用户名: 密码: 验证码:
氮与栽培模式对水稻产量和氮肥利用率的影响及相关机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
世界人口包括非洲和拉丁美洲食用水稻人口的快速增长,以及全球气候变化如高温、干旱和洪涝等不利气候条件的频发和强度增加,对稻米的需求、供给和水稻生产造成严峻的挑战。为了满足世界人口对稻米的需求,提高适宜生态条件下的水稻单产和增加水稻总产量日趋紧要。本研究以作物栽培调控技术(育秧、种植密度、水份管理、氮肥管理等)构建了不同栽培管理模式,于2009-2011年在中国湖南浏阳市永安镇大田条件下进行了定位试验,并于2011-2013年在国际水稻研究所(IRRI,菲律宾)大田进行了氮肥与品种的互作试验,系统研究了不同栽培模式和氮肥与品种互作下的水稻群体冠层结构、稻谷产量、产量构成因素、整精米产量、灌浆特性、氮肥利用率、辐射利用率等,主要研究结果如下:
     (1)不同栽培模式间的产量存在显著差异。稻谷产量在早季和晚季均以T4>T5>T3>T2(当地农民模式)>T1(氮空白模式),与对照T2模式相比,T4、T5和T3模式在早季和晚季3年平均分别增产32.7%、20.4%、15.7%和37.1%、28.8%、14.8%。究其增产的原因,从产量构成因素来看,T4、T5和T3模式的单位面积穗数和颖花数不论早季和晚季均显著高于T2模式,同时每穗粒数和结实率并没有显著降低或有所提高;从叶面积指数(LAI)和干物质生产来看,T4、T5和T3模式齐穗期的LAI在早季和晚季分别比T2模式增加51.0%、27.8%、16.9%和64.0%、49.2%、25.3%,总干物质积累量在早季和晚季分别增加30.3%、18.1%、14.2%和39.9%、32.7%、12.9%。
     (2)不同栽培模式间的氮素积累和氮肥利用率(NUE)存在显著差异。相对T2模式,T4、T5和T3模式的氮素积累量在早季和晚季分别增加42.1%、23.7%、18.2%和89.1%、75.5%、35.0%,氮肥农学利用率(AE)分别增加45.2%、46.0%和68.2%、127%、127.3%和97.8%,氮肥偏生产力(PFP)分别增加9.5%、19.1%、42.5%和16.0%、27.5%、38.5%。水稻氮素积累量和NUE显著提高的主要原因,一是氮肥后移使T4、T5和T3的花后总氮积累量在早季和晚季分别平均增加78.3%、54.8%、68.8%和74.0%、63.4%、31.8%,二是“干湿交替”水份管理及叶片化学调控等措施使T4、T5、T3的氮转运量在早季和晚季比T2模式分别增加22.0%、10.7%、2.8%和137.3%、104.6%、59.5%。
     (3)各栽培模式间的群体光合有效辐射截获量(IR)和辐射利用率(RUE)存在显著差异。相对于T2模式,IR在早季和晚季T4、T5和T3模式平均增加13.4%、9.6%、4.6%和14.1%、11.7%、4.4%,RUE在早季和晚季分别增加15.0%、8.0%、9.4%和16.7%、33.9%、8.4%。相关分析表明,不论早季和晚季,产量均与IR、 RUE呈极限著正相关(p<0.001),但是IR在早季的相关系数大于晚季,而RUE在晚季的相关系数大于早季。表明通过扩大群体的大小提高水稻群体IR,是早季提高产量的关键途径;而提高改善群体质量进而提高RUE是提高晚季产量的关键途径。
     (4)品种和氮肥施用对水稻籽粒灌浆特性各参数均产生较大的影响。提高施氦水平增加起始灌浆速率(GR0),延长第二次灌浆高峰时间(T2)和最大灌浆时间(Tmax),缩短第一次灌浆峰值时间(T1),从而导致平均灌浆速率降低;随施氮水平增加,前期(S1)的灌浆时间缩短,中期(S2)和后期(S2)的灌浆时间延长,导致前期灌浆速率变大和中后期灌浆速率减少。研究还表明,季节间灌浆特性的差异大于氮肥水平间的差异。灌浆特性对稻谷产量尤其是整精米产量产生显著影响,缩短第一次灌浆峰值时间(T1),延长第二次灌浆期时间(T2),增加前期的灌浆速率(MGR1)和降低中期和后期的灌浆速率(MGR2和MGR3)均能显著提高水稻整精米产量。
     (5)用ORZYA2000模拟可获得产量潜力与气候产量潜力进行了比较分析。结果表明,在雨季,当施氮水平在80kg N/ha和120kg N/ha条件下,各品种的可获得稻谷产量潜力分别比气候产量潜力降低了22%-33%和12%-21%,可获得干物质生产量潜力分别降低16-23%和3%-15%;但是在旱季,水稻可获得产量与气候产量潜力的差距较小,如在140kgN/ha和210kgN/ha条件下,可获得产量和干物质生产潜力分别比气候产量和干物质生产潜力降低仅为3%、1%和5%、3%。表明在没有环境胁迫的条件下(如旱季)培育新的高产量潜力的品种已经刻不容缓;同时有必要根据水稻不同种植区域的环境特点,利用气候产量潜力来指导水稻生产和氮肥管理,而不仅仅以对照品种产量的增减作为依据。
     (6)水稻不同群体对实际稻谷产量、气候产量潜力和整精米产量产生显著影响。随着氮肥水平的提高,稻谷产量有所增加,但是氮肥过高后,使部分品种的产量降低,凸显出水稻品种对氮肥效应的趋势不一致;但是整精米产量在氮肥增加的情况下均有所增加,同时高的稻谷产量并不一定具有较高的整精米产量,品种间具有显著的差异;本研究基于籼稻商品化条件下,将产量潜力定义为“在肥水充足、病虫杂草、倒伏及其他胁迫得到有效控制、适宜的生长环境下,水稻品种应具有较高的整精米率的气候产量”。综合考虑土壤和环境条件及具较高“整精米率”的“气候产量”可作为评估标尺来追踪随着时间的推移,水稻产量增加的幅度。
The world population and the number of people depending on rice have been on a steep increase not just in Asia but also in Africa and Latin America. In addition, global climate changes.the increases in the frequency and intensity of extreme events like heat spikes, droughts or floods, will negatively affect rice production. All the above scenarios pose a serious challenge for meeting the global demand and supply of rice,under current and future climates. Thus, improving rice productivity under folly flooded non-stress conditions becomes especially important and timely. In this research, we systematically studied the physiological and agronomic responses of different crop management practices, nitrogen management and their interaction on population canopy structure, grain yield, yield components, grain quality, grain filling characteristics, nitrogen use efficiency and radiation use efficiency. Field experiments were conducted continuously during the early season and late season of2009-2011in Liuyang County, Hunan Province, China and during the2011wet season (WS) to2012dry season (DS) at the experimental farm of IRRI, Philippines, respectively. The main results of the study are listed below:
     1. The results of different crop management practices recoeded significant differenceswith in rice grain yield among the different management practices.The ranking for grain yield among different treatments across different years and seasons was as follows: T4> T5> T3> T2> T1. Grain yield averaged across all three years in T4, T5and T3was32.8%,20.4%,15.7%and37.1%,28.8%,14.8%higher than the normal farmers'practice (T2) in early season rice (ESR) and late season rice (LSR), respectively. Reasons behind the yield increase can be explained by yield components, leaf area index (LAI) and dry matter production. T4, T5and T3produced significantly higher panicles m-2and spikelet number m-2compared to T2during both ESR and LSR, and spikelets panicle-1and the grain-filling percentage were slightly decreased in ESR and especially slightly increased in LSR compared with T2. In addition, LAI averaged across all three years in T4, T5and T3was51.0%,27.8%,16.9%and64.0%,49.2%,25.3%higher than with T2during ESR and LSR, respectively.The total biomass averaged across all three years in T4, T5and T3was30.3%, 18.1%,14.2%and39.9%,32.7%,12.9%higher than with T2in ESR and LSR, respectively. Facilitating better N uptake
     2. The total nitrogen content and nitrogen use efficiency (NUE) varied significantly among the different management patterns. The total nitrogen content of plants in ESR and LSR was higher by42.1%,23.7%,18.2%and89.1%,75.5%,35.0%in T4, T5and T3than in T2, respectively. Nitrogen agronomic efficiency (AE) in ESR and LSR was increased by45.2%,46.0%,68.2%and127%,127.3%,97.8%and partial factor productivity of applied nitrogen (PFP) in ESR and LSR was increased by9.5%,19.1%,42.5%and16.0%,27.5%,38.5%in T4, T5and T3compared with T2, respectively. Significant increase of the total nitrogen content and NUE was mainly due to the total nitrogen content after heading in ESR and LSR was increased by78.3%,54.8%,68.8%and74.0%,63.4%,31.8%in T4, T5and T3compared with T2, as a result of postponement of the N fertilizer application. On the other hand, combination with shallow wetting and drying and KH2PO4application as foliar spray resulted in the increase of nitrogen translocation, and nitrogen translocation during ESR and LSR by22.0%,10.7%,2.8%and137.3%,104.6%,59.5%in T4, T5and T3compared with T2, respectively.
     3. Intercepted radiation (IR) and radiation use efficiency (RUE) differed significantly among the different management practices. IR averaged in ESR and LSR of T4, T5and T3was13.4%,9.6%,4.6%and14.1%,11.7%,4.4%higher than that in T2, respectively. RUE averaged in ESR and LSR of T4, T5and T3was15.0%,8.0%,9.4%and16.7%,33.9%,8.4%higher than that in T2, respectively. Both IR and RUE were significantly positively correlated with grain yield (p<0.001) in both seasons, while r of intercepted radiation in ESR was greater than in LSR, and r of RUE in LSR greater than in ESR. The above results indicated that increasing IR of rice population was the key approach of ESR yield improvement, and improving RUE via optimizing rice population quality was the main approach of LSR yield improvement in double-season rice.
     4. Nitrogen treatments and cultivars had significant effects on grain filling parameters. GRo increased, T2and Tmax extended and T1decreased with increasing N supply, resulted in lower mean grain rate. On the other hand, S1shortened and S2and S3increased with increasing N supply, resulted in higher grain filling rate at early filling stage and lower grain filling rate at mid and later filling stage. The grain filling characteristics across cultivars was significantly different between dry season (DS) and wet season (WS), differed more than that between different N treatments. The grain filling characteristics had significantly effect on rice grain yield and especially head rice yield. Shortening T1and extending T2to accelerate MGR1and decelerate MGR2and MGR3can improve head rice yield.
     5. Comparative analysis between the actual observed yield (AY) and the climatic yield potential (PY) derived using ORYZA2000indicated that AY across current elite cultivars supplied with80kg N ha-1were up to22%-33%lower than PY, and AY with120kg N ha-1were12%-21%lower than PY during WS. Dry matter production with80kg N ha-1and120kg N ha-1was16-23%and3%-15%lower than potential dry matter production during DS, respectively. AY across current elite cultivars supplied with adequate N (140and210kg N) was close to100%of the climatic yield potential derived using ORYZA2000during DS Our results demonstrated the immediate urgency in incorporating new and diverse germplasm into ongoing breeding programs targeted toward enhancing yield under fully flooded non-stress conditions. On the other hand, the use of a derived climatic yield potential as an unbiased reference for rice yield potential studies will help account for climatic and edaphic variability across different rice-growing geographies and it allows for cross cutting meta-analysis of genetic yield gains over time.
     6. Different populations in rice had significant effects on grain yield, climate yield and especially head rice yield. Grain yield was improved with increasing N application, except for some cultivars with lower yield under high N, which indicated response to N supply varied with cultivars, while head rice yield increased with increasing N supply. Even with similar paddy yield, the cultivars differed significantly in head rice recovery, and head rice yield.Based on our results, we redefine rice yield potential as "the climatic yield of a cultivar with superior head rice yield recovery when grown in environments to which it is adapted, with nutrients and water non-limiting and with pests, diseases, weeds, lodging, and other stresses effectively controlled." The inclusion of "climatic" yield would allow establishing a measuring stick for tracking yield gains over time after accounting for edaphic and environmental conditions and "with superior head rice recovery," which determines the actual gain in terms of ecollllnomic units that determine cultivars'marketability, consumer preferences, and wider farmer adoption.
引文
[1]Ismail AM,Singh US, Singh S,Dar MH, Mackill DJ. The contribution of submergence-tolerant (Sub1 rice varieties to food security in flood-prone rainfed lowland areas in Asia[J]. Field Crops Research,2013,152:83-93.
    [2]Wassmann R, Jagadish SVK, Heuer S, Ismail A, Redona E, Serraj R, Singh RK,Howell G, Pathak H, Sumfleth K. Climate change affecting rice production:the physiological and agronomic basis for possible adaptation strategies[J]. Advances in.Agronomy. 2009a,101:59-122.
    [3]Wassmann R, Jagadish SVK, Sumfleth K, Pathak H, Howell G, Ismail A, Serraj R,Redona E, Singh RK, Heuer S. Regional vulnerability of rice production in asia to climate change impacts and scope for adaptation[J]. Advances in Agronomy,2009b,102: 91-133.
    [4]朱德峰,程式华,张玉屏,等.全球水稻生产现状与制约因素分析[J].中国农业科学,2010,43(3):474-479
    [5]黄英金,徐正进.对超级稻研究中几个问题的思考[J].中国农业科技导报,2004,6(5):3-7.
    [6]Yang J-C,Du Y,Wu C-F, LiuL-J. Growth and development characteristics of super highyielding mid-season japonica rice[J]. Agric S in china,2006,39(7):1336-1345.
    [7]Fischer RA,Edmeades GO.Breeding and cereal yield progress[J].Crop Science,2010, 50:85-98.
    [8]刁操铨.作物栽培学各论(南方本)[M].北京:中国农业出版社,1994,68-72.
    [9]邹应斌.湖南双季稻高产栽培40年回顾与展望[J].作物研究,1999(1):1-5.
    [10]樊红柱,曾祥忠,张冀,等.移栽密度与供氮水平对水稻产量、氮素利用影响[J].西南农业学报,2010,23(4):1137-1141.
    [11]樊红柱,曾祥忠,吕世华.水稻不同移栽密度的氮肥效应及氮素去向[J].核农学报.2009,23(4):681-685
    [12]黄振才.种植密度对双晚优质稻宜优673群体发育和产量的影响[J].江西农业学报,2010,22(6):27-29.
    [13]王成瑗,王伯伦,张文香,等.栽培密度对水稻产量及品质的影响[J].沈阳农业大学学报,2004,35(4):318-322
    [14]王丹英,章秀福,周昌南.浙江省水稻产量构成差异调查与合理种植密度分析[J].浙江农业学报,2010,22(3):330-336.
    [15]李木英,石庆华,王涛,等.种植密度双季超级稻群体发育和产量的影响[J].杂交水稻,2009,24(2):72-77.
    [16]李建广,张秀和,张国新,等.移栽密度对水稻生长发育及产量的影响[J].垦殖与稻作,2005(1):18-19.
    [17]吴春赞,叶定池,林华,等.栽插密度对水稻产量及品质的影响[J].中国农学通报,2005,21(9):190-192.
    [18]朱贵平,俞爱英,张培艳,等.水稻强化栽培体系适宜移栽密度探讨[J].杂交水稻,2004,19(3):45-46.
    [19]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000,42-107
    [20]凌启鸿.作物群体质量[M].上海:上海科学技术出版社,2000:150-154.
    [21]闫川,丁艳锋,王强盛,等.行株距配置对水稻茎杆形态生理与群体生态的影响[J].中国水稻科学,2007,21(5):530-536.
    [22]王夫玉,张洪程,赵新华,等.行株距配比对水稻群体特征的影响[J].甘肃科学学报,2010,13(2):38-41.
    [23]谢立勇,徐正进,林而达等.水稻灌浆期群体光能截获与利用分析[J].中国农业气象,2005,26(4):207-209.
    [24]谢树鹏.不同株行距配置对水稻单株分蘖的影响[J].农业科技通讯,2010(5):38-40.
    [25]Duan A W,Zhang J Y. Water use efficiency of grain crops in irrigated farmland in China. Tram CSAE[J].2000,16(4):41-44.
    [26]Borrell A, Garside A, Fukai S. Improving efficiency of water use for irrigated rice in a semi-arid tropical environment[J].Field Crops Reseach,1997,52 (3):231-248.
    [27]Lin X, Zhou W, Zhu D, Zhang Y. Effect of SWD irrigation on photosynthesis and grain yield of rice (Oryza sativa L.) [J]. Field Crops Research,2005,94:67-75
    [28]Bouman, B.A.M., Lampayan, R.M., Tuong, T.P.,2007. Water Management in Rice:Coping with Water Scarcity. International Rice Research Institute, Los Ba-nos,Philippines,54 p.
    [29]Bouman, B.A.M, Tuong, T.P,2001. Field water management to save water and increase its productivity in irrigated lowland rice[J]. Agric. Water Manage.2011,49,11-30.
    [30]李阳生,李绍清,李达模,等.杂交稻与常规稻对涝渍环境适应能力的比较研究[J].中国水稻科学,2002,16(1):45-51.
    [31]林贤青,周伟军,朱德峰,等.稻田水分管理方式对水稻光合速率和水分利用效率的影响[J].中国水稻科学,2004,18(4):333-338.
    [32]王卫,谢小立,谢永宏.不同水分管理模式对水稻生长及光合特性的影响[J].长江流域资源与环境,2010,19(7):746-760.
    [33]张玉屏,朱德峰,林贤青,等.不同灌溉方式对水稻需水量和生长的影响[J].灌溉排水学报,2007,26(2):83-85.
    [34]潘圣刚,曹凑贵.不同灌溉模式下氮肥水平对水稻氮素利用效率、产量及其品质的影响[J].植物营养与肥料学报[J].2009,1 5(2):283-289.
    [35]晏娟,尹斌,张绍林,等.不同施氮量对水稻氮素吸收与分配的影响[J].植物营养与肥料学报,2008,14(5):835-839.
    [36]吴文革,杨联松,苏泽胜,等.不同施氮条件下杂交中籼稻的群体质量与产量形成[J].中国生态农业学报,2008,16(5):1083-1089.
    [37]唐启源,邹应斌,米湘成,等.不同施氮条件下超级杂交稻的产量形成特点与氮肥利用[J].杂交水稻,2003,18(1):44-48.
    [38]张祥明,郭熙盛,李泽福,等.氮肥运筹方式对晚稻产量、品质和氮素利用率的影响研究[J].土壤通报,2008,39(3):576-580.
    [39]王丽萍,刘华招,杜金岭,等.氮肥基追不同分施比例对寒地粳稻产量及氮肥利用率的影响[J].中国农学通报,2010,26(13):235-238.
    [40]郑永美,丁艳锋,王强盛.起身肥对水稻分蘖和氮素吸收利用的影响[J].作物学报,2008,34(3):513-519.
    [41]曾勇军,石庆华,潘晓华等.施氮量对高产早稻氮素利用特征及产量形成的影响[J].作物学报,2008,34(8):1409-1416.
    [42]史鸿儒,张文忠,解文孝,等.不同氮肥施用模式下北方粳型超级稻物质生产特性分析[J].作物学报,2008,34(11):1985-1993.
    [43]江立庚,曹卫星,甘秀芹,等.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响[J].中国农业科学,2004,37(4):490-496.
    [44]FAO Statistical databases.Food and Agriculture Organization of the United Nations[J]. 2001.
    [45]朱兆良,文启孝.中国土壤氮素[M].南京:江苏出版社,1992:213-249.
    [46]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.
    [47]Cassman, K.G,. Peng, S.,Olk D C. et al. Opportunities for increased nitrogen use efficiency from improved resource management in irrigated rice systems[J]. Field Crops Research,1998,56:7-38.
    [48]彭少兵,黄见良,钟旭华等,提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103.
    [49]张民,史衍玺,杨守祥.控制和缓释肥的现状与进展[J].化肥工业,2001,28(5):27-31.
    [50]朱兆良.肥料与农业和环境[J].大自然探索,1998,17(4):25-28.
    [51]吕忠贵.浅析氮磷化肥的使用及对农业生态环境污染[J].农业环境与发展,1997,(3):30-34.
    [52]李生秀.植物营养与肥料学科的现状与展望[J].植物营养与肥料学报,1999,5(3):193-205.
    [53]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,(9):159-161.
    [54]VlekPLG.,Byrnes,B.H.The efficacy and loss of fertilizer N in low land rice[J].Field Crops Research,1986,9:131-147.
    [55]Dedatta,S.K.,Buresh,R.J. Integrated nitrogen management in irrigated rice [J].Adv.Soil Sci.,1989,10:143-169.
    [56]尹娟,勉韶平.稻田中氮肥损失途径研究进展[J].农业科学研究,2005,26(2):76-81.
    [57]崔玉亭,程序,韩纯儒,等.苏南太湖流域水稻经济生态适宜施氮量研究[J].生态学报,2000,20(4):659-662.
    [58]李世清.连续施用氮肥对旱地土壤氮素状况的影响[J].干旱地区农业研究,1999,17(3):28-34.
    [59]闫德智,王德建,林静慧.太湖地区氮肥用量对土壤供氮、水稻吸氮和地下水的影响[J].土壤学报,2005,42(3):440-446.
    [60]Mcneal BL.Leaching of Nitrogen from soils.[A]. PF Pratt. Proc. Natl. Condon Management of nitrogen in Irrigated Agriculture [C]. California:University of California,1978.195-197.
    [61]苏成国,尹斌,朱兆良,等.稻田氨肥的氨挥发损失与稻季大气氮的湿沉降[J].应用生态学报,2003,14(11):1884-1888
    [62]陈振华,陈利军,武志杰,等.辽河下游平原不同水分条件下稻田氨挥发[J].应用生态 报,2007,18(12):2771-2776
    [63]IPCC (2007),Climate Change 2007-The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the IPCC, Cambridge University Press, New York
    [64]Rodhe HA. Comparison of the contribution of various gases to the greenhouse effect[J]. Science,1990,248:1217-1219.
    [65]Intergovernmental Panel on Climate change Guidelines for national Greenhouse Gas. Inventories. [M]. OECD/ODCE, Paris,1997.
    [66]Council for Agriculture Science and Technology.Ore paring US agriculture for global climate change. Task Force Report Aemes,Lowa,1992,119.
    [67]封克,殷士学,张素玲,等.影响氧化亚氮形成和排放的土壤因素[J].土壤学进展,1995,23(6):35-41.
    [68]黄国宏,陈冠雄,韩冰,等.土壤含水量变化对N20产生和排放影响[J].应用生态学报.1999,10(1):53-56.
    [69]Focht,D.D. Differences in nitrogen-] 5 N enrichments of evolved nitrouxide and nitrogen and the question of a uniform nitrate-15 N pool[J],Soil Sci.Soc.Am.J., 1985,49:786-790.
    [70]谢军飞,李玉娥.土壤温度对北京旱地农田NO排放的影响[J].中国农业气象,2005,1:45-48.
    [71]Bouwman,A.F.(Ed.),Soils and the Greenhouse Effect[J].WileyChichester.1990,61-127.
    [72]张福珠,高拯民,韩淑华,等.土壤中N20的含量及其动态的研究[J].生态学杂志,1985,01:123-126.
    [73]周再兴,郑循华,王明星,等.华东稻麦轮作农田CO2、N2O和NO排放特征[J].气候与环境研究,2007,12(6),751-760.
    [74]赵广才,张保明,王崇义.研究小麦各部位氮素分配利用及施肥效应[J].作物学报.1998,24(61:854-858.
    [75]王巧兰,吴礼树,赵竹青,等.氮形态对水稻植株氮损失的影响[J].植物营养与肥料学报2010,16(2):274-281.
    [76]徐明岗,李菊梅,李冬初,等.控释氮肥对双季稻生长及氮肥利用率的影响[J].植物营养与肥料学报,2009,15(5):1010-1015.
    [77]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12): 2457-2467.
    [78]朱兆良.推荐氮肥适宜施用量的方法论刍议[J].植物营养与肥料学报,2006,12(1):1-4.
    [79]浙江农业大学主编.作物营养与施肥[M].北京:中国农业出版社,1990:151-152.
    [80]凌启鸿.水稻精确定量栽培理论与技术[M].北京:中国农业出版社,2007.
    [81]王丽萍,刘华招,杜金岭,等.氮肥基追不同分施比例对寒地粳稻产量及氮肥利用率的影响[J].中国农学通报,2010,26(13):235-238.
    [82]丁艳锋,刘胜环,王绍华,等.氮素基、蘖肥用量对水稻氮素吸收与利用的影响[J].作物学报,2004,30(8):739-744.
    [83]郑永美,丁艳锋,王强.盛起身肥对水稻分蘖和氮素吸收利用的影响[J].作物报,2008,34(3):513-519
    [84]Dedatta S.K, Broadbent F E..Methodology for evaluating nitrogen utilization efficiency by rice genotypes[J].Agron J,1988 80:793-798.
    [85]Singh U,Lagha J K,Castillo E G,et al.Genotypic variation in nitrogen use efficiency in medium and long duration rice[J].Field Crops Res,1998,58:35-53.
    [86]Koutroubasa S D,Ntanos D A. Genotypic differences for grain yield and nitrogen utilization in Indicia and Japonica rice under Mediterranean conditions[J].Field Crops Res,2003.83:251-260.
    [87]杨肖娥,孙羲.不同水稻品种对低氮反应的差异及其机制的研究[J].土壤学报,1992,21(1):73-79.
    [88]邹应斌.籼型超级杂交水稻高产栽培研究进展[J].耕作与栽培,2006,(5):1-5.
    [89]Mitchell, L P, J.E. Sheehy, F. I. Woodward. Potential yields and the efficiency of radiation use in rice[J]. IRRI Discussion Paper Series,1998,32:1-62.
    [90]凌启鸿,张洪程,苏祖芳,等.水稻高产群体质量及其优化控制技术探讨[J].中国农业科学,1993,(6):1-12.
    [91]颜振德.杂交水稻高产群体干物质生产与分配的研究[J]作物学报,1981,(1):11-18.
    [92]Ntanos, D.A., Koutroubas, S.D. Dry matter and N accumulation and translocation for Indica and Japonica rice under Mediterranean conditions [J].Field Crops Res.,2002,74: 93-101.
    [93]邹应斌.籼型超级杂交水稻高产栽培研究进展[J].耕作与栽培,2006,(1):1-5
    [94]任万军,伍菊仙,卢庭启,等.氮肥运筹对免耕高留茬抛秧稻干物质积累、运转和分配的影响[J].四川农业大学学报,2009,27(2):162-166.
    [95]戚昌瀚.水稻品种的库源关系与调节对策简论[J].江西农业大学学报,1993,15(1):1-5.
    [96]王秋菊,张玉龙,李明贤,等.控水灌溉对水稻生长发育的影响[J].东北农业大学学报,2010,41(5):14-18
    [97]杨建昌,朱庆森,曹显祖.水稻群体冠层结构与光合特性对产量形成作用的研究[J].中国农业科学,1992,25(4):7-14.
    [98]朱庆森,曹显祖,骆安其.水稻籽粒灌浆的生长分析[J].作物学报,1988,14(3):184-192.
    [99]马国辉.籼型水稻两段灌浆理论的研究[J].中国水稻科学,1996,10(3):153-158.
    [100]王余龙,姚友礼,徐家宽,等.稻穗不同部位籽粒的结实能力[J].作物学报,1995,21(1):29-37.
    [101]魏丹,韩光,赵海滨,等.根外追肥在水稻灌浆过程中对子实养分和水分动态变化的影响[J].黑龙江农业科学,1996(2):1-4.
    [102]马均,明东风,马文波,等.不同施氮时期对水稻淀粉积累及淀粉合成相关酶类活性变化的研究[J].中国农业科学,2005,38(2):290-296
    [103]李志刚,叶正钱,杨肖娥,等.不同养分管理对杂交稻生育后期功能叶生理活性和籽粒灌浆的影响[J].浙江大学学报,2003,29(3):265-270.
    [104]薛艳风,陆江锋,吕川根,等.两系亚种间杂交稻两优培九籽粒灌浆动态研究[J].江苏农业研究,2001,2(2):9-13.
    [105]陈娟,王忠,陈刚,等.不同施氮处理对水稻颖果灌浆和呼吸活性的影响[J].中国水稻科学,2006,20(4):396-400
    [106]杨建昌,王国忠,王志琴,等.旱种水稻灌浆特性与灌浆期籽粒中激素含量的变化[J].作物学报,2002,28(5):615-621.
    [107]章秀福,王丹英,屈衍艳,等.垄畦栽培水稻的植株形态与生理特性研究[J].作物学报,2005,31(6):742-48.
    [108]Massignam, A., Chapman, S.,Hammer, G, Fukai, S.Physiological determinants of maize and sunflower grain yield as affected by nitrogen supply[J].Field Crops Res, 2009,113,256-267
    [109]Stockle, C, Kemanian, A.,2009. Crop radiation capture and use efficiency:a framework for crop growth analysis. In:Sadras, V.O., Calderini, D.F. (Eds.), Crop Physiology:Applications for Genetic Improvement and Agronomy[M].Academic Press, San Diego, CA, USA, pp.145-170.
    [110]Sinclair, T.R., Muchow, R.C.,1999. Radiation use efficiency. Adv. Agron.65, 215-265.
    [111]Muchow, R.C., Sinclair, T.R. Nitrogen response of leaf photosynthesis and canopy radiation use efficiency in field-grown maize and sorghum[J].Crop Sci.,1994,34: 721-727.
    [112]Lemaire, G., Gastal, F., Quantifying crop responses to nitrogen deficiency and avenues to improve nitrogen use efficiency. In:Sadras, V.O., Calderini, D.F. (Eds.),Crop Physiology:Applications for Genetic Improvement and Agronomy[M]. Academic Press, San Diego,2009.CA, USA, pp.171-211.
    [113]Mitchell, L P, J.E. Sheehy, F. I. Woodward. Potential yields and the efficiency of radiation use in rice[J]. IRRI Discussion Paper Series,1998,32:1-62.
    [114]Kiniry, R.J,G. Mccauley,Y,Xie.J. G. Arnolda. Rice Parameters Describing Crop Performance of Four U.S. Cultivars[J]. Agronomy Journal,2001,93:1354-1361.
    [115]Yamamoto, H, K Iways, Y. Takasu. Comparisons of efficiency of solar energy utilization and efficiency of solar energy conversion in high-yielding rice canopies [J]. J. Agric. Meteorol,2003,59(1):1-11.
    [116]Zhang Y, Tang Q, Zou Y, et al. Yield potential and radiation use efficiency of "super" hybrid rice grown under subtropical conditions [J].Field Crops Research,2009, 114:91-98
    [117]Sun Y, Ma J, Sun Y,Xu H, Yang Z, Liu S, Jia X,Zheng H. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China[J]. Field Crops Res,2012,127,85-98.
    [118]Belder, P., Spiertz, J.H.J., Bouman, B.A.M., Lu, G., Tuong, T.P.Nitrogen economy and water productivity of lowland rice under water-saving irrigation[J]. Field Crops Res,2005,93,169-185.
    [119]Wang, W., Lua, J., Ren, T., Li, X., Su, W., Lu, M. Evaluating regional mean optimal nitrogen rates in combination with indigenous nitrogen supply for rice production[J]. Field Crops Res,2012,137,37-48.
    [120]Bouman, B.A.M., Peng, S., Castaneda, A.R., Visperas, R.M. Yield and water use of irrigated tropical aerobic rice systems[J]. Agric. Water Manage,2005,74,87-105.
    [121]Cao Y, Tian Y, Yin B, Zhu Z,Assessment of ammonia volatilization from paddy fields under crop, management practices aimed to increase grain yield and N efficiency management practices aimed to increase grain yield and N efficiency [J]. Field Crops Res,2013,14723-31
    [122]Sui B, Feng X, Tian G, Hu X, Shen Q, Guo S. Optimizing nitrogen supply increases rice yield and nitrogen use efficiency by regulating yield formation factors[J]. Field Crops Research,2013,150,99-107
    [123]Qin JQ, Impa SM, Tang QY, Yang SH, Yang J, Tao YS, Jagadish SVK. Integrated nutrient, water and other agronomic options to enhance rice grain yield and N use efficiency in double-season rice crop[J].Field Crops Research,2013.148,15-23.
    [124]Peng S,Huang J,Zhong X,Yang J,Wang G,Zou Y,Zhang F,Zhu Q.Challenge and opportunity in improving fertilizer-nitrogen use efficiency of irrigated rice in China[J]. Agricultural sciences in China,2002,1(7):776-785
    [125]Craswell, E.T. and Godwin, D.C. The efficiency of nitrogen fertilizers applied to cereals grown in different climates. In Advances in Plant Nutrition (Vol.1) (Tinker, P.B. and Lauchli, A., eds),1984, pp.1-55, Praeger Publishers
    [126]Siddiqi, M.Y. and Glass, D.M. Utilization index:a modified approach to the estimation and comparison of nutrient utilization efficiency in plants[J]. J. Plant Nutr,1981,4,289-302
    [127]Moll, R.H. et al. Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization[J]. Agron. J,1982,74,562-564
    [128]Allen G. Good, Ashok K. Shrawat and Douglas G. Muench. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? [J].TRENDS in Plant Science,2004,9(12):597-605
    [129]Li Y, Ren B, Ding L, Shen Q, Peng S, Guo S.Does Chloroplast Size Influence Photosynthetic Nitrogen Use Efficiency? [J]. PLoS ONE,2013,8(4):e62036
    [130]Bouman BAM, Van Laar HH. Description and evaluation of the rice growth model ORYZA 2000 under nitrogen-limited conditions[J].Agricultural Systems,2006.87, 249-273.
    [131]Li T, Bouman BAM, Boling A. The calibration and validation of ORYZA2000. International Rice Research Institute,2009. Los Banos, Philippines.
    [132]Bouman BAM, van Keulen H, van Laar HH, Rabbinge R. The'School of de Wit'crop growth simulation models:pedigree and historical overview [J]. Agricultural Systems, 1996,52,171-198.
    [133]Jing Q, Bouman BAM, van Keulen H, Hengsdijk H, Cao W, Dai T.Disentangling the effect of environmental factors in yield and nitrogen uptake of irrigated rice in Asia[J]. Agricultural Systems,2008,98,177-188.
    [134]Qin J, Ali J, Quinones C, Marcaida M, Li T, Tang Q, Jagadish SVK.Redefining the concept of yield potential in rice, European journal of agronomy.(In reviewing)2013
    [135]Cooper NTW, Siebenmorgen TJ, Counce PA, Meullenet JF. Explaining rice milling quality variation using historical weather data analysis [J]. Cereal Chemistry,2006, 83,447-450.
    [136]BrdarMD, Kraljevic-BalalicMM, Kobiljski BD. The parameters of grain filling and yield components in common wheat (Triticum aestivum L.) and durum wheat(Triticum turgidum L. var. durum) [J]. Central European Journal of Biology, 2008,3:75-82.
    [137]Huang M, Zou Y. Comparison of grain filling characteristics between two super rice cultivars with remarkable difference in grain weight [J]. World Applied Sciences Journal,2009,6:674-679.
    [138]Wassmann R, Jagadish SVK, Heuer S, Ismail A, Redona E, Serraj R, Singh RK, Howell G, Pathak H, Sumfleth K. Climate change affecting rice production:the physiological and agronomic basis for possible adaptation strategies [J]. Advances in Agronomy,2009a.101,59-122.
    [139]Wassmann R, Jagadish SVK, Sumfleth K, Pathak H, Howell G, Ismail A, Serraj R, Redona E, Singh RK, Heuer S. Regional vulnerability of rice production in asia to climate change impacts and scope for adaptation[J].Advances in Agronomy, 2009b,102,91-133.
    [140]Peng S,Huang J,Cassman KG,Laza RC,Visperas RM,Khush GS.The importance of maintenance breeding:A case study of the first miracle rice variety-IR8[J].Field Crops Research,2010,119,342-347.
    [141]Scofield GN, Ruuska SA, Aoki N, Lewis DC, Tabe LM, Jenkins CLD. Starch storage in the stems of wheat plants:localization and temporal changes[J].Annals of Botany,2009,103,859-868.
    [142]Slewinski TL.Non-structural carbohydrate partitioning in grass stems:a target to increase yield stability, stress tolerance, and biofuel production[J].Journal of Experimental Botany,2012,63,4647-4670.
    [143]Sun Y, Ma J, Sun Y, Xu H, Yang Z, Liu S, Jia X, Zheng H. The effects of different water and nitrogen managements on yield and nitrogen use efficiency in hybrid rice of China[J].Field Crops Research,2012,127,85-98.
    [144]Yang J,Zhang J.Grain filling of cereals under soil drying.New phytologist.2006,169: 223-236
    [145]Yang J, Zhang J, Wang Z,Liu L, Zhu Q, Postanthesis Water Deficits Enhance Grain Filling in Two-Line Hybrid Rice[J]..Crop science,2003,43,2099-2108.
    [146]Zhang H, ChenT, Wang Z, Yang J, Zhang J.Involvement of cytokinins in the grain filling of rice under alternate wetting and drying irrigation[J]. Journal of Experimental Botany,2010,61(13):3719-3733
    [147]Belder, P., Spiertz, J.H.J., Bouman, B.A.M., Lu, G., Tuong, T.P.Nitrogen economy and water productivity of lowland rice under water-saving irrigation[J]. Field Crops Res,2005,93,169-185.
    [148]Dobermann,A.,Cassman, K.G., Mamaril, C.P., Sheehy J.E..Management of phosphorus, potassium, and sulfur in intensive, irrigated lowland rice[J]. Field Crops Res.1998,56, 113-138.
    [149]Muurinen, S., Peltonen-Sainio, P.,2006. Radiation-use efficiency of modern and old spring cereal cultivars and its response to nitrogen in northern growing conditions. Field Crops Res.96,363-373.
    [150]Peng S, Garcia FV, Laza RC, Sanico AL, Visperas RM, Cassman KG. Increased N-use efficiency using a chlorophyll meter on high-yielding irrigated rice[J].Field Crops Res,l996,47,243-252.
    [151]Wei D,Cui K,Pan J,Ye G,Xiang J,Nie L,Huang J.Genetic dissection of grain nitrogen use efficiency and grain yield and their relationship in rice[J].Field Crops Res,2011,124,340-346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700