用户名: 密码: 验证码:
高地应力巷道围岩破坏特征及支护机理试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着生产技术水平的不断提高,地下工程的规模与数量也在日益扩大,面向地下深部建设已经成为了目前人类工程活动的必然选择。但是,深部大规模地下工程建设必将带来高地应力、高温以及软岩控制等一系列技术难题,尤其是高地应力带来的难支护问题已经成为深部地下工程面临的一项亟待解决的重要课题,这也在一定程度上限制了深部地下工程建设规模和速度。针对深部应力状态的复杂性及围岩破坏特征,目前研究尚不十分成熟。所以,研究高地应力下巷道围岩破坏特征及稳定性控制就成为了深部工程建设亟待探讨的问题。
     以《显德汪矿复杂应力大变形硐室群综合控制技术研究》为蓝本,采用自行开发研制的CM60/10平面应变试验台配合三轴伺服试验机,并结合CM250/18平面应力试验台进行支护效果研究,采用FLAC~(3D)数值模拟相互验证的手段,进行了高地应力巷道围岩变形破坏特征及支护机理试验研究,主要分析了采用不同注浆支护形式巷道围岩应力分布、破坏特征以及位移变形等,对比了采用锚网注+底角锚索支护和简易支护条件下支护效果并进行了工业性试验。主要获得如下结论:
     (1)自行研制了配合三轴伺服试验台应用的操作简便的CM60/10平面应变试验台,并介绍了其尺寸设计、制作方法以及工作原理。现场实际操作发现CM60/10平面应变试验台能够较为简易地获得巷道围岩的破坏特征。
     (2)提出了巷道围岩应力集中结构的概念。认为巷道围岩应力集中分布于破坏圈外围,形成以“应力集中圈”、“应力集中壳”、“应力集中环”和“应力集中泡”为主要体系的三维围岩应力集中结构。分析了围岩应力结构各个分支之间的相互转化规律,揭示了围岩破坏的主要根源在于应力集中壳的失稳。
     (3)划分了λ<1状态巷道围岩破坏过程分区。第Ⅰ破裂带:巷道初期碎胀直至破坏,两帮逐渐形成楔形三角形,增大巷道跨度。(楔形破裂带);第Ⅱ破裂带:当巷道两帮楔形破坏区充分剪断破坏后,巷道两上拱角及底角失去了支撑作用后逐步失稳。(二次破裂带);第Ⅲ破裂带:由于拱角的失稳以及滑移裂隙向顶板转移,使顶板丧失支撑体,诱发断裂失稳,形成顶底板第Ⅲ破裂带。(贯通失稳带)
     (4)采用数值模拟手段研究了裸巷在不同地应力状态下应力演变和分区破坏形式以及巷道群开挖围岩应力扰动规律,并得出了一些有益结论。
As production technology level increased steadily and the constant expansion of human activity, the scale and amount of underground engineering is increased increasingly. Underground deep construction has become the inevitable choice of engineering project activities. But deep large underground engineering construction will bring a series of technical problems of high ground stress. Especially, high ground stress brought to difficult bracing problem which is becoming an important subject that deep underground engineering face to be researched and solved. It also limited the scale and speed of deep underground engineering construction to some extent. In present, we still cannot understand and analyze these phenomena adequately. According to the stress complexity and failure characteristics of depth surrounding rock, present research is still not mature. So, research of the failure characteristics and stability control of roadway surrounding rock has become a problem which needed to be discussed of the engineering construction under high ground stress.
     In this paper, "Study on the Comprehensive Control Technology of Complex Stress and Large Deformation Chamber Group in Xiandewang Coal Mine" as the blueprint, the experimental technique of self developed CM60/10 plane strain test-bed combined with triaxial servo tester and CM250/18 plane stress test-bed was used to research failure characteristics and supporting effect. FLAC3D numerical simulation was used to make contrast verification with the physical experiment simulation. Experimental research on the failure characteristics and support mechanism of surrounding rock under high ground stress was accomplished by the above technical means. The surrounding rock stress distribution, failure characteristics and displacement deformation of the single roadway without support was analyzed. Supporting effect of bolt-mesh- injection+ base angle anchor support and simple support was compared, and the former was used into industrial test.
     The main research contents and conclusion are as follows:
     (1) The concept of stress concentration structure of surrounding rock was proposed, which is that the stress in roadway surrounding rock concentrated on the outer ring of destroyed zone to form the three-dimensional stress concentration structure of surrounding rock which is consist of "stress concentration circle", "stress concentration shell", "stress concentration ring" and "stress concentration bubble". The transformation law of each other among each branch of surrounding rock stress structure was analyzed, and the main damage root of surrounding rock is the instability of stress concentration shell was revealed.
     (2) The CM60/10 plane strain test-bed was self developed which can combine with the triaxial servo test-bed simply and conveniently. Its size design, manufacture method and working principle were introduced. The site actual operation showed that the CM60/10 plane strain test-bed can more easily obtain the failure characteristics of the surrounding rock.
     (3) Failure process partition of surrounding rock inλ< 1 state was divided. The first fracture zone: sidewall exfoliation occurs during the initial stage of roadway destruction, and then gradually formed a wedge failure, the roadway span was increased. (Wedge failure zone); The second fracture zone: when the wedge failure zone was fully cut and lost the supporting function, the skewbacks and base angles will gradually lose stability (Second failure zone); The third fracture zone: due to the instability of skewbacks and base angles and slip line of the sidewall transfer to the roof, the roof lose supporting gradually, then the roof lose its stability. (Transfixion instability zone)
     (4) The evolution of stress and partition failure modes under different stress state and the disturbance law were studied by numerical simulation.
引文
[1]王汉鹏.高地应力非均质软岩洞室群稳定性分析与控制研究[D].山东:山东科技大学,2004
    [2]何满潮,谢和平,彭苏萍,姜耀东.深部开采岩体力学及工程灾害控制研究[J].煤矿支护,2007(3):1~14
    [3] J.Sulem,M.Panet,A.Guenot.An Analytical Solution for Time-dependent Displacements in Circular tunnel. Int.J.Rock Mech.MinSci. & Geomech.Abstr. 1987, Vol.24, No.3:155~164
    [4] Ottosens N S.Viscoplastic formulas for analysis in modeling three-dimensional tunnel excavation. Int J Rock Mech Min Sci & Geomech Abstr,1988,25:331~337
    [5] Malan D F. Simulation of the time-dependent behavior in the hard rock. Rock Mechanics and Rock Engineering,2002,35(4):225~254
    [6] Malan D F. Time-dependent behavior of deep level tabular excavation in the hard rock. Rock Mechanics and Rock Engineering,1999,32:123~155
    [7]中华人民共和国水利部.中华人民共和国国家标准.工程岩体分级标准(GB50218-94)[S].
    [8] EWY R T,COOK N G W.Deformation and fracture around cylindrical openings in rock-I,II[J].International Journal Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1990,27(5):387~427
    [9] SELLERS E J,KLERCK P.Modeling of the effect of discontinuitieson the extent of the fracture zone surrounding deep tunnels[J].Tunneling and Underground Space Technology,2000,15(4):463~469
    [10]郭文兵,李楠,王有凯.软岩巷道围岩应力分布规律光弹性模拟实验研究[J].煤炭学报,2002,27(6):596~600
    [11]杨建辉,夏建中.层状岩石锚固体全过程变形性质的试验研究[J].煤炭学报,2005,30(4):414~417
    [12]张强勇,李术才,尤春安.新型岩土地质力学模型试验系统的研制及应用[J].土木工程学报,2006,39(12):100~107
    [13]陈陆望,白世伟.坚硬脆性岩体中圆形洞室岩爆破坏的平面应变模型试验研究[J].岩石力学与工程学报,2007,26(12):2504~2509
    [14]朱维申,李勇,张磊,辛小丽,孙林锋,马庆松,陈五一,李杰,张罗彬.高地应力条件下洞群稳定性的地质力学模型试验研究[J].岩石力学与工程学报,2008,27(7):1308~1314
    [15]宋义敏,潘一山,章梦涛,施惠基.深部高应力载荷作用下洞室变形破坏实验[J].辽宁工程技术大学学报(自然科学版),2008,27(4):489~491
    [16]顾金才,顾雷雨,陈安敏,徐景茂,陈伟.深部开挖洞室围岩分层断裂破坏机制模型试验研究[J].岩石力学与工程学报,2008,27(3):433~438
    [17]张强勇,陈旭光,林波,刘德军,张宁.深部巷道围岩分区破裂三维地质力学模型试验研究[J].岩石力学与工程学报,2009,28(9):1757~1764
    [18]马元,何国军,周振,戴仕敏.深埋高应力围岩变形破坏三维物理模拟试验[J].交通科技与经济,2009(1):1~3
    [19]勾攀峰,张振普,韦四江.不同水平应力作用下巷道围岩破坏特征的物理模拟试验[J].煤炭学报,2009,34(10):1328~1332
    [20]陈坤福.深部巷道围岩破裂演化过程及其控制机理与应用[D].徐州:中国矿业大学,2009
    [21]刘德军,张强勇,陈旭光,林波,张宁.深部巷道围岩破裂模型试验变形量测研究[J].四川大学学报(工程科学版),42(4):71~77
    [22]惠功领,牛双建,靖洪文,王猛.动压沿空巷道围岩变形演化规律的物理模拟[J].采矿与安全工程学报,2010,27(1):77~86
    [23]伍永平,吴学明,严永胜,张艳丽,高才喜.软弱围岩变形三维物理模拟检测系统构建[J].西安科技大学学报,2010,30(4):381~387
    [24]张明建,皓进海,魏世义,陈新明,陈武装.倾斜岩层平巷围岩破坏特征的相似材料模拟试验研究[J].岩石力学与工程学报,2010,29(增1):3259~3264
    [25]宋义敏,潘一山,章梦涛,施惠基.洞室围岩三种破坏形式的试验研究[J].岩石力学与工程学报,2010,29(增1):2741~2745
    [26]谭云亮,刘传孝,韩宪军.巷道围岩破坏发育规律诊断研究[J].煤炭学报,2000,25(增):62~66
    [27]王卫军,李树清,欧阳广斌.深井煤层巷道围岩控制技术及试验研究[J].岩石力学与工程学报,2006,25(10):2102~2107
    [28]樊克恭,蒋金泉.弱结构巷道围岩变形破坏与非均称控制机理[J].中国矿业大学学报,2007,36(1):54~49
    [29]于永江,张哲,王来贵,王大国.深部岩体圆形巷道围岩松动圈形成机理数值试验研究[J].力学与实践,2007,30(6):64~67
    [30]彭维红,卢爱红.应力波作用下巷道围岩层裂失稳的数值模拟[J].采矿与安全工程学报,2008,25(2):213~216
    [31]常聚才,谢广祥.深部巷道围岩力学特征及其稳定性控制[J].煤炭学报,2009,34(7):881~886
    [32]张哲,唐春安,于庆磊,段东.侧压系数对圆孔周边松动区破坏模式影响的数值试验研究[J].岩土力学,2009,30(2):413~418
    [33]李宁,顾强康,张承客.相邻洞室爆破施工对已有洞室的影响[J].岩石力学与工程学报,2009,28(1):30~38
    [34]孙玉福.水平应力对巷道围岩稳定性的影响[J].煤炭学报,2010,35(6):891~895
    [35]高富强,康红普,林健.深部巷道围岩分区破裂化数值模拟[J].煤炭学报,2010,35(1):21~25
    [36]王红英,张强,张玉军,蒋开法.深部巷道围岩分区破裂化数值模拟[J].煤炭学报,2010,35(4):535~540
    [37]韩瑞庚.地下工程新奥法[M].北京科学出版社,1987
    [38]郑颖人.地下工程锚喷支护设计指南[M].北京中国铁路出版社,1988
    [39]李世平.岩石力学简明教程[M].北京中国矿业出版社,1986
    [40]尤尔钦科.用能量理论计算锚杆支架参数,煤矿掘进技术译文集.锚杆支护[J].北京煤炭工业出版社,1976
    [41]于学馥.轴变论和围岩稳定轴比三规律[J].有色金属,1981.1(4):9~14
    [42]于学馥.岩石力学新概念与开挖结构优化设计[M].北京科学出版社,1995
    [43]冯豫.我国软岩巷道支护的研究[J].矿山压力与顶板管理,1990(2):1~5
    [44]陆家梁.软岩巷道支护原则及支护方法[J].软岩工程,1990(3):1~5
    [45]郑雨天.关于软岩巷道地压与支护的基本观点[J].软岩巷道掘进与支护文集,1985(5):31~35
    [46]朱效嘉.锚杆支护理论发展[J].光爆锚喷,1996(4):1~4
    [47]何满潮,景海河,孙晓明.软岩工程力学[M].科学出版社,2002(5)
    [48]贺永年,张后全.深部围岩分区破裂化理论和实践的讨论[J].岩石力学与工程学报,2008,17(11):2369~2375
    [49]侯朝炯,张农,柏建彪,李学华,勾攀峰.巷道锚杆支护围岩强度强化理论研究[J].锚杆支护,2001(1):1~4
    [50]董方庭等.巷道围岩松动圈支护理论及应用技术[M].北京:煤炭工业出版社,2001: 28~29
    [51]钱鸣高等.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2004
    [52]杨桂通.弹性力学[M].北京:高等教育出版社,1998
    [53]高明中,黄殿武.底板软岩动压巷道围岩应力分布的数值分析[J].安徽理工大学学报,2003,3
    [54]王学滨,潘一山,李英杰.围压对巷道围岩应力分布及松动圈的影响[J].地下空间与工程学报,2006,6
    [55]陈学华,沈海鸿,王善勇.巷道围岩自稳结构远离及其影响因素研究[J].辽宁工程技术大学学报(自然科学版),2002,6
    [56]郑厚发,王家臣,朱红杰.锚网喷联合支护大断面硐室围岩稳定性分析[J].煤炭科学技术,2005,11
    [57] Cook N.G.W.The failure of rock.Int.J.Rock Mech.Min.Sci.Geomech.Abstr.2, 389~403
    [58]谢广祥.综放采场围岩三维力学特征[M].北京:煤炭工业出版社,2007
    [59]陈建功,朱成华,张永兴.深部巷道围岩分区破裂化弹塑脆性分析[J].煤炭学报,2010,35(4),541~545
    [60]百度百科.硅橡胶简介[EB/OL].http://baike.baidu.com/view/273760.htm
    [61]李晓红,卢义玉,康勇,饶邦华.岩石力学实验模拟技术[M].北京:科学出版社,2007
    [62]长春科新实验仪器有限公司.SAS(SAM)系列微机控制电液伺服岩石三轴试验机简介[EB/OL].http://www.cckx.cn/html/chanpinzhanshi/yeyashishiyanji/50.html
    [63]江苏东华测试技术有限公司.DH3815N静态应变测试系统使用说明书[M].
    [64]王芳,徐良骥.电子经纬仪在煤层相似材料模拟实验中的应用[J].露天采矿技术,2006(1)
    [65]沈明荣.岩体力学[M].上海:同济大学出版社,2002
    [66]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005
    [67] Dimond.S.Mecanism of soft-lime stasilization.Public Road,Vol.33,No 12,1986
    [68]魏树群,张吉雄,张文海等.高应力硐室群锚注联合支护技术[J].采矿与安全工程学报,2005,25(3):281~285
    [69]凌贤长,蔡德所.岩体力学[M].哈尔滨:哈尔滨工业大学出版社,2002
    [70] Zhao Bingwen,Luo Feng,Yang Bensheng,Qiao Yanguo.Numerical Simulation Analysis of Stress and Displacement Field Variation of Chamber Group Disturbed by Excavation[J].Proceedings of International mining forum 2010,2010,133~137
    [71] K. SOGA,S.K.A.AU,M.R.JAFARI and M.D.BOLTON.Laboratory investigation of multiple grout injections into clay[J].(2004).Geotechnique 54,No.2,81~90
    [72] In-Mo Lee,Jae-Sung Lee,Seok-Woo Nam.Effect of seepage force on tunnel face stability reinforced with multi-step pipe grouting[J].Tunnelling and Underground Space Technology 19 (2004) 551~565
    [73]徐礼先,邵国华,陈素贞.吸水井施工技术[J].山东煤炭科技,2007(3),44~46
    [74]河北金牛能源股份有限公司,河北工程大学.显德汪矿复杂应力大变形硐室群综合控制技术研究[R].2009,11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700