用户名: 密码: 验证码:
球形杂原子介孔分子筛的制备、表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来介孔分子筛的研究热点包括开发新材料、新合成路线和新的应用方向等。与早期报道的M41S类介孔分子筛相比,SBA-15是一种由三嵌段高聚物(PEO-PPO-PEO)导向而成的有序度高、大孔径(2-30nm)、厚壁和具有较好水热稳定性的介孔材料,从被合成以来就逐渐成为介孔材料的一个重要分支。研制介孔SBA-15分子筛与沸石复合、或与大孔复合的多级孔分子筛,采用新合成路线制备具有新结构性能特点的杂原子改性SBA-15,研究SBA-15及改性SBA-15的应用,是目前关于介孔SBA-15分子筛的几个重要的研究方向。
     通常催化剂在实际应用前都被要求制成一定形状和粒径的颗粒,这是因为材料的形貌和粒径的改变会直接影响到材料的物化性能和实际应用。而在目前关于介孔分子筛研究的文献报道中,膜状和球状是最具有实用意义的两种形貌特征。有很多实例证明,球形颗粒由于其几何优越性,在各种形貌中比表面积最高,接触面积最大,因此开发介孔分子筛的球形材料对于提高SBA-15的功能性和实用性有重要的意义。
     本文选择球形的杂原子改性SBA-15分子筛作为主要的研究课题,论文内容有两个部分:首先,结合胶体化学、溶胶-凝胶化学、自组装化学、微相分离理论等知识,研究单一介孔的SBA-15微球的合成机理及影响因素,研究介孔SBA-15与大孔复合的多级孔二氧化硅球形单块材料的合成。考虑到一般分子筛样品呈粉体状态,必须经过后处理加工成型或者是模具辅助成型,而本文所得单一孔及多级孔分子筛,都是在合成过程中直接自组装成为球形。对纯硅介孔分子筛的形貌研究则是制备杂原子改性介孔分子筛微球的基础。
     与之前已经报道的各种非球形形貌的改性杂原子SBA-15不同,在本文第二部分中,采用一步法直接合成具有球形形貌的、高负载效率的改性杂原子SBA-15材料,包括合成一系列分别含铜、铝、锌、铁、锆等金属的杂原子介孔SBA-15微球,合成CuAlZn-SBA-15和Zr-SBA-15两种中空微球,微球大小都在10微米左右。深入探索了杂原子的引入与介孔分子筛形貌特征、结构组成和催化性能之间的关系,研究了介孔SBA-15微球、杂原子介孔SBA-15微球以及杂原子介孔SBA-15中空微球的形成机理和影响因素。
     具体研究结果如下:
     (1)关于介孔SBA-15微球的形成机理和影响因素,前人的研究结果并不一致,为了澄清这一问题,本文首先探讨了共表面活性剂、无机酸浓度、无机盐、温度和搅拌条件等因素对介孔SBA-15微球合成过程的影响。结果表明,合成体系的酸度、搅拌条件和静置处理温度对杂原子介孔微球的合成影响最为明显;而共表面活性剂和无机盐的引入对SBA-15微球的形成没有明显地影响;通过对这些影响因素的考察,结合扫描电镜对SBA-15微球形成的观察结果,SBA-15微球的形成可能是由表面活性剂球形胶团与初步水解的硅酸根离子共同生成的球形微晶为种子,与后来水解的硅酸根离子一起在球形胶团模板的诱导下倾向于团聚成球形的溶胶-凝胶球,在水热处理过程中,球体内部自组装得到介孔SBA-15结构。
     (2)本文以正硅酸丁酯为硅源、三嵌段共聚物P123和少量的OP-10为共模板剂合成了介孔-大孔的二氧化硅单块,宏观形貌为0.2-0.5毫米的大球,内部分布着尺寸达0.5微米的连续大孔孔道,孔壁是规整的SBA-15介孔结构,孔径为4-5纳米。通过对比实验证明,这种多级孔二氧化硅单块大球的形成,需要有带有长链烷基的硅源TBOS和小分子表面活性剂OP-10共同参与才能形成。这种内部含有多级孔结构的二氧化硅大球在大黄素分子的药物吸附试验中,与单一孔结构的SBA-15微球相比效果要好,要比后者更快地达到吸附平衡而且对大分子药物具有更大的吸附贮存容量。
     (3)本文提出了一种直接合成杂原子介孔SBA-15微球的制备方法,即向SBA-15微球的合成过程中引入杂原子,在水热晶化得到SBA-15初级微晶后,不分离反应体系用氨水调节体系的pH值,再继续水热合成,就直接得到了含杂原子的SBA-15微球。论文合成了多种杂原子SBA-15微球,分别包括Cu、Zn、Fe和Al等(这种杂原子SBA-15微球的制备方法已经申请专利)。以这种方法制备的含铜SBA-15微球为例,铜的引入效率和分散性高于传统合成法和浸渍法,在甲基橙氧化降解反应中的活性比后两种方法制备的催化剂要好,而且活性组分的流失也少。
     (4) CuAlZn-SBA-15中空微球和Zr-SBA-15中空微球是两种新型的杂原子SBA-15中空微球,尺寸约10微米,壳层厚度达数百纳米甚至1微米。以Zr-SBA-15为例,XRD、ICP、TEM-EDS、UV-vis DRS和FTIR等实验证明部分锆原子进入了骨架,部分锆原子以纳米氧化锆的形式分散在SBA-15的孔道中。用吡啶吸附原位红外来表征杂原子SBA-15中空微球的表面酸性,结果发现,无论是含铜铝锌的SBA-15中空微球,还是含锆的SBA-15中空微球,其表面都是以Lewis酸为主要的酸活性中心,结合NH3-TPD的结果说明这种杂原子SBA-15中空微球的表面上多存在弱酸和中强酸中心,适合于对酸性要求不高的有机反应。
     (5)杂原子SBA-15中空微球相对于未改性的纯硅SBA-15都表现出明显的酸催化活性:在常压300℃甲醇脱水的醚化反应当中,CuAlZn-SBA-15中空微球的甲醇转化率可以达到60%,二甲醚的选择性100%,Zr-SBA-15中空微球的甲醇转化率可以达到71%,二甲醚的选择性>90%;将Zr-SBA-15中空微球应用于环己酮与乙二醇的缩酮合成反应,反应活性与纯硅SBA-15相比也有了很大的改善,缩酮的产率可以达到69~84%。以Zr-SBA-15系列催化剂为例,研究表明催化活性与催化剂表面酸性和结构参数的变化有直接的关系,随着锆含量的增加,表面酸性增强,反应活性也增加,孔结构参数下降则抑制了反应的顺利进行。
During the past ten years, there are several hot focuses about the mesoporous materials such as functionalized hybrid materials and other new mesoporous molecular sieves, bioinspired method and other new synthesis routes, biological medicine and other new applications. Among these materials, SBA-15 is an important mesoporous material due to its regular porous structure (2-30nm) and high hydrothermal stability. It is very significant for the further development of SBA-15 to synthesize the hierarchical porous materials, prepare the modified-SBA-15 materials, and develop the new applications on separation, catalysis, etc.
     Generally the catalysts are manufactured with special morphology and metered diameter before practical application, because the morphology and diameter of materials can immediately affect the properties and practical applications. Membrane and sphere are two major forms in the previous reports. Spherical catalysts have been affirmed to be advantageous in some reactions owing to the highest surface area among the different shapes. Therefore, the development of spherical mesoporous materials can improve their functionality and practicability in the future.
     In this presentation, there are two major topics: one is spherical morphology control of mono-porous and hierarchical porous materials, and another is spherical morphology control of modified SBA-15 materials. The originalities of these works are the direct synthesis method. Mono-porous and meso-macroporous silica spheres are directly synthesized without help of special moulds and other post-treatments. Heteroatomic SBA-15 spheres or hollow spheres are also directly synthesized in“one pot”synthesis solution. The following is the detailed experimental results.
     (1) The key factors and formation mechanism of SBA-15 spheres were not affirmed before this paper. The experimental results suggested: temperature, stirring conditions are the key factors to the synthesis of SBA-15 spheres; co-surfactant, inorganic salts and other factors can not prevent the formation of SBA-15 microspheres, but can affect the perfectness of spherical products; the formation of spherical SBA-15 was dependent on the spherical conglomerations and the polymerizing growth between surfactant micelles and silicate anions.
     (2) The spherical meso-macroporous silica monoliths with diameter of 0.2-0.5 mm were prepared via a sol-gel method and phase separation mechanism, in which the tetrabutylorthosilicate (TBOS) was used as silicon source. The triblock copolymer (P123) and polyoxyethylene octylphenol ether (OP-10) were used as templates. The results showed that the inner structure had macroporous channels (0.5μm) and mesoporous SBA-15 skeleton (4-5nm). The spherical silica monoliths with meso-macroporous structure demonstrated higher absorption efficiency and capacity for Emodin molecules than the SBA-15 spheres with mono-porous structure.
     (3) A facile route to synthesize modified SBA-15 spheres was suggested. Typically, SBA-15 synthesis solution was prepared using block polymer globular aggregates as template and tetraethyl orthosilicate (TEOS) as silica source. The heteratoms were directly added to the solution, and then ammonia water was used to adjust pH to the special value. The solid samples were filtered, washed, dried and calcined after hydrothermal treatment. Until now, Cu, Zn, Al, Fe had separately introduced the mesoporous SBA-15 spheres with diameter about 10μm. The spherical heteroatomic SBA-15 materials and the corresponding synthesis methods had been applied to patent’s protection in China. Cu/SBA-15 microspheres via the same method displayed better performance in wet oxide degradation than the catalysts via traditional direct method and impregnation method.
     (4) CuAlZn-SBA-15 and Zr-SBA-15 hollow spheres were synthesized via the similar direct synthesis method, which showed that the hollow spheres were in ~10 microns diameter and the shell thickness was about 100 nanometers. The metal ammine complexes during the sol-gel process became the key factor in the formation of hollow spheres and dispersion of heteroatoms. The analysis results confirmed that the heteroatoms had been well embedded inside the siliceous matrix and partial nanocrystals appear inside of the pore channels, which can be used to explain the phenomenon that the surface area and orderliness of mesoporous catalysts decrease with the zirconium content. The analysis by in situ pyridine-absorption FI-IR spectra and NH3-TPD curves proved the weak and mid-strong Lewis acidity on the catalysts surface due to the introduction of heteroatoms.
     (5) The experimental results confirmed that incorporation of metal atoms into the mesoporous structure would supply the siliceous matrix with the new distinct catalytic activity. When the methanol dehydration was used as probe reaction, there was about 60% methanol converted to dimethyl ether while selectivity was 100% on the CuAlZn-SBA-15 hollow spheres. And the methanol conversion was increased to 71% and selectivity of dimethyl ether was >90% on Zr-SBA-15. When the dehydration of cyclohexanone and ethanediol was used as probe reaction, the ketal yield on Zr-SBA-15 hollow spheres were from 69% up to 84%. In comparison, the ketal yield was just about 10% with Si-SBA-15. The reaction performance will increase with the metal content, but the porous properties will be compromised with the increase of metal loading, which was not conducive to the methanol conversion.
引文
[1].徐如人,庞文琴,屠昆岗.沸石分子筛的结构与合成[M].吉林大学出版社, 1987.
    [2]. IUPAC Manual of Symbols and Terminology [M], Pure Appl.Chem, 1972.
    [3]. Kresge C.T, Leonowocz M E, Roth W J, etc. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature. 1992, 359: 710-712.
    [4]. Beck J S,Vartuli J C,Roth W J etc.A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J Am Chem.Soc.,1992,114: 10834-10843.
    [5]. Beck J S, Vartuli J C. Recent advances in the synthesis, characterization and applications of mesoporous molecular sieves [J]. Curr. Opin. Solid State Mater. Sci.,1996,1: 76-87.
    [6]. Corma, A. From microporous to mesoporous molecular sieve materials and their use in catalysis [J]. Chem.Rev., 1997, 97: 2373-2420.
    [7]. Schuth F. Non-siliceous mesostructured and mesoporous materials [J]. Chem. Mater., 2001, 13: 3184-3195.
    [8]. Ying J, Mehnert C, Wong M. Synthesis and applications of supramolecular-templated mesoporous materials [J]. Angew.Chem.Int.Ed., 1999, 38: 56-77.
    [9]. Yiu H, Botting C, Botting N P, etc. Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve [J]. Phys.Chem.Chem.Phys., 2001, 3: 2983-2985.
    [10]. Davis M. E., Lobo R. F. Zeolite and molecular sieve synthesis [J]. Chem. Mater., 1992, 4: 756-768.
    [11]. Ozin G. A. Nanochemistry: synthesis in diminishing dimensions [J]. Adv. Mater., 1992, 10: 612-649.
    [12]. Mitchell P. C. H. Zeolite-Encapsulated Metal Complexes: Biomimetic Catalysts [J]. Chem. Ind., 1991, 308-310.
    [13]. Vartuli J C, Schmitt K D, Kresge C T, etc. Effect of surfactant/silica molar ratios on the formation of mesoporous molecular sieves: inorganic mimicry of surfactant liquid-crystal phases and mechanistic implications [J]. Chem. Mater., 1994, 6: 2317-2326.
    [14]. Ryoo R, Kim J M. Structural order in MCM-41 controlled by shifting silicate polymerization equilibrium [J]. Chem. Commun., 1995, 711-712.
    [15]. Chen X, Ding G, Chen H, etc. Effect of synthesis temperature on structural transformations of mesoporous molecular sieves M41S materials-characterization of different structural materials [J]. Chem. J of Chinese Univ., 1997, 18(4): 519-524.
    [16]. Chen X, Ding G, Chen H, etc. Effect of crystallization temperature on structural transformations of mesoporous molecular sieves M41S materials [J]. Chem. J of Chinese Univ., 1997, 18(2): 186-189.
    [17]. Ryoo R, Jun S. Improvement of hydrothermal stability of MCM-41 using salt effects during the crystallization process [J]. J Phys. Chem. B, 1997, 101: 317-320.
    [18]. Monnier A, Schuth F, Huo Q, etc. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures [J], Science, 1993, 261: 1299-1303.
    [19]. Schmidt R, Akporiaye D, Stocker M, etc. Synthesis of Al-containing MCM-41 materials: template interaction and removal [J]. Stud. Surf. Sci. Catal., 1994, 84: 61-68.
    [20]. Reddy K M, Song C. Effect of Al sources on the synthesis and acidic characteristics of mesoporous aluminosilicates of MCM-41 type [J]. Stud. Surf. Sci. Catal., 1998, 117: 291-299.
    [21]. Ryoo R, Joo SH, Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J]. J Phys. Chem. B, 1999, 103: 7743-7746.
    [22]. Jun S, Joo SH, Ryoo R, etc. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J]. J Am Chem. Soc., 2000, 122: 10712-10713.
    [23]. Kleitz F, Choi S H, Ryoo R. Cubic Ia3d large mesoporous silica: synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes [J]. Chem. Commun., 2003, 2136-2137.
    [24]. Lee J S, Joo S H, Ryoo R. Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore sizes [J]. J Am Chem. Soc., 2002, 124: 1156-1157.
    [25]. Li F, Wang Z, Ergang N S, etc. Controlling the shape and alignment of mesopores by confinement in colloidal crystals: designer pathways to silica monoliths with hierarchical porosity [J]. Langmiur 2007, 23: 3996-4004.
    [26]. Li F, Wang Z, Ergang N S, etc. Shaping mesoporous silica nanoparticles by disassembly of hierarchically porous structures [J]. Angew.Chem.Int.Ed., 2007, 46:1885-1888.
    [27]. Li F, Wang Z, Delo S A, etc. Disassembly and self-reassembly in periodic nanostructures: a face-centered-to-simple-cubic transformation [J]. Angew.Chem.Int.Ed., 2007, 46: 6666-6669.
    [28]. Wang Z, Li F, Stein A. Direct synthesis of shaped carbon nanoparticles with ordered cubic mesostructure [J]. Nano Lett., 2007, 7: 3223-3226.
    [29]. Wang Z, Stein A. Direct triblock-copolymer-templating synthesis of highly ordered fluorinated mesoporous carbon [J]. Chem.Mater., 2008, 20 (3): 1012–1018.
    [30]. Sibottier E, Sayen S, Gaboriaud F, etc. Factors affecting the preparation and properties of electrodeposited silica thin films functionalized with amine or thiol groups [J]. Langmiur 2006, 22: 8366-8373.
    [31]. Tian B, Liu X, Tu B, etc. Self-adjusted synthesis of ordered stable mesoporous minerals by acid-basepairs [J]. Nature materials. 2003, 2: 159-163.
    [32]. Chem S Y, Tang C Y, Chuang W T, etc. A facile route to synthesizing functionalized mesoporous SBA-15 materials with platelet morphology and short mesochannels [J]. Chem. Mater., 2008, 20 (12): 3906–3916.
    [33]. Qiao S Z, Yu C Z, Hu Q H, etc. Control of ordered structure and morphology of large-pore periodic mesoporous organosilicas by inorganic salt [J]. Micropor. Mesopor. Mater., 2006, 91: 59-69.
    [34]. Kim D J, Chung J S, Ahn W S, etc. Morphology control of organic–Inorganic hybrid mesoporous silica by microwave heating [J]. Chem. Lett., 2004, 33(4): 422-423.
    [35]. Qiao S Z, Wang L Z, Hu Q H, etc. Synthesis of highly ordered large-pore periodic mesoporous organosilica rods [J]. Solid State Phenomena., 2007, 381-384.
    [36]. Mark E. Davis. Ordered porous materials for emerging applications [J]. Nature, 2002, 417: 813-821.
    [37]. Orlin D. Velev, Abraham M. Lenhoff. Colloidal crystals as templates for porous materials [J]. Curr. Opin. Solid State Mater. Sci., 2000, 5: 56-63.
    [38]. Adonay R. Loiola, Lindomar R. D. da Silva, Pablo Cubillas, etc. Synthesis and characterization of hierarchical porous materials incorporating a cubic mesoporous phase [J]. J Mater. Chem., 2008, 18: 4985 -4993.
    [39]. Wu J, Li X, Du W, etc. Formation of macroporous gel morphology by phase separation in the silica sol-gel system containing nonionic surfactant [J]. J.Univer. Sci. Technol. Beijing, 2005, 12: 564-571.
    [40]. Sel O, Kuang D, Thommes M, etc. Principles of hierarchical meso- and macropore architectures by liquid crystalline and polymer colloid templating [J]. Langmiur 2006, 22: 2311-2322.
    [41]. Luo Q, Li L, Xue Z, etc. Synthesis of nanometer-sized mesoporous oxides [J]. Stud. Surf. Sci. Catal., 2000, 129: 37-41.
    [42]. Huo Q, Feng, J, Schüth F, etc. Preparation of hard mesoporous silica spheres [J]. Chem.Mater.,1997, 9: 14-17.
    [43]. Yu C, Tian B, Fan, J, etc. Synthesis of siliceous hollow spheres with uitra large mesopore wall structures by reverse emulsion templating [J]. Chem.Lett., 2002, 62-63.
    [44]. Yu C, Tian B, Fan J, etc. Salt effect in the synthesis of mesoporous silica templated by non-ionic block copolymers [J]. Chem.Commun., 2001, 2726-2727.
    [45]. Lu Y, Fan H, Stump A, etc. Aerosol-assisted self-assembly of mesostructured spherical nanoparticles [J]. Nature,1999, 398: 223-226.
    [46]. Brinker C J, Lu Y, Sellinger A, etc. Evaporation-induced self-assembly: nanostructures made easy [J]. Adv.Mater., 1999, 11: 579-585.
    [47]. Zhao D Y,Feng J L,Huo Q, etc.Triblock copolymer synthesis of mesoporous silica with periodic 50 to 300 anstrom pores [J]. Science, 1998, 279: 548-552.
    [48]. Wang L,Qi T,Zhang Y,etc. Morphosynthesis route to large-pore SBA-15 microspheres [J]. Micropor. Mesopor. Mater., 2006, 91: 156-160.
    [49].吴平易,季生福,胡林华等.介孔分子筛孔中过渡金属的组装及其催化应用[J].化学进展2007, 19(4): 437-443.
    [50].吴正颖,魏一伦,王一萌等.水热法直接合成介孔功能新材料[J].科学通报, 2004, 10: 942-947.
    [51]. Zhang Y, Gao F, Wan H, etc. Synthesis, characterization of bimetallic Ce-Fe-SBA-15 and its catalytic performance in the phenol hydroxylation [J]. Micropor. Mesopor. Mater., 2008, 113: 393-401.
    [52]. Chen X R, Ju Y H, Mou C Y. Direct synthesis of mesoporous sulfated silica-zirconia catalysts with high catalytic activity for biodiesel via esterification [J]. J. Phys. Chem. C, 2007, 111: 18731-18737.
    [53]. Yue Y, Gédéon A, Bonardet J L, etc. Direct synthesis of AlSBA mesoporous molecular sieves: characterization and catalytic activities [J]. Chem. Commun., 1999, 1967-1968.
    [54].郑岩,李军平,赵宁等.一步法合成A1SBA-15-SO3有机无机杂化固体酸及其催化邻苯二甲酸配甲酷化反应的研究[J].精细化工, 2006, 23(10): 972-975.
    [55].陈杨英,韩秀文,包信和. W-SBA-15介孔分子筛的直接合成及其对环己烯环氧化反应的催化性能[J].催化学报, 2005, 26(5): 412-416.
    [56]. Wang X, Zhang Q, Guo Q, etc. Iron-catalysed propylene epoxidation by nitrous oxide: dramatic shift of allylic oxidation to epoxidation by the modification with alkali metal salts [J]. Chem. Commun., 2004, 1396-1397.
    [57].朱金华,徐华龙,赵东元等.水热一步法合成Ti-SBA-15分子筛及其催化性能研究[J].化学学报2003, 61(2): 202-207.
    [58]. Markowitz M A, Jayasundera S, Miller J B, etc. Effect of added metal chelating organosilane on mesoporous titanosilicate formation properties [J]. Dalton Trans., 2003, 3398-3403.
    [59]. Wang L, Kong A, Chen B, etc. Direct synthesis, characterization of Cu-SBA-15 and its high catalytic activity in hydroxylation of phenol by H2O2 [J]. J. Mol. Catal. A: Chem., 2005, 230: 143-150.
    [60]. Wang X Q, Ge H L, Jin H X, etc. Influence of Fe on the thermal stability and catalysis of SBA-15 mesoporous molecular sieves [J]. Micropor. Mesopor. Mater., 2005, 86: 335-340.
    [61]. Peng C, Zhang H, Meng Q, etc. Synthesis and luminescence properties of SBA-15 functionalized with covalently bonded ternary europium complex [J]. Inorganic Chem. Commun., 2005, 8: 440-443.
    [62]. Shah P, Ramaswamy A V, Lazar K, etc. Direct hydrothermal synthesis of mesoporous Sn-SBA-15 materials under weak acidic conditions [J]. Micropor. Mesopor. Mater., 2007, 100: 210-226.
    [63]. Shah P., Ramaswamy V. Thermal stability of mesoporous SBA-15 and Sn-SBA-15 molecular sieves: an in situ HT-XRD study [J]. Micropor. Mesopor. Mater., 2008, 114: 270-280.
    [64]. Selvaraj M, Kawi S. Direct synthesis of mesoporous CrSBA-15 catalyst and its high activity and selectivity for oxidation of anthracene [J]. Micropor. Mesopor. Mater., 2007, 101: 240-249.
    [65]. Van Grieken R, Escolaa J M, Morenoa J, etc. Direct synthesis of mesoporous M-SBA-15 (M = Al, Fe, B, Cr) and application to 1-hexene oligomerization [J]. Chemical Engineering Journal, 2009, 155: 442-450.
    [66]. Selvaraj M, Kawi S , Park DW, etc. Synthesis and characterization of GaSBA-15: Effects of synthesis parameters and hydrothermal stability [J]. Micropor. Mesopor. Mater., 2009, 117: 586-595.
    [67]. Li Y, Feng Z, Lian Y, etc. Direct synthesis of highly ordered Fe-SBA-15 mesoporous materials under weak acidic conditions [J]. Micropor. Mesopor. Mater., 2005, 84: 41-49.
    [68]. Wang X Q, Wang M, Jin H X, etc. Preparation of carbon nanotubes at the surface of Fe/SBA-15 mesoporous molecular sieve [J]. Applied Surf. Sci ., 2005, 243: 151-157.
    [69]. Lou Z, Wang R, Sun H, etc. Direct synthesis of highly ordered Co-SBA-15 mesoporous materials by the pH-adjusting approach [J]. Micropor. Mesopor. Mater. 2008, 110: 347-354.
    [70]. Xia F, Qu E, Wang L, etc. Photocatalytic degradation of dyes over cobalt doped mesoporous SBA-15 under sunlight [J]. Dyes and Pigments, 2008, 76: 76-81.
    [71]. Li F, Yu F. Zhou M, etc. Direct synthesis of Zr-SBA-15 mesoporous molecular sieves with high zirconium loading: Characterization and catalytic performance after sulfated[J]. Micropor. Mesopor. Mater., 2007, 101: 250-255.
    [72]. Han Y, Meng X, Guan H, etc. Stable iron-incorporated mesoporous silica materials (MFS-9) prepared in strong acidic media [J]. Micropor. Mesopor. Mater., 2003, 57: 191-198.
    [73].聂聪,孔令东,李全芝.后铝化的Al-SBA-15稳定性研究[J].复旦学报, 2002, 41(4): 444-449.
    [74]. Park Y, Kang T, Lee J, etc. Single-step preparation of Ni catalysts supported on mesoporous silicas (SBA-15 and SBA-16) and the effect of pore structure on the selective hydrodechlorination of 1,1,2-trichloroethane to VCM [J]. Catal. Today, 2004, 97: 195-203.
    [75]. Khodakov A Y, Zholobenko V L, Bechara R, etc. Impact of aqueous impregnation on the long-range ordering and mesoporous structure of cobalt containing MCM-41 and SBA-15 materials [J]. Micropor. Mesopor. Mater., 2005, 79: 29-39.
    [76]. Byambajav E, Ohtsuka Y. Hydrocracking of asphaltene with metal catalysts supported on SBA-15 [J]. Applied Catal. A: Gen., 2003, 252: 193-204.
    [77]. Hua W, Yue Y, Gao Zi. Acidity enhancement of SBA mesoporous molecular sieve by modification with SO42?/ZrO2 [J]. J. Mol. Catal A: Chem., 2001, 170: 195-202.
    [78]. Chmielarz L, Kus′trowski P, Dziembaj R, etc. Catalytic performance of various mesoporous silicas modified with copper or iron oxides introduced by different ways in the selective reduction of NO by ammonia [J]. Applied Catal. B: Environ., 2006, 62: 369-380.
    [79]. Yang S, Zhu W, Zhang Q, etc. Iron-catalyzed propylene epoxidation by nitrous oxide: Effect of boron on structure and catalytic behavior of alkali metal ion-modified FeOx / SBA-15 [J]. J. Catal., 2008, 254: 251-262.
    [80]. Luan Z, Bae J Y, Kevan L. Vanadosilicate mesoporous SBA-15 molecular sieves incorporated with N-Alkylphenothiazines [J]. Chem. Mater., 2000, 12: 3202-3207.
    [81]. Luan Z, Maes E M, Van der Heide P A W, Zhao D, etc. Incorporation of Titanium into mesoporous silica molecular sieve SBA-15 [J]. Chem. Mater., 1999, 11: 3680-3686.
    [82]. Bachari K, Cherifi O. Study of the benzylation of benzene and other aromatics by benzyl chloride over transition metal chloride supported mesoporous SBA-15 catalysts [J]. J. Mol. Catal. A: Chem., 2006, 260: 19-23.
    [83]. Martínez A, López C, Márquez F, etc. Fischer–Tropsch synthesis of hydrocarbons over mesoporous Co/SBA-15 catalysts: the influence of metal loading, cobalt precursor, and promoters [J]. J. Catal., 2003, 220: 486-499.
    [84]. Wang X, Landau M V, Rotter H, etc. TiO2 and ZrO2 crystals in SBA-15 silica: performance of Pt/TiO2(ZrO2)/SBA-15 catalysts in ethyl acetate combustion [J]. J. Catal., 2004, 222: 565-571.
    [85]. Go′mez-Reynoso R, Ram?′rez J, Nares Rube′n, etc. Characterization and catalytic activity of Ni/SBA-15, synthesized by deposition–precipitation [J]. Catal. Today, 2005, 926–932.
    [86]. Xu X, Li J, Hao Z, etc. Characterization and catalytic performance of Co/SBA-15 supported gold catalysts for CO oxidation [J]. Mater. Resear. Bull., 2006, 41: 406-413.
    [87]. Segura Y, Chmielarz L, Kustrowski P, etc. Characterisation and reactivity of vanadia–titaniasupported SBA-15 in the SCR of NO with ammonia [J]. Applied Catal. B: Environ., 2005, 61: 69-78.
    [88]. Meynen V, Segura Y, Mertens M, etc. Diffusion effects in SBA-15 and its plugged analogous by a deposition of metal-acetylacetonate complexes [J]. Micropor. Mesopor. Mater., 2005, 85: 119-128.
    [89]. Sumiya S, Oumi Y, Uozumi T, etc. Characterization of AlSBA-15 prepared by post-synthesis alumination with trimethylaluminium [J]. J. Mater. Chem., 2001, 11: 1111–1115.
    [90]. Li L, Shi J L, Yan J N, etc. Mesoporous SBA-15 material functionalized with ferrocene group and its use as heterogeneous catalyst for benzene hydroxylation [J]. Applied Catal A: Gen., 2004, 263: 213-217.
    [91].吴淑杰,黄家辉,吴通好等. Al-SBA-15介孔分子筛的合成、表征及其在苯酚叔丁基化反应中的催化性能[J].催化学报,2006,27(1): 9-14.
    [92]. Gutie′rrez O Y, Fuentes G A, Salcedo C, etc. SBA-15 supports modified by Ti and Zr grafting for NiMo hydrodesulfurization catalysts [J]. Catal. Today, 2006, 116: 485-497.
    [93]. Zhang H, Xiang S, Li C. Enantioselective epoxidation of unfunctionalised olefins catalyzed by Mn(salen) complexes immobilized in porous materials via phenyl sulfonic group [J]. Chem. Commun., 2005, 1209-1211.
    [94]. Zhang H, Xiang S, Xiao J, etc. Heterogeneous enantioselective epoxidation catalyzed by Mn(salen) complexes grafted onto mesoporous materials by phenoxy group [J]. J. Mol. Catal A: Chem. 2005, 238: 175-184.
    [95]. Kang T, Park Y, Choi K, etc. Ordered mesoporous silica (SBA-15) derivatized withimidazole-containing functionalities as a selective adsorbent of precious metal ions [J]. J. Mater. Chem., 2004, 14:1043-1049.
    [96]. Yang C, Kalwei M, Schüth F, etc. Gold nanoparticles in SBA-15 showing catalytic activity in CO oxidation [J]. Applied Catal. A: Gen., 2003, 254: 289-296.
    [97]. Chao K J, Cheng M H, Ho Y F, etc. Preparation and characterization of highly dispersed gold nanoparticles within channels of mesoporous silica [J]. Catal. Today, 2004, 97: 49-53.
    [98]. Liu P H, Chang Y P, Phan T H, etc. The morphology and size of nanostructured Au in Au/SBA-15 affected by preparation conditions [J]. Mater. Sci. Engi.: C, 2006, 26: 1017-1022.
    [99]. Xi J, Qiu X, Ma X, etc. Composite polymer electrolyte doped with mesoporous silica SBA-15 for lithium polymer battery [J]. Solid State Ionics, 2005, 176: 1249-1260.
    [100].魏一伦,曹毅,朱建华. MgO/SBA-15固体碱介孔材料的研制[J].无机化学学报, 2003, 19:233-239.
    [101].王文祥,张元珍,胡平,王东民. HA310Q型氨合成球形催化剂的开发、应用及性能[J].化肥工业, 1997, 3: 15-16.
    [102].张全, HA2Q型球形氨催化剂化φ1米氨塔的应用[J].氮肥设计, 1996, 3: 45-48.
    [103].马德福,马祥,刘静等.一种从废旧塑料中提取汽柴油的催化剂[P].中国专利: CN1266878, 2000.
    [104].石金娥,闫吉昌,王悦宏等.不同形貌TiO2的水热合成及对苯酚的降解研究[J].高等学校化学学报, 2006, 27(8): 1513-1517.
    [105].衡秋丽,肖峰,骆建敏等.纳米CuO:不同形貌的制备及对高氯酸铵热分解催化性能[J].无机化学学报, 2009, 25(2): 359-363.
    [106]. Kónya Z, Zhu J, Szegedi A, etc. Synthesis and characterization of hyperbranched mesoporous silica [J]. Chem. Commu., 2003, 314-315.
    [107]. Dong A G, Wang Y J, Wang D J, et a1. Fabrication of hollow zeolite microcapsules with tailored shapes and functionalized interiors [J]. Micropor. Mesopor. Mater., 2003, 64: 69-81.
    [108]. Wang D G, Zhang Y H, Dong A G, et a1. Conversion of fly ash cenosphere to hollow micro-spheres with zeolite/mullite composite shells [J]. Adv. Funct. Mater., 2003, 13(7): 563-567.
    [109]. Crotts G, Park T G. Preparation of porous and nonporous biodegradable polymeric hollow microspheres [J]. J Controlled Release, 1995, 35: 91-105.
    [110]. Ren T Z, Yuan Z Y, Su B L. Surfactant-assisted preparation of hollow microspheres of mesoporous TiO2 [J]. Chem. Phys. Lett., 2003, 374: 170-175.
    [111]. Kato T, Ushijima H, Katsumata M. Fabrication of hollow alumina microspheres via core/shell structure of polymethylmethacrylate/alumina prepared by mechanofusion [J]. J Mater. Sci., 2002, 37: 2317-2321.
    [112]. Jiang Y J, Zhao J Z, Bala H, et a1. Synthesis of stable hollow spheres of Si/Al composite oxide with controlled pore size in the shell wall [J]. Mater. Lett., 2004, 58: 2401-2405.
    [113]. Sun X M, Li Y D. Ga, Os and GaN semiconductor hollow spheres [J]. Angew. Chem. Int. Ed., 2004, 43: 3827-3831.
    [114].张海涛,房鼎业.合成气直接合成二甲醚研究进展[J].化工进展, 2002, 21(2): 97-102.
    [115].谭绮生.赵霞.复合催化剂中H-ZSM-5酸性对合成气制二甲醚的影响[J].分子催化, 1999, 13(4): 246-252.
    [116].葛庆杰,黄友梅.合成气直接制取二甲醚的双功能催化剂:I1.脱水组分对催剂影响性能的研究[J].天然气化工, 1996, 21(6): 16-19.
    [117].葛庆杰,黄友梅.合成气直接制取二甲醚的双功能催化剂:1.制备方法的研究[J].天然气化工, 1996, 21(5): 19-22.
    [118].葛庆杰,黄友梅.合成气直接制二甲醚双功能催化剂助剂的研究[J].分子催化, 1998, 12(4): 308-311.
    [119]. Liu J Y, Shi J L, He D H, etc. Surface active structure of ultra-fine Cu/ZrO2 catalysts used for the CO2+H2 to methanol reaction [J]. Appi.Catal.A:Gen., 2001, 218: 113-119.
    [120].高志华,黄伟,郝利峰等.浆态床用CuO/ZrO2催化剂的完全液相法合成及其对CO加氢的催化性能[J].催化学报, 2006, 27(1): 86-90.
    [121].赵宁,陈小平,任杰等.浆态床合成二甲醚的研究[J].天然气化工, 2001, 26: 9-12.
    [1]. Zhao D Y, Feng J L, Huo Q S, etc. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279: 548-552.
    [2]. Zhao D Y, Sun J Y, Li Q Z, etc. Morphological control of highly ordered mesoporous silica SBA-15[J]. Chem. Mater., 2000, 12: 275-279.
    [3].高峰,赵建伟,水松等.介孔分子筛SBA-15作为液相色谱固定相以及在巯基化合物分离中的应用[J].高等学校化学学报, 2002, 8(23): 1494-1497.
    [4]. Tian R, Sun J, Zhang H, etc. Large-pore mesoporous SBA-15 silica particles with submicrometer size as stationary phases for high-speed CEC separation [J]. Electrophoresis, 2006, 27(4): 742-748.
    [5].马玉荣,齐利民,马季铭等.嵌段共聚物与阳离子表面活性剂混合模板合成介孔SiO2 [J].化学学报, 2003, 61(10): 1675-1678.
    [6].于善青,赵瑞玉,刘晨光.强酸性介质中用三嵌段共聚物模板合成介孔硅基分子筛:I.样品的表征及共溶剂、共表面活性剂对样品颗粒外貌的影响[J].石油学报(石油加工) , 2004, 20(4): 79-83.
    [7]. Wang L, Qi T, Zhang Y, etc. Morphosynthesis route to large-pore SBA-15 microspheres [J]. Micropor. Mesopor. Mater., 2006, 91: 156-160.
    [8]. Jin Z, Wang X, Cui X. Synthesis and morphological investigation of ordered SBA-15-type mesoporous silica with an amphiphilic triblock copolymer template under various conditions [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2007, 316: 27-36.
    [9]. Wang Y, Zhang F, Wang Y, etc. Synthesis of length controllable mesoporous SBA-15 rods [J]. Mater. Chem. Phys., 2009, 115: 649-655.
    [10]. Couderc S, Li Y, Bloor D M, etc. Interaction between the Nonionic Surfactant Hexaethylene Glycol Mono-n-dodecyl Ether (C12EO6) and the Surface Active Nonionic ABA Block Copolymer Pluronic F127 (EO97PO69EO97)Formation of Mixed Micelles Studied Using Isothermal Titration Calorimetry and Differential Scanning Calorimetry [J]. Langmuir 2001, 17: 4818-4824.
    [11].郑修成,袁程远,赵文平等.介孔分子筛SBA-15的合成与表征[J].郑州大学学报(理学版), 2008, 40(1): 101-106.
    [12]. Fan J, Lei J, Wang L, etc. Rapid and high-capacity immobilization of enzymes based on mesoporoussilicas with controlled morphologies [J]. Chem. Commun., 2003, 3: 2140-2141.
    [13]. Lei J, Fan J, Yu C, etc. Immobilization of enzymes in mesoporous materials: controlling the entrance to nanospace [J]. Micropor. Mesopor. Mater., 2004, 73: 121-128.
    [14].余承忠,范杰,赵东元.利用嵌段共聚物及无机盐合成高质量的立方相、大孔径介孔氧化硅球[J].化学学报, 2002, 60(8): 1357-1360.
    [15].周丽绘,张利中,李鸿宁等.不同晶化温度对介孔SBA-15形貌和结构的影响[J].电子显微学报, 2005, 24 (4), 360-361.
    [16].周丽绘,张利中,刘洪来.晶化温度对介孔材料SBA-15结构与形貌的影响[J].过程工程学报, 2006, 6 (3): 499-502.
    [17]. Walsh D, Mann S. Fabrication of hollow porous shells of calcium carbonate from self-organizing media [J]. Nature, 1995, 377: 320-323.
    [18]. Monnier A, Schuith F, Huo Q, et al. Cooperative Formation of Inorganic-Organic Interfaces in the Synthesis of Silicate Mesostructures [J]. Science,1993, 261: 1299-1303.
    [19]. Almgren M, Brown W, Hvidt S. Self-aggregation and phase behavior of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers in aqueous solution [J]. Colloid Polym. Sci., 1995, 273: 2-15.
    [20]. Linton P, Hernandez-Garrido J-C, Midgley P A, et al. Morphology of SBA-15-directed by association processes and surface energies [J]. Phy Chem Chem Phy, 2009, 11: 10973–10982.
    [21]. Kao C P, Lin H P, Mou C Y. Synthesis of Elastic Centimeter-sized Spheres of Silica-Surfactant Mesoporous Structures [J]. J.Phys.Chem.Solids. 2001, 62: 1555-1559.
    [1]. Xue C, Tu B, Zhao D. Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic organic self-assembly[J]. Nano Research, 2009, (2): 242-253.
    [2]. Yang H, Lu Q, Gao F, etc. One-step synthesis of highly ordered mesoporous silica monoliths with metal oxide nanocrystals in their channels[J]. Adv. Funct. Mater., 2005,15: 1377-1384.
    [3]. Xue C, Tu B, Zhao D. Evaporation-induced coating and self-assembly of ordered mesoporous carbon-silica composite monoliths with macroporous architecture on polyurethane foams[J]. Adv. Func. Mater., 2008, 18(24): 3914-3921.
    [4]. Yang H, Shi Q, Tian B, etc. A Fast way for preparing crack-free mesostructured silica monolith[J]. Chem. Mater., 2003, 15: 536-541.
    [5]. Kim Y S, Guo X F, Kim G J. Asymmetric ring opening reaction of catalyst immobilized on silica monolith with bimodal meso/macroscopic pore structure[J]. Top Catal., 2009, 52: 197-204.
    [6]. Zhong H, Zhua G, Wang P, etc. Direct synthesis of hierarchical monolithic silica for high performance liquid chromatography[J]. J. Chromo. A, 2008,1190: 232-240.
    [7].张萍,刘云凌,白妮等.具有高比表面的介孔微球的合成与表征[J].高等学校化学学报,2002,23(8): 1466-1469.
    [8]. Kao C P, Lin H P, Mou C Y. Synthesis of elastic macrospheres of silica–surfactant nanocomposites [J]. J Phys. Chem. Solids, 2001, 62: 1555-1559.
    [9]. Huo Q, Feng, J, Schüth F, etc. Preparation of hard mesoporous silica spheres[J]. Chem.Mater.,1997, 9: 14-17.
    [10]. Nakanishi K. Porous Gels Made by Phase Separation: Recent Progress and Future Directions[J]. J.Sol-Gel.Sci.Technol., 2000,19(1-3): 65-70.
    [11]. Kato M, Sakai-Kato K, Toyooka T. Silica sol-gel monolithic materials and their use in a variety of applications[J]. J.Sep Sci., 2005, 28(15): 1893-1908.
    [12]. Nakanishi K, Minakuchi H, Soga N, etc. Double Pore Silica Gel Monolith Applied to Liquid Chromatography[J]. J.Sol-Gel.Sci.Technol.,1997,8(1-3):547-552.
    [13]. Ishizuka N, Minakuchi H, Nakanishi K, etc. Designing monolithic double-pore silica for high-speed liquid chromatography[J]. J.Chromatogr.A, 1998, 797(1-2):133-137.
    [14]. Zhao K, Fan Y, Xu N. Preparation of Three-dimensionally ordered Macroporous SiO2 Membranes with Controllable Pore Size[J]. Chem. Lett., 2007, 36: 464-465
    [15]. Wu J, Li X, Du W, etc. Formation of macroporous gel morphology by phase separation in the silica sol-gel system containing nonionic surfactant[J]. J.Univer.Sci Technol. Beijing, 2005, 12: 564-571.
    [16]. Sel O, Kuang D, Thommes M, etc. Principles of hierarchical meso- and macropore architectures by liquid crystalline and polymer colloid templating[J]. Langmiur, 2006, 22: 2311-2322.
    [17]. Vasudev N. Shettia, Jeongnam Kima, Rajendra Srivastava, etc. Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures[J]. J Catal., 2008, 254: 296-330.
    [18]. Sen T, Tiddy G J T, Casci J L, etc. Synthesis and characterization of hierarchically ordered porous silica materials[J]. Chem. Mater., 2004, 16: 2044-2054.
    [19]. T. Amatani, K. Nakanishi, K. Hirao, T. Kodaira, Monolithic periodic mesoporous silica with well-defined macropores[J]. Chem. Mater., 2005,17: 2114-2119.
    [20]. Zhang F, Yan Y, Meng Y, etc. Ordered bimodal mesoporous silica with tunable pore structure and morphology[J]. Micropor. Mesopor. Mater., 2007, 98: 6-15.
    [21]. Nakanishi K, Takahashi R, Nagakane T, etc. Formation of hierarchical pore structure in silica gel[J]. J. Sol. Gel. Sci. Technol., 2000, 17: 191-210.
    [22]. Nakanishi K. Pore structure control of silica gels based on phase separation [J]. J. Porous. Mater., 1997, 4: 67-120.
    [23].姚玮洁,胡永琪,赵瑞红等.复合模板剂合成SBA-15介孔分子筛的结构表征及机理研究[J].河北工业科技, 2007, 24: 125-129.
    [24]. Hamley I W. Nanostructure fabrication using block copolymers[J]. Nanotechnology, 2003, 14: R39-R54.
    [25]. Park C, Yoon J, Thomas E L. Enabling nanotechnology with self assembled block copolymer patterns[J]. Polymer, 2003, 44: 6725-6760.
    [26]. Alexandridis P, Olsson U, Lindman B. A record nine different phases (four Cubic, two hexagonal, and one lamellar lyotropic liquid crystalline and two micellar solutions) in a ternary isothermal system ofan amphiphilic block copolymer and selective solvents (water and oil) [J]. Langmuir, 1998, 14 (10): 2627-2638.
    [27]. Kresge C T, Leonowicz M E, Roth W J, etc. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism[J]. Nature 1992, 359:710-712.
    [28]. Beck J S, Vartuli J C, Roth W J, etc. A new family of mesoporous molecular sieves prepared with liquid crystal templates[J]. J.Am.Chem.Soc., 1992, 114: 10834-10843.
    [29]. Monnier A, Schüth F, Huo Q, etc. Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures[J]. Science, 1993, 261: 1299-1303.
    [30]. Yang J, Wegner G. Polymerization in lyotropic liquid crystals. 1. Phase behavior of photo-cross-linkable ethylene oxide (PEO)-dimethylsiloxane (PDMS) triblock copolymers PEO-PDMS-PEO in aqueous solution[J]. Macromolecules, 1992, 25: 1786-1790.
    [31]. Almgren M, Brown W, Hvidt S. Self-aggregation and phase behavior of poly(ethylene oxide )-poly(propylene oxide)-poly(ethylene oxide) block copolymers in aqueous solution[J]. Colloid Polym. Sci., 1995, 273: 2-15.
    [32].蒋润,金庆华,李宝会等.双亲三嵌段共聚物PEO-PPO-PEO在水溶液中相行为的理论研究[J].化学学报, 2007, 65(9): 860-866.
    [33]. L?f D, Niemiec A, Schillén K, etc. A calorimetry and light scattering study of the formation and shape transition of mixed micelles of EO20PO68EO20 triblock copolymer (P123) and nonionic surfactant (C12EO6) [J]. J.Phys.Chem.B, 2007,111: 5911-5920.
    [34]. Schillén K, Jansson J, L?f D, etc. Mixed micelles of a PEO?PPO?PEO triblock copolymer (P123) and a nonionic surfactant (C12EO6) in Water: a dynamic and static light scattering study[J]. J.Phys.Chem.B, 2008, 112: 5551-5562.
    [35]. Ozlem S, Kuang D, Smarsly B. Principles of hierarchical meso- and macropore architectures by liquid crystalline and polymer colloid templating[J]. Langmuir, 2006, 22 (5): 2311-2322.
    [36]. Zhao D Y, Sun J Y, Li Q Z, etc. Morphological control of highly ordered mesoporous silica SBA-15 [J]. Chem. Mater., 2000, 12: 275-279.
    [37]. Schacht S, Huo Q, Voigt-Martin I G, etc. Oil-Water interface templating of mesoporous macroscale structures[J]. Science, 1996, 273: 768-771.
    [38]. Kang K K, Rhee H K. Synthesis and characterization of novel mesoporous silica with large wormhole-like pores: use of TBOS as silicon source[J]. Micropro. Mesopro. Mater., 2005, 84: 34-40.
    [1]. Tasuchi A, Schuth F. Ordered mesoporous materials in catalysis [J]. Micropor. Mesopor. Mater., 2005, 77: 1-45
    [2]. Luan Z, Hartmann M, Zhao D, etc. Alumination and ion exchange of mesoporous SBA-15 molecular sieves [J]. Chem.Mater., 1999,11:1621-1627.
    [3]. Luan Z, Bae J Y, Kevan C. Vanadosilicate mesoporous SBA-15 molecular sieves incorporated with N-Alkylphenothiazines [J]. Chem. Mater., 2000, 12: 3202-3207.
    [4]. Yue Y, Cedeon A, Bonardet J L, etc. Direct synthesis of AlSBA mesoporous molecular sieves:characterization and catalytic activities [J]. Chem.Commun.,1999,1697-1698.
    [5]. Zhang W, Lu Q, Han B, etc. Direct synthesis and characterization of Titanium-substituted mesoporous molecular sieve SBA-15 [J]. Chem. Mater., 2002,14: 3413-3421.
    [6].李瑞丰,梁栋,陈见见等.球形杂原子介孔分子筛及其制备方法[P].中国专利: CN101157454, 2008.
    [7]. Du Y, Liu S, Zhang Y, etc. Urea-assisted synthesis of hydrothermally stable Zr-SBA-15 and catalytic properties over their sulfated samples [J]. Micropor. Mesopor. Mater., 2009, 121: 185-193.
    [8]. Kónya Z,Zhu J, Szegedi A, etc. Synthesis and characterization of hyperbranched mesoporous silica SBA-15 [J]. Chem. Commun., 2003, 314-315.
    [9]. Chen S Y, Tang C Y, Chuang W T, etc. A facile route to synthesizing functionalized mesoporous SBA-15 materials with platelet morphology and short mesochannels [J]. Chem. Mater., 2008, 20: 3906-3916.
    [10]. Calleja G, Melero J A, Martínez F, etc. Activity and resistance of iron-containing amorphous, zeoliticand mesostructured materials for wet peroxide oxidation of phenol [J]. Water Research, 2005, 39: 1741-1750.
    [11]. Melero J A, Calleja G, Martínez F, etc. Nanocomposite of crystalline Fe2O3 and CuO particles and mesostructured SBA-15 silica as an active catalyst for wet peroxide oxidation processes [J]. Catalysis Commu., 2006, 7: 478-483.
    [12]. Martínez F, Calleja G, Melero J A, etc. Iron species incorporated over different silica supports for the heterogeneous photo-Fenton oxidation of phenol [J]. Appl. Catal. B: Environ., 2007, 70: 452-460.
    [1] Zhu Y, Shi J, Chen H, etc. A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property [J]. Micropor. Mesopor. Mater., 2005, 84: 218-222.
    [2] Le Y, Chen J F, Wang J X, etc. A novel pathway for synthesis of silica hollow spheres with mesostructured walls[J]. Mater. Lett., 2004, 58(15): 2105-2108.
    [3] Moya S, Sukhorukov G B, Auch M, et a1. Microencapsulation of organic solvents in polyelectrolye multilayer micrometer sized shells [J]. J Colloid Inter. Sci., 1999, 216: 297-302.
    [4]宋继瑞,夏增敏,文利雄等.以中空SiO2为载体的蛋壳型贵金属Pd催化剂的制备和表征[J].北京化工大学学报, 2006, 33(4): 1?4.
    [5] Song J R, Wen L X, Shao L, etc. Preparation and characterization of novel Pd/SiO2 and Ca?Pd/SiO2 egg-shell catalysts with porous hollow silica [J]. Appl. Surf. Sci., 2006, 253: 2678?2684.
    [6] Wen L X, Li Z Z, Zou H K, etc. Controlled release of avermectin from porous hollow silica nanoparticles [J]. Pest Management Science, 2005, 61(6): 583?590.
    [7]孙瑞雪,李木森,吕宇鹏.中空微球型材料的制备及应用进展[J].材料导报, 2005,19(10): 19-22.
    [8] Wang J, Xia Y, Wang W, etc. Synthesis of mesoporous silica hollow spheres in supercritical CO2/water systems [J]. J Mater. Chem., 2006, 16: 1751– 1756.
    [9] Wang J, Xia Y, Wang W, etc. Synthesis of siliceous hollow spheres with large mesopore wall structure by supercritical CO2-in-water interface templating [J]. Chem. Commun., 2005, 210-212.
    [10] Blasco T, Corma A, Martinez-Triguero J. Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition [J]. J Catal., 2006, 237: 267-277.
    [11]吴燕妮,郭海福,崔秀兰.固体超强酸催化剂S2O82-/ZrO2-SiO2-Sm2O3的酸性研究[J].内蒙古大学学报,2005,36: 264-267.
    [12] Manriquez M E, LopeZ T, Comez R, etc.Preparation of TiO2-ZrO2 mixed oxides with controlled acid-basic properties [J]. J Mol. Catal. A:Chem., 2004, 220: 229-237.
    [13] Liu Xinmei, Yan Zifeng. Optimization of Nanopores and acidity of USY Zeolite by citric modification [J]. Catal Today, 2001, 68:145-154.
    [14] Srinivas D, Srivastava R,Ratnasamy P. Transesterifications over Titanosilicate Molecular Sieves [J]. Catal Today, 2004, 96:127-133.
    [15]舒宏福编,新合成食用香料手册[M],北京化学工业出版社,2005,1-12.
    [16]梁建华,邓志华,孙京国等.红霉素A-9-肟羟基的醚化保护[J].北京理工大学学报, 2003, 23 (1): 120-123.
    [17]王存德,肖东远,顾志琴.硫酸铜催化缩醛(酮)合成的研究[J].精细石油化工,1993,(6): 29-30.
    [18]杨水金,白爱民,余协卿等.固体超强酸催化剂SO42-/TiO2-WO3的制备及其催化性能研究[J].有机化学,2004,24(10): 1262-1266
    [19]吕宝兰,杨水金.合成环己酮1, 2-丙二醇缩酮的催化剂研究进展[J].应用化工, 2003,33(2):1-3.
    [20] Shishido T, Yamamoto Y, Morioka H, etc. Active Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation method in steam reforming of methanol [J]. Appl. Catal. A: Gen., 2004, 263: 249-253.
    [21] Agrell J, Birgersson H, Boutonnet M, etc. Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3 [J]. J Catal., 2003, 219: 389-403.
    [22] Shishido T, Yamamoto M, Atake I, etc. Cu/Zn-based catalysts improved by adding magnesium for water–gas shift reaction [J]. J Mole. Catal. A: Chem., 2006, 253: 270-278.
    [23] Busca G, Costantino U, Marmottini F, etc. Methanol steam reforming over ex-hydrotalcite Cu–Zn–Al catalysts [J]. Appl Catal A: Gen, 2006, 310: 70-78.
    [24]姚成漳,张新荣,王路存等.高效甲醇水蒸气重整制氢的SBA-15改性的Cu/ZnO/Al2O3催化剂[J].化学学报,2006,63: 269-272.
    [25] Wu S, Han Y, Zou Y, etc. Synthesis of heteroatom substituted SBA-15 by the pH-adjusting method [J]. Chem. Mater., 2004, 16: 486-492.
    [26] Liang D, Chen J, Wang Y, etc. Synthesis of Zr-containing SBA-15 with Hollow Spherical Morphology [J], Chem.Lett., 2009,38(7): 672-273.
    [27] Takahashi R, Sato S, Sodesawa T, etc. High surface-area silica with controlled pore size prepared from nanocomposite of silica and citric acid [J]. J. Phys. Chem. B, 2000,104: 12184-12191.
    [28] Zhang J, Shao Y, Wang L, etc. Synthesis of hydrothermally stable and long-Range ordered Ce-MCM-48 and Fe-MCM-48 materials [J]. J. Phys. Chem. B, 2005, 109: 20835-20841.
    [29] Li R, Yu F, Li F, etc. One-pot synthesis of superacid catalytic material SO42?/ZrO2–SiO2 with thermostable well-ordered mesoporous structure [J]. J. Solid State Chem., 2009, 182(5): 991-994.
    [30] Morney M S, Stucky G D, Schwarz S, etc. Isomorphic substitution and postsynthesis incorporation of zirconium into MCM-48 mesoporous silica [J]. J. Phys. Chem. B, 1999, 103: 2037-2041.
    [31] Chaudhari K, Bal R, Das T K, etc. Electron spin resonance investigations on the location and reducibility of zirconium in mesoporous Zr?MCM-41 molecular sieves [J]. J. Phys. Chem. B, 2000, 104 (47): 11066-11074.
    [32] Nakanishi K. Porous gels made by phase separation: recent progress and future directions [J]. J Porous. Mater., 2000, 19: 65-70.
    [33] Flor R S, Keith E G. Phase separation and liquid crystal self-assembly in surfactant?inorganic?solvent systems [J]. Langmuir, 2003, 19: 2049-2057.
    [34] Yu C Z, Fan J, Tian B Z, etc. Morphology development of mesoporous materials: a colloidal phase separation mechanism [J]. Chem. Mater., 2004, 16: 889-898.
    [35] Almgren M, Brown W, Hvidt S. Self-aggregation and phase behavior of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers in aqueous solution [J]. Colloid Polym. Sci., 1995, 273: 2-15.
    [36] Nakanishi K. Pore Structure Control of Silica Gels Based on Phase Separation [J]. J Porous. Mater., 1997, 4: 67-112.
    [37]李宣文,刘兴云,佘励勤.沸石催化剂开发与红外光谱研究:催化研究中的原位技术[M].北京大学出版社, 1993, 30~33.
    [38] Zerbi G, Crawford B,Overand J. Normal Coordinates of the Planar Vibrations of Pyridine and Its Deuteroisomers with a Modified Urey-Bradley Force Field [J]. Chem. Phys., 1963, 38(1): 127-133.
    [39] Emeis C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts [J]. J Catal., 1993, 141: 347-354.
    [40] Vishwanathan V, Roh H S, Kim J W, etc. Surface properties and catalytic activity of TiO2-ZrO2 mixed oxides in dehydration of methanol to dimethyl ether [J]. Catal. Lett., 2004, 196: 23-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700