-2-cyanoimidoacrylate ligands". Advanced Synthesis & Catalysis 2005, 347, 1325.
    [61] Eberhardt R., Allmendinger M., Luinstra G. A., Rieger B., "The ethylsulfinate ligand: A highly efficient initiating group for the zinc beta-diiminate catalyzed copolymerization reaction of CO2 and epoxides".Organometallics 2003, 22, 211.
    [62] Lundstorm N., Scheffee R., Luke D., US Patent 6,017,404, 2000.
    [63] H uang Y. H., Wang J. Z., Liao B., "Epoxy resins toughened by poly(propylene carbonate)".Journal of Applied Polymer Science 1997, 64, 2457.
    [64] Lee B. Y., Kwon H. Y., Lee S. Y., Na S. J., Han S. I., Yun H. S., Lee H., Park Y. W., "Bimetallic anilido-aldimine zinc complexes for epoxide/CO2 copolymerization".Journal of the American Chemical Society 2005, 127, 3031.
    [65] Xiao Y. L., Wang Z., Ding K. L., "Copolymerization of cyclohexene oxide with CO2 by using intramolecular dinuclear zinc catalysts".Chemistry-a European Journal 2005, 11, 3668.
    [66] Jacobsen E. N., Tokunaga M., Larrow J. F., PCT Int. Appl.WO00/09463, 2000.
    [67] Darensbourg D. J., Yarbrough J. C., "Mechanistic Aspects of the Copolymerization Reaction of Carbon Dioxide and Epoxides, Using a Chiral Salen Chromium Chloride Catalyst".Journal of the American Chemical Society 2002, 124, 6335.
    [68] Darensbourg D. J., Yarbrough J. C., Ortiz C., Fang C. C., "Comparative Kinetic Studies of the Copolymerization of Cyclohexene Oxide and Propylene Oxide with Carbon Dioxide in the Presence of Chromium Salen Derivatives. In Situ FTIR Measurements of Copolymer vs Cyclic Carbonate Production".Journal of the American Chemical Society 2003, 125, 7586.
    [69] Darensbourg D. J., Mackiewicz R. M., Rodgers J. L., Fang C. C., Billodeaux D. R., Reibenspies J. H., "Cyclohexene Oxide/CO2 Copolymerization Catalyzed by Chromium(III) Salen Complexes and N-Methylimidazole: Effects of Varying Salen Ligand Substituents and Relative Cocatalyst Loading".Inorganic Chemistry 2004, 43, 6024.
    [70] Darensbourg D. J., Mackiewicz R. M., Rodgers J. L., Phelps A. L., "(Salen)CrIIIX Catalysts for the Copolymerization of Carbon Dioxide and Epoxides: Role of the Initiator and Cocatalyst".Inorganic Chemistry 2004, 43, 1831.
    [71] Darensbourg D. J., Mackiewicz R. M., "Role of the Cocatalyst in the Copolymerization of CO2 and Cyclohexene Oxide Utilizing Chromium Salen Complexes".Journal of the American Chemical Society 2005, 127, 14026.
    [72] Darensbourg D. J., Mackiewicz R. M., Billodeaux D. R., "Pressure Dependence of the Carbon Dioxide/Cyclohexene Oxide Coupling Reaction Catalyzed by Chromium Salen Complexes. Optimization of the Comonomer-Alternating Enchainment Pathway".Organometallics 2005, 24, 144.
    [73] Eberhardt R., Allmendinger M., Rieger B., "DMAP/Cr(III) catalyst ratio: The decisive factor for poly(propylene carbonate) formation in the coupling of CO2 and propylene oxide".Macromolecular Rapid Communications 2003, 24, 194.
    [74] Tokunaga M., Larrow J. F., Kakiuchi F., Jacobsen E. N., "Asymmetric catalysis with water: Efficient kinetic resolution of terminal epoxides by means of catalytic hydrolysis".Science 1997, 277, 936.
    [75] Qin Z. Q., Thomas C. M., Lee S., Coates G. W., "Cobalt-based complexes for the copolymerization of propylene oxide and CO2: Active and selective catalysts for polycarbonate synthesis".Angewandte Chemie-International Edition 2003, 42, 5484.
    [76] a)Lu X. B., Liang B., Zhang Y. J., Tian Y. Z., Wang Y. M., Bai C. X., Wang H., Zhang R., "Asymmetric catalysis with CO2: Direct synthesis of optically active propylene carbonate from racemic epoxides".Journal of the American Chemical Society 2004, 126, 3732.b) Lu X. B., Wang Y., "Highly active, binary catalyst systems for the alternating copolymerization of CO2 and epoxides under mild conditions".Angewandte Chemie-International Edition 2004, 43, 3574.
    [77] Paddock R. L., Nguyen S. T., "Alternating copolymerization of CO2 and propylene oxide catalyzed by Co-III(salen)/Lewis base".Macromolecules 2005, 38, 6251.
    [78]Cohen C. T., Chu T., Coates G. W., "Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide: Combining high activity and selectivity".Journal of the American Chemical Society 2005, 127, 10869
    [79] Cohen C. T., Thomas C. M., Peretti K. L., Lobkovsky E. B., Coates G. W., "Copolymerization of cyclohexene oxide and carbon dioxide using (salen)Co(III) complexes: synthesis and characterization of syndiotactic poly(cyclohexene carbonate)".Dalton Transactions 2006, 237.
    [80] Cohen C. T., Coates G. W., "Alternating copolymerization of propylene oxide and carbon dioxide with highlv efficient and selective (salen)Co(III) catalysts: Effect of ligand and cocatalyst variation".Journal of Polymer Science Part a-Polymer Chemistry 2006, 44, 5182.
    [81] Nakano K., Kamada T., Nozaki K., "Selective formation of polycarbonate over cyclic carbonate: Copolymerization of epoxides with carbon dioxide catalyzed by a cobalt(III) complex with a piperidinium end-capping arm".Angewandte Chemie-International Edition 2006, 45, 7274.
    [82]时磊,二氧化碳与环氧烷烃的不对称、区域及立体选择性交替共聚(大连理工大学博士学位论文),大连理工大学2006.
    [83] Stamp L. M., Mang S. A., Holmes A. B., Knights K. A., de Miguel Y. R., McConvey I. F., "Polymer supported chromium porphyrin as catalyst for polycarbonate formation in supercritical carbon dioxide".Chemical Communications 2001, 2502.
    [84] Yu K. Q., Jones C. W., "Silica-immobilized zinc beta-diiminate catalysts for the copolymerization of epoxides and carbon dioxide".Organometallics 2003, 22, 2571.
    [85] Okamoto Y., Nakano T., "Asymmetric Polymerization".Chemical Reviews 1994, 94, 349.
    [86] Nozaki K., Nakano K., Hiyama T., "Optically active polycarbonates: Asymmetric alternating copolymerization of cyclohexene oxide and carbon dioxide".Journal of the American Chemical Society 1999, 121, 11008.
    [87] Nakano K., Nozaki K., Hiyama T., "Asymmetric alternating copolymerization of cyclohexene oxide and CO2 with dimeric zinc complexes".Journal of the American Chemical Society 2003, 125, 5501.
    [88] Nakano K., Hiyama T., Nozaki K., "Asymmetric amplification in asymmetric alternating copolymerization of cyclohexene oxide and carbon dioxide".Chemical Communications 2005, 1871.
    [89] Udipi K., Gillham J. K., "Poly(ethylene carbonate) and poly(propylene carbonate): Transitions and thermomechanical spectra".Journal of Applied Polymer Science 1974, 18, 1575.
    [90]马德柱主编,高聚物的结构与性能,科学出版社1995.
    [91]何曼君主编,高分子物理,复旦大学出版社1990.
    [92] Kuran W., Listos T., "Initiation and propagation reactions in the copolymerization of epoxide with carbon dioxide by catalysts based on diethylzinc and polyhydric phenol".Macromolecular Chemistry and Physics 1994, 195, 977.
    [93] Aida T., Inoue S., "Synthesis of polyether-polycarbonate block copolymer from carbon dioxide and epoxide using a metalloporphyrin catalyst system".Macromolecules 1982, 15, 682.
    [94] Shen Z. Q., Chen X. H., Zhang Y. F., "New Catalytic-Systems for the Fixation of Carbon-Dioxide. 2. Synthesis of High-Molecular-Weight Epichlorohydrin Carbon-Dioxide Copolymer with Rare-Earth Phosphonates Triisobutyl-Aluminum Systems".Macromolecular Chemistry and Physics 1994, 195, 2003.
    [95] Aida T., Ishikawa M., Inoue S., "Alternating copolymerization of carbon dioxide and epoxide catalyzed by the aluminum porphyrin-quaternary organic salt or -triphenylphosphine system. Synthesis of polycarbonate with well-controlled molecular weight".Macromolecules 1986, 19, 8.
    [96] Kojima F., Aida T., Inoue S., "Fixation and activation of carbon dioxide on aluminum porphyrin. Catalytic formation of a carbamic ester from carbon dioxide, amine, and epoxide".Journal of the American Chemical Society 1986, 108, 391.
    [97] Price C. C., Osgan M., Hughes R. E., Shambelan C., "The Polymerization of l-Propylene Oxide".Journal of the American Chemical Society 1956, 78, 690.
    [98] Pierre L. E. S., Price C. C., "The Room Temperature Polymerization of Propylene Oxide".Journal of the American Chemical Society 1956, 78, 3432.
    [99] Price C. C., Osgan M., "The Polymerization of l-Propylene Oxide".Journal of the American Chemical Society 1956, 78, 4787.
    [100] Lednor P. W., Rol N. C., "Copolymerization of Propene Oxide with Carbon Dioxide: Aselective Incorporation of Propene Oxide into the Polycarbonate Chains,determined by 100 MHz 13C N.M.R. Spectroscopy".Chemical Communications 1985, 598.
    [101] Byrnes M. J., Chisholm M. H., Hadad C. M., Zhou Z., "Regioregular and Regioirregular Oligoether Carbonates: 13CNMR Investigation".Macromolecules 2004, 37, 4139.
    [102] Chisholm M. H., Zhou Z. P., "Concerning the mechanism of the ring opening of propylene oxide in the copolymerization of propylene oxide and carbon dioxide to give poly(propylene carbonate)".Journal of the American Chemical Society 2004, 126, 11030.
    [103]潘才元主编,高分子化学,中国科学技术大学出版社1997.
    [104]全之龙,不同配体稀土催化剂下二氧化碳/环氧化物共聚物的合成与性能研究(中科院长春应化所博士学位论文),中科院长春应化所2003.
    [105] Inoue S., Tsuruta T., "Synthesis and thermal degradation of carbon dioxide-epoxide copolymer".Applied Polymer Symposia 1975, 26, 257.
    [106] Dixon D. D., Ford M. E., Mantell G. J., "Thermal stabilization of poly (alkylenecarbonate)s".Journal of Polymer Science-Polymer Letters Edition 1980, 18, 131.
    [107] Kuran W., Gorecki P., "Degradation and depolymerization of poly(propylene carbonate) by diethylzinc".Die Makromolekulare Chemie 1983, 184, 907.
    [108] Li X. H., Meng Y. Z., Zhu Q., Tjong S. C., "Thermal decomposition characteristics of poly(propylene carbonate) using TG/IR and Py-GC/MS techniques".Polymer Degradation and Stability 2003, 81, 157.
    [109] Nishida H., Tokiwa Y., "Confirmation of Poly(1,3-dioxolan-2-one) Degrading Microorganisms in Environment".Chemistry Letters 1994, 3, 421.
    [110]方兴高,杨淑英,陈立班, "聚碳酸亚乙亚丙酯的合成和生物降解".功能高分子学报1994, 7, 143.
    [111] Takanashi M., Nomura Y., Yoshida Y., Inoue S., "Functional polycarbonate by copolymerization of carbon dioxide and epoxide: Synthesis and hydrolysis".Die Makromolekulare Chemie 1982, 183, 2085.
    [112] Kawaguchi T., Nakano M., Juni K., Inoue S., "Examination of biodegradability of poly(ethylene carbonate) and poly(propylene carbonate) in the peritoneal cavity in rats."Chem Pharm Bull 1983, 31, 1400.
    [113] Du L. C., Meng Y. Z., Wang S. J., Tjong S. C., "Synthesis and degradation behavior of poly(propylene carbonate) derived from carbon dioxide and propylene oxide".Journal of Applied Polymer Science 2004, 92, 1840.
    [114] Chadha S., Watkins C. M., US Patent 5,744,907, 1998.
    [115] Moore D. R., Allen S. D., Coates G. W., "Alternating copolymerization of epoxides and carbon dioxide:Advances in beta-diiminate zinc catalysts".Polymer Preprints 2003, 44, 735.
    [116] Byrnes M. J., Chisholm M. H., Hadad C. M., "Mechanistic studies of the copolymerization microstructural of propylene oxide and carbon dioxide approach".Abstracts of Papers, 226th ACS National Meeting 2003, Poly-502.
    [117] Dieter W., Christel R., Dieter V., WO Patent 9,606,877, 1996.
    [118] Takahashi K., Noda K., Tanaka K., JP Patent 08,217,869, 1996.
    [119] Jan P., Wladyslaw W., Katarzyna S., PL Patent 165,941, 1995.
    [120] Kono K., JP Patent 08,031,700, 1996.
    [121] Volksen W., Hedrick J., MillerR D., US Patent 6,107,357, 2000.
    [122] Clifford H., William L., Paul R., US Patent 5,776,990, 1998.
    [123]王剑钊,黄玉惠,丛广民, "聚丙撑碳酸酯/环氧树脂体系的力学性能".应用化学1994, 11, 54.
    [124]王胜杰,黄玉惠,丛广民, "偶连剂对聚氯乙烯/聚丙撑碳酸酯共混体系力学性能的影响".应用化学1996, 13, 92.
    [125]王胜杰,黄玉惠,丛广民, "聚丙撑碳酸酯的流动性能".应用化学1996, 13, 75.
    [126]杨向宏,黄玉惠,赵树录, "填充PPC/NBR共混弹性体研究".功能材料1994, 25, 322.
    [127]叶晓光,庞浩,黄玉惠, "PPC/SBR共混物的研究".橡胶工业1998, 45, 643.
    [128]叶晓光,黄玉惠,丛广民, "丁苯橡膨聚丙撑碳酸酯弹性体的结构与性能".应用化学1998, 15, 74.
    [129]叶晓光,黄玉惠,丛广民, "PPC/SBR共混物的研究".橡胶工业1998, 45, 277.
    [130]廖兵,林果,黄玉惠, "聚丙撑碳酸酯/三元乙丙橡胶共混改性弹性体的研究".高分子材料科学与工程1999, 15, 163.
    [131] Sant Angelo J., Mc Ginnis V., Chen X., WO Patent 9,900,444.
    [132] Li X. H., Meng Y. Z., Wang S. J., Rajulu A. V., Tjong S. C., "Properties of degradable poly(p ropylene carbonate) reinforced with short lingo-cellulose fiber Hildegardia Populifolia".Journal of Polymer SciencePart B-Polymer Physics 2004, 42, 666.
    [133] Li X. H., Tjong S. C., Meng Y. Z., Zhu Q., Journal of Polymer Science Part B-Polymer Physics 2003, 41, 1806.
    [1] W. S. Sheldrick, R. Knorr and H. Polzer. Acta Crystalogr. B 1979, 35, 739.
    [2] A. C. T. North, D. C. Phillips and F. S. Mathews. Acta Crystallogr., 1968, Sect. A, 24. p351.
    [3] G. M. Sheldrick. Program for crystal structure solution, University of Góttingen., 1997.
    [1] [1a] H. Sugimoto, S. Inoue, J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 5561; [1b] M. Kr?ger, C. Folli, O. Walter, M. D?ring, J. Org. Chem. 2006, 691, 3397.
    [2] Y. S. Niu, W. X. Zhang, X. Pang, X. S. Chen, X. L. Zhuang, X. B. Jing, J. Polym. Sci. Part A: Polym. Chem. 2007, 45, 5050.
    [3] [3a] D. J. Darensbourg, M. W. Holtcamp, Coord. Chem. Rev. 1996, 153, 155; [3b] D. J. Darensbourg, R. M. Mackiewicz, A. L. Phelps, D. R. Billodeaus, Acc. Chem. Res. 2004, 37, 836; [3c] D. J. Darensbourg, R. M. Mackiewicz, J. Am. Chem. Soc. 2005, 127, 14026; [3d] D. J. Darensbourg, Chem. Rev. 2007, 107, 2388.
    [4] G. W. Coates, D. R. Moore, Angew. Chem. Int. Ed. 2004, 43, 6618.
    [5] [5a] D. M. Cui, M. Nishiura, Z. M. Hou, Macromolecules 2005, 38, 4089; [5b] D. M. Cui, M. Nishiura, O. Tardif, Z. M. Hou, Organometallics 2008, 27, 2428 ; [5c] Z. C. Zhang, D. M. CUI, X. L. Liu, J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 6810.
    [6] R. L. Paddock, S. T. Nguyen, J. Am. Chem. Soc. 2001, 123, 11498.
    [7] B. Li, R. Zhang, X. B. Lu, Macromolecules 2007, 40, 2303.
    [8] S. Mang, A. I. Cooper, M. E. Colclough, N. Chauhan, A. B. Holmes, Macromolecules 2000, 33, 303.
    [9] [9a] D. J. Darensbourg, J. C. Yarbrough, J. Am. Chem. Soc. 2002, 124, 6335; [9b] D. J. Darensbourg, J. C. Yarbrough, C. Ortiz, C. C. Fang, J. Am. Chem. Soc. 2003, 125, 7586; [9c] D. J. Darensbourg, R. M. Mackiewicz, J. L. Rodgers, C. C. Fang, D. R. Billodeaux, J. H. Reibenspies, Inorg. Chem. 2004, 43, 6024.
    [10] R. Eberhardt, M. Allmendinger, B. Rieger, Macromol. Rapid. Commun. 2003, 24, 194.
    [11] [11a] Z. Qin, C. M. Thomas, S. Lee, G. W. Coates, Angew. Chem. Int. Ed. 2003, 42, 5484; [11b] C. T. Cohen, T. Chu, G. W. Coates, J. Am. Chem. Soc. 2005, 127, 10869. [11c] C. T. Cohen, G. W. Coates, J. Polym. Sci. Part A: Polym. Chem. 2006, 44, 5182.
    [12] [12a] X. B. Lu, Y. Wang, Angew. Chem. Int. Ed. 2004, 43, 3574; [12b] X. B. Lu, L. Shi, R. Zhang, Y. J. Zhang, X. J. Peng, Z. C. Zhang, B. Li, J. Am. Chem. Soc. 2006, 128, 1664; [12c] L. Shi, X. B.Lu, R. Zhang, X. J. Peng, C. Q. Zhang, J. F. Li, X. M. Peng, Macromolecules 2006, 39, 5679; [12d] B. Li, G. P. Wu, W. M. Ren, Y. M. Wang, D. Y. Rao, X. B. Lu, J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 6102.
    [13] R. L. Paddock, S. T. Nguyen, Macromolecules 2005, 38, 6251.
    [14] K. Nakano, T. Kamada, K. Nozaki, Angew. Chem. Int. Ed. 2006, 45, 7274.
    [15] M. Cheng, E. B. Lobkovsky, G. W. Coates, J. Am. Chem. Soc. 1998, 120, 11018.
    [16] M. Amirnasr, K.J. Shenk, A. Gorji, R. Vafazadeh, Polyhedron 2001, 20, 695.
    [17] Y. Zhang, W. Ruan, X. Zhao, H. Wang, Z. Zho, Polyhedron 2003, 22, 1535.
    [18] A. Bottcher, T. Takeuchi, K.I. Hardcastle, T.J. Meade, H.B. Gray, Inorg. Chem. 1997, 36, 2498.
    [19] A.A. Khandar, B. Shaabani, F. belaj, A. Bakhtiari, Polyhedron 2006, 25, 1893.
    [20] A. A. Khandar, B. Shaabani, F. Belaj, A. Bakhtiari. Inorg. Chim. Acta 2007, 360, 3255.
    [21]Larow J F, Jacobsen E N, GaoY, etal. A Practical Process for the large-scale preparation of (R,R)-N,N’-Bis(3,5-di-tert-butyl-salicylidene)- 1,2-cyclohexane- diaminomanganese(III) chloride, a highly enantioselective epoxidation catalyst. J. org. Chem, 1994, 59,1939-1942.
    [22] Z. H. Tang, X. S. Chen, Y. K. Yang, X. Pang, J. R. Sun, X. F. Zhang, X. B. Jing, J. Polym. Sci. Part A: Polym. Chem. 2004, 42, 5974.
    [23] Z. H. Tang, X. S. Chen, X. Pang, Y. K. Yang, X. F. Zhang, X. B. Jing, Biomacromolecules 2004, 5, 965.
    [24] [24a] M. Tokunaga, J. F. Larrow, F. Kakiuchi, E. N. Jacobsen, Science 1997, 277, 936; [24b] S. E. Schaus, B. D. Brandes, J. F. Larrow, M. Tokunaga, K. B. Hansen, A. E. Gould, M. E. Furrow, E. N. Jacobsen, J. Am. Chem. Soc. 2002, 124, 1307; [24c] L. P. C. Nielsen, C. P. Stevenson, D. G. Blackmond, E. N. Jacobsen, J. Am. Chem. Soc. 2004, 126, 1360.
    [1] Darensbourg DJ, Mackiewicz RM, Phelps AL, Billodeaux DR. Acc. Chem. Res. 2004; 37:836–44.
    [2] Fukuoka S, Kawamura M, Komiya K, Tojo M, Hachiya H, Hasegawa K, Aminaka M, Okamoto H, Fukawa I, Konno S. Green Chem. 2003;5:497–507.
    [3] Beckman EJ. Science 1999;283:946–7.
    [4] Soga K, Imai E, Hattori I. Polymer J 1981;13:407–10.
    [5] (a) Inoue S, Koinuma H, Tsuruta T. J. Polym. Sci., Part B: Polym. Lett. 1969;7:287–92; (b) Inoue S, Koinuma H, Tsurata T. Makromol. Chem. 1969;130:210–20.
    [6] Darensbourg DJ, Phelps AL. Inorg. Chem. 2005;44:4622–9.
    [7] Darensbourg DJ, Yarbrough JC, Ortiz C, Fang CC. J. Am. Chem. Soc. 2003;125:7586–91.
    [8] Eberhardt R, Allmendinger M, Rieger B. Macromol. Rapid. Commun. 2003;24:194–6.
    [9] Cohen CT, Chu T, Coates GW. J. Am. Chem. Soc. 2005;127:10869–78.
    [10] Sugimoto H, Ohtsuka H, Inoue S. J. Polym. Sci., Part A: Polym. Chem. 2005;43:4172–86.
    [11] Qin Z, Thomas CM, Lee S, Coates GW. Angew. Chem. Int. Ed. 2003;42:5484–7.
    [12] Allen SD, Moore DR, Lobkovsky EB, Coates GW. J. Am. Chem. Soc. 2002;124:14284–5.
    [13] Paddock RL, Nguyen ST. Macromolecules 2005;38:6251–3.
    [14] Lu XB, Wang Y. Angew. Chem. Int. Ed. 2004;43:3574–7.
    [15] Lu XB, Lei S, Wang YM, Zhang R, Zhang YJ, Peng XJ, Zhang ZC, Li B. J. Am. Chem. Soc. 2006;128:1664–74.
    [16] Liu YF, Huang KL , Peng DM, Wu H. Polymer 2006;47:8453–61.
    [17] Koning C, Wilderson J, Parton R, Plum B, Steeman P, Darensbourg DJ. Polymer 2001;42:3995-4004.
    [18] Quan ZL, Wang XH, Zhao XJ, Wang FS. Polymer 2003;44:5605–10.
    [19] Chen S, Hua ZJ, Fang Z, Qi GR. Polymer 2004;45:6519–24.
    [20] OlivéGH, OlivéS. Angew. Chem. Int. Ed. 1971;10:105–15.
    [21] Li HC, Li JC, Zhang YT, Mu Y. J. Appl. Polym. Sci. 2008;109:3030–6.
    [22] Du HZ, Pang X, Yu HY, Zhuang XL, Chen XS, Cui DM, Wang XH, Jing XB. Macromolecules 2007;40:1904–13.
    [23] Zhong ZY, Dijkstra PJ, Feijen J. Angew. Chem. Int. Ed. 2002;41:4510–3.
    [24] Niu YS, Zhang WX, Pan X, Chen XS, Zhuang XL, Jing XB. J. Polym. Sci., Part A: Polym. Chem. 2007;45:5050–6.
    [25] M. Ree, J. Y. Bae, J. H. Jung, T. J. Shin, J. Polym. Sci. Part A: Polym. Chem. 1999, 37, 1863.
    [26] Y. H. Tao, X. H. Wang, X. S. Chen, X. J. Zhao, F. S. Wang, J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 4451.
    [27] Schaus SE, Brandes BD, Larrow JF, Tokunaga M, Hansen KB, Gould AE, Furrow ME, Jacobsen EN. J. Am. Chem. Soc. 2002;124:1307–15.
    [28] Jung JH, Ree M, Chang T. J Polym Sci, Part A: Polym Chem 1999;37:3329–36.
    [29] Meng YZ, Du LC, Tiong SC, Zhu Q, Hay AS J Polym Sci Part A: Polym Chem 2002;40:3579–91.
    [30] Baba, A.; Kashiwagi, H.; Matsuda, H., Reaction of Carbon Dioxide with Oxetane Catalyzed by Organotin Halide Complexes: Control of Reaction By Ligands, Organometallics,1987,6,137.
    [31] Kobayashi,M.;Tang,Y.-L.; T suruta,T.; Inoue,S., Copolymerization of Carbon Dioxide and Epoxide Using Diethylzinc/Dihydric Phenol System, Makromol. Chem., 1973, 169, 69.
    [32] Inoue, S.; Kobayashi, M.; Koinyma, H.; Tsuruta, T., Reactivities of Some Organozinc Initiators for Copolymerization Of Carbon Dioxide and Propylene Oxide, Makromol. Chem., 1972,155,61.
    [33] Tan, C.S.; Hsu, T.J. Aiternating Copolymerization of Carbon Dioxide and Propylene Oxide with a Rare-Earth-Metal Coordination Catalyst, Macromolecules 1997, 30, 3147-3150.
    [34] Darensbourg D.J., Mackiewicz R.M. Role of the Cocatalyst in the Copolymerization of CO2 and Cyclohexene Oxide Utilizing Chromium Salen Complexes. J. Am. Chem. Soc., 2005. 127(40):14026-14038.
    [35] [a]Cadena C., Anthony J.L., Shah J. K., Morrow T.1., Brennecke J.F., Maginn E.J. Why is CO2 so Soluble in Imidazolium-Based Ionic Liquids? J. Am. Chem: Soc., 2004, 126(16): 5300-5308.
    [36] Tang J.B,Tang H.D., Sun W.L., Plancher H., Radosz M., Shen Y.Q. Poly(ionic liquids: a New Materials with Enhanced and Fast CO2 Absorption. Chem. Commum., 2005, 5(26): 3325-3327.
    [37] Blanchard L.A., Hancu D., Beckman E. J. Green Processing Using Ionic Liquids and CO2 Nature, 1999, 399: 28-29
    [1] Aida T., Ishikawa M., Inoue S. Alterning Copolymerization of Carbon Dioxide and Epoxide Catalyzed by the Aluminum Porphyrin-Quternary Organic Salts or Triphenylphosphine System. Synthesis of Polycarbonate with Well-Controlled Molecular Weight. Macromolecules, 1986,19(1): 8-13.
    [2] Darensbourg D. J., Rodgers J. L., Fang, C. C. The Copolymerization of Carbon Dioxide and[2-(3,4-Epoxycyclohexyl)ethyl] Trimethoxysilane Catalyzed by (Salen)CrCI. Formation of a CO2 Soluble Polycarbonate. Inorg. Chem., 2003, 42(15): 4498-4500.
    [3] Darensbourg D. J., Mackiewicz R.M., Rodgers J. L., Phelps A.L. (Salen)CrIIIX Catalysts for the Copolymerization of Carbon Dioxide and Epoxides: Role of the Initiator and Catalyst. Inorg. Chem., 2004, 43(6): 1831-1833.
    [4] Paddock R.L., Nguyen S. Alternating Copolymerization of CO2 and Propylene Oxide Catalyzed by CoIII(salen)/Lewis Base. Macromolecules, 2005, 38(15): 6251-6253.
    [5] Eberhardt R., Allmendinger M., Rieger B. DMAP/Cr(III) Catalyst Ratio: The Decisive Factor for Poly(propylene carbonate) Formation in the Coupling of CO2 and Propylene Oxide. Macromol. Rapid Commun., 2003, 24(2): 194-196.
    [6] Qin Z Q , Thomas C M, Lee S , et al. Cobalt-based complexes for the copolymerization of propylene oxide and CO2: Active and selective catalysts for polycarbonate synthesis. Angew.Chem. Int. Ed.,2003,42:5487.
    [7] Lu X.B., Shi L,Wang YM., Zhang R., Zhang YJ., Peng X.J., Zhang Z.C., Li B. Design of Highly Active Binary Catalyst System for CO2/Epoxide Copolymerization: Polymer Selectivity, Enantioselectivity and Stereochemistry Control. J. Am.Chem. Soc., 2006, 128: 1664-1674.
    [8] Bonhote P.. Dias A. P., Papageorgiou N., Kalyanasundaram K., Gratzel M. Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts. Inorg Chem, 1996, 35(5): 1168-1178.
    [9] Chowdhury S., Mohan R.S., Scott J.L. Tetrahedron, 2007, 63: 2363-2368.
    [10] Darensbourg D.J., Mackiewicz R.M. Role of the Cocatalyst in the Copolymerization of C02 and Cyclohexene Oxide Utilizing Chromium Salen Complexes. J. Am. Chem. Soc., 2005. 127(40):14026-14038.
    [81] Darensbourg D.J., Mackiewicz R.M., Rodgers J.L., Fang C.C,Billodeaux D.R., Reibenspies J.H. Cyclohexene Oxide/CO2 Copolymerization Catalyzed by Chromium(III) Salen Complexes and N-Methylimidazole: Effects of Varying Salen Ligand Substituents and Relative Cocatalyst Loading. Inorg. Chem., 2004, 43: 6024-6034.
    [1] (a) Darensbourg DJ, Yarbrough JC. J Am Chem Soc 2002;124:6335–42. (b)Darensbourg DJ, Yarbrough JC, Ortiz C, Fang CC. J Am Chem Soc 2003;125:7586–91. (c)Darensbourg DJ, Mackiewicz RM, Phelps AL, Billodeaus DR. Acc Chem Res 2004;37:836–44. (d) Darensbourg DJ, Mackiewicz RM. J Am Chem Soc 2005;127:14026–38. (e) Darensbourg DJ. Chem Rev 2007;107:2388–410. (f) Darensbourg DJ, Holtcamp MW. Coord Chem Rev 1996;153:155–174. (g) Coates GW, Moore DR. Angew Chem Int Ed 2004;43:6618–39.
    [2] Eberhardt R, Allmendinger M, Rieger B. Macromol Rapid Commun 2003;24:194–6.
    [3] (a) Srivastava R, Srinivas D, Ratnasamy P Catal. Lett. 2003;91:133–139. (b) Srivastava R, Srinivas D, Ratnasamy P Catal. Lett. 2003;89:81–85. (c) Srivastava R, Srinivas D, Ratnasamy P Stud. Surf. Sci. Catal. 2004;154C:2703–2710. (d) Srivastava R, Srinivas D, Ratnasamy P J. Catal. 2005;233:1–15. (e) Srivastava R, Srinivas D, Ratnasamy P Microporous Mesoporous Mater 2006 ;90:314–326. (f) Srivastava R, Srinivas D, Ratnasamy P Appl. Catal. A: Gen. 2005;189:128–134. (g) Srivastava R, Srinivas D, Ratnasamy P Tetrahedron Letters 2006;47:4213–4217
    [4] (a) Inoue S, Koinuma H, Tsuruta T. Polym Sci, Part B: Polym Lett 1969;7:287–92. (b) Inoue S. Makromol Chem A 1979;13: 651–64. (c) Sugimoto H, Ohshima H, Inoue S. J Polym Sci, Part A: Polym Chem 2004;41:3549–55. (d) Sugimoto H, Inoue S. Pure Appl Chem 2006;78:1823–34.
    [5] Soga K, Imai E, Hattori I. Polymer J 1981;13:407–10.
    [6] (a) Darensbourg DJ, Holtcamp MW. Macromolecules 1995;28:7577–9. (b) Koning C, Wilderson J, Parton R, Plum B, Steeman P, Darensbourg DJ Polymer 2001;42:3995-4004.
    [7] Cheng M, Lobkovsky EB, Coates GW. J Am Chem Soc 1998;120:11018–9.
    [8] Kruper WJ, Dellar DV. J Org Chem 1995;60:725–7.
    [9](a) Mang SA, Cooper AI, Colclough ME, Chauhan N, Holmes AB. Macromolecules 2000;33:303–8. (b) Stamp LM, Mang SA, Holmes AB, Knights KA, de Miguel YR, McConvey IF. Chem Commun 2001;2502–3.
    [10] (a) Super MS, Beckman EJ. Trends Polym Sci 1997;5:236–40.(b) Super MS, Beckman EJ. Macromol Symp 1998;127:89–108.
    [11] Rokicki A, Kuran W. J Macromol Sci Rev Macromol Chem 1981;C21:135–86.
    [12] Xiao YL, Wang Z, Ding KL. Macromolecules 2006;39:128–37.
    [13] Quan ZL, Wang XH, Zhao XJ, Wang FS. Polymer 2003;44:5605–10.
    [14] Chen S, Hua ZJ, Fang Z, Qi GR. Polymer 2004;45:6519–24.
    [15] (a)Liu YF, Huang KL , Peng DM, Wu H. Polymer 2006;47:8453–61. (b) Lu LB, Huang KL J Polym Sci Part A: Polym Chem 2005;43:2468–75.
    [16] Schaus SE, Brandes BD, Larrow JF, Tokunaga M, Hansen KB, Gould AE, Furrow ME, Jacobsen EN. J Am Chem Soc 2002;124:1307–15.
    [17] Darensbourg DJ, Mackiewicz RM, Rodgers JL, Fang CC, Billodeaux DR, Reibenspies JH. Inorg Chem 2004;43:6024–34.
    [18] Martinez LE, Leighton JL, Carsten DH, Jacobsen EN. J Am Chem Soc 1995;117:5897–8.
    [19] Darensbourg DJ, Wildeson JR, Yarbrough JC, Reibenspies JH. J Am Chem Soc 2000;122:12487–96.
    [20] Lu XB, Wang Y. Angew Chem Int Ed 2004;43:3574–7.
    [21] Darensbourg DJ, Zimmer MS, Rainey P, Larkins DL. Inorg Chem 2000;39:1578–85.
    [22] Moore DR, Cheng M, Lobkovsky EB, Coates GW. J Am Chem Soc 2003;125: 11911–24.
    [23] Paddock RL, Nguyen ST. Macromolecules 2005;38:6251–3.
    [24] Malcolm HC, Diana NL, Zhou ZP. Macromolecules 2002;35:6494–504.
    [25] Niu YS, Zhang WX, Pan X, Chen XS, Zhuang XL, Jing XB. J Polym Sci, Part A: Polym Chem 2007;45:5050–6.
    [26] Kowalski A, Duda A, Penczek S. Macromolecules 2000;33: 689–95.
    [27] Jung JH, Ree M, Chang T. J Polym Sci, Part A: Polym Chem 1999;37:3329–36.
    [28] (a) Gao LJ, Xiao M, Wang SJ, Du FG, Meng YZ. J Appl Polym Sci 2007;104:15–20. (b) Meng YZ, Du LC, Tiong SC, Zhu Q, Hay AS J Polym Sci Part A: Polym Chem 2002;40:3579–91.
    [29] Lee YB, Choi JH. J Korean Ind Eng Chem 1996;7:813–22.
    [30] Zhu Q, Meng YZ, Tjong SC, Zhao XS, Chen YL. Polym Int 2002;51:1079–85.
    [31] Darensbourg D. J., Yarbrough J. C., "Mechanistic Aspects of the Copolymerization Reaction of Carbon Dioxide and Epoxides, Using a Chiral Salen Chromium Chloride Catalyst".Journal of the American Chemical Society 2002, 124, 6335.
    [32] Darensbourg D. J., Wildeson J. R., Lewis S. J., Yarbrough J. C., "Solution and Solid-State Structural Studies of Epoxide Adducts of Cadmium Phenoxides. ChemistryRelevant to Epoxide Activation for Ring-Opening Reactions".Journal of the American Chemical Society 2002, 124, 7075.
    [33] Darensbourg D. J., Wildeson J. R., Yarbrough J. C., "Solid-State Structures of Zinc(II) Benzoate Complexes. Catalyst Precursors for the Coupling of Carbon Dioxide and Epoxides".Inorganic Chemistry 2002, 41, 973.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700