用户名: 密码: 验证码:
适应区域气候变化的双季稻高产群体调控技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻是中国重要的粮食作物之一,气候环境的变化对水稻产生了重大影响。因此,明确区域气候变化特点和开展适应气候变化的群体调控技术研究很有必要。本研究分析了长江中游地区50个气象台站近50年的双季早晚稻各生育时期的农业气候资源变化特点,并在此基础上运用不同氮肥水平(NO-施纯氮0kg/hm2; N90-施纯氮90kg/hm2;N135-施纯氮135kg/hm2; N180-施纯氮180kg/hm2; N225-施纯氮225kg/hm2)、密度(D45-每公顷移栽45万穴;D30-每公顷移栽45万穴;D22-每公顷移栽45万穴;D16-每公顷移栽45万穴)和每穴栽插苗数(B1-每穴1粒谷苗;B2-每穴2粒谷苗;B3-每穴3粒谷苗;B4-每穴4粒谷苗)两两组配调控群体,并通过对三种调控措施作用效果的研究,最终形成早晚稻不同群体调控理论和技术体系,为双季早晚稻适应气候变化的高产高效栽培提供理论和技术依托。得到结论如下:
     1、探明了长江中游地区双季早晚稻各生育时期农业气候资源变化特征
     该地区早稻生长期内各生育期的平均温度、平均日最高温度、平均日最低温度、大于10℃积温等农业气侯资源均有一定幅度的增加;其中移栽返青分蘖期的平均温度、平均日最高温度、平均日最低温度等增幅最大,平均增温速率分别达1.05℃、1.34℃、0.84℃/10a;大于10℃积温平均增幅最明显的也是移栽返青分蘖期,增温速率为35.48℃/10a,其次是播种育秧期,为26.48℃/10a;移栽返青分蘖期的日照时数表现为增加,其它时期均减少;降水变化趋势除播种育秧期、移栽返青分蘖期下降外,其它时期均略有增加,而生殖生长期降水量的增加不利于灌浆结实。晚稻生长期内温度变化趋势为持续升高,抽穗期的平均温度、平均日最高温度、平均日最低温度的平均增速分别为0.42、0.34、0.57℃/10a,灌浆成熟期的平均温度、平均日最高温度、平均日最低温度的平均增幅分别为0.44、0.48、0.46℃/10a;晚稻播种育秧期、移栽返青分蘖期、孕穗期、抽穗期以及灌浆成熟期的日照时数均下降,其下降速率依次为:-14.86、-31.43、-31.08、-5.16、-7.87/10a;晚稻生长期内降水量除抽穗期和灌浆成熟期为减少外其它时期均增加,其气候倾向率依次为:3.76、21.56、6.76、-5.22、-18.40mm/10a,气候变化对晚稻的不利主要表现在群体构建的关键时期—移栽返青分蘖期和孕穗期的低温、寡照和降水偏多。因此,该区域气候变化对早稻是利大于弊,对晚稻而言则表现为制约其高产潜力的发挥。
     2、不同密度和栽插苗数调控能提高区域双季早晚稻适应气候变化的能力
     早稻剑叶光合速率随密度的增加而增加;栽插苗数单因对光合速率的影响表现为:B3>B4>B2;D45B3处理的剑叶光合速率、冠层叶片SPAD值、冠层太阳光截获率均高于其它处理。晚稻剑叶光合速率则随密度的增加而下降,不同栽插苗数处理表现为:B2>B1>B3,密度和在栽插苗数互作以D22B2处理的光合速率最高;晚稻冠层叶片SPAD值随密度、栽插苗数的增加均会降低,群体冠层太阳光截获率以D22B2最高。不同密度和栽插苗数调控对早晚稻产量及其构成因子的影响为:早稻不同密度处理的产量关系为D30>D45>D22,晚稻各密度处理产量依次为D22>D30>D16;早晚稻产量都跟栽插苗数呈单峰曲线关系,早晚稻分别是B3、B2最高。在本试验条件下:早稻在移栽密度33×104穴/hm2的基础上配合每穴3个栽插苗数,晚稻在移栽密度为26×104穴/hm2的基础上搭配每穴1个载插苗数能发挥高产潜力,获得高产。
     3、氮密调控对区域气候变化下的双季稻群体、产量及其构成因子有明显效果
     不同氮肥水平的早稻叶面积指数在生长后期N135处理最高,叶面积指数和干物质积累均会随密度增加而增加,栽插密度对早稻冠层截获率的影响表现为D30最高;氮肥用量和密度对早稻穗粒数、结实率影响不大,对有效穗和千粒重影响较大;氮肥和密度互作对有效穗影响达显著水平;施氮水平为135kg/m2时早稻产量最高,其次是施氮量180kg/hm2的处理。晚稻冠层光能截获是N180处理的要高于其他处理;不同密度处理以D22处理最高;不同氮肥水平的剑叶光合速率则以N180处理最高。氮肥对晚稻有效穗和穗粒数影响较大;晚稻有效穗数随栽插密度的增加而增加,但每穗粒数却与之相反;氮肥对晚稻产量的影响以施氮量为180kg/hm2最高;密度水平对产量的影响表现为:D30最高,D16最低,表明产量随密度的增加而增加。在区域气候变化下,双季早稻在密度和施氮量分别为36.60×104穴/hm2和141.20kg/hm2,可获最高为10359.30kg/m2;晚稻在氮肥水平为190.30kg/hm2,移栽密度为23.60×104穴/hm2时,可获得最高产。
     4、区域气候变化下氮肥和栽插苗数对双季稻有明显调控效果
     早稻叶面积指数随栽插苗数的增加而增加,孕穗期每穴3个栽插苗数处理的叶面积指数要比2个栽插苗数处理的高0.3;不同氮肥水平在齐穗期以前是N135处理最高,齐穗后N180处理最高;早稻冠层光能截获率随氮肥水平的提高而增加,栽插苗数对冠层光能截获的影响效果为B3>B2。晚稻群体叶面积指数则随氮肥水平的增加而增加;不同栽插苗数处理间的叶面积指数为B2大于B1。早晚稻有效穗均随氮肥水平的增加而增加,但每穗粒数与氮肥水平间却呈单峰曲线关系;氮肥和栽插苗数互作对每穗粒数的影响,早稻为N135B3最高,晚稻则是N180B1最高。本试验结果表明,不同氮肥水平的早稻产量以N135最高,其次是N180;早稻不同栽插苗数处理的产量表现为B3>B2。晚稻产量以N180处理最高,但N135的产量反而比N225的高;每穴1个栽插苗数的产量要大于2个栽插苗数处理的;氮肥和栽插苗数互作则是N180B1的产量最高,NOB1最低。
     5、提出了适应区域气候变化的双季早晚稻不同群体调控技术体系
     根据区域双季早晚稻各生育时期气候变化的差异,提出了适应区域气候变化的双季早晚稻不同群体调控技术体系:双季早晚稻的氮肥施用量分别在141.20-145.20、184.70-190.30kg/hm2之间,移栽密度分别为33.40×104-36.60×104、23.60×104-25.80×104穴/hm2之间,早晚稻分别搭配每穴栽插3、1粒谷苗,是高产高效的栽培方式。
Rice is one of the important food crops in China, but changes in climate and environment has brought or will bring key effects to the rice production. Thus, it is necessary to identify the characteristics of regional climatic changes and to carry out research on population regulation techniques that are adaptable to climate change. This study analyzes the characteristics of changes in agro-climatic resources at the middle reaches of the Yangtze River, where double-season rice has been developed at various growth stages over the last50years. Based on this analysis, the different nitrogen fertilizer rate (NO-nitrogen application was Okg/ha; N90-nitrogen application was90kg/ha; N135-nitrogen application was135kg/ha; N180-nitrogen application was180kg/ha; N225-nitrogen application was225kg/ha) and transplanting density (D45-transplanting densities of45×104hills/ha; D30-transplanting densities of30×104hhills/ha; D22-transplanting densities of22×104hills/ha; D16-transpl-anting densities of16×104hills/ha) and number seedling of per hill (B1-1seedling per hill. B2-2seedlings per hill, B3-3seedlings per hill, B4-4seedlings per hill) has been employed to regulate populations, and a study on the effects of these three methods is carried out. Finally, the different population regulation theory and technique systems for early and late rice are developed. This will provide theoretical basis and technical guidance for high-efficient planting and high yield of double-season rice under the influence of climate change. The conclusions are as follows:
     1. Ascertain the agro-climatic resources change characteristics of double crop rice at various growth stages at the middle reaches of the Yangtze River
     The agro-climatic resources, such as the mean temperature, mean daily maximal temperature and mean daily minimum temperature and>10℃accumulated temperature during early-season rice growth period were significantly increased. The increase speed of the mean temperature, mean daily maximal temperature and mean daily minimum temperature during the transplanting and returning green and to the tilling stage of early-season rice was1.05℃/10a,1.34℃/10a and0.84℃/10a respectively. The>10℃accumulated temperature during the transplanting and returning green stage to the tilling stage of early-season rice was significantly increased, the increase speed was35.48℃/10a, followed by the seeding and seedling-raising stage of early rice, the increase speed was26.48℃/10a. The sunshine hours only during the planting and returning green stage to the tilling stage of early-season rice was increased. The precipitation during the seeding and seedling-raising stage and the planting and returning green stage to the tilling stage of early-season rice were decreased. The increase speed of the mean temperature, mean daily maximal temperature and mean daily minimum temperature during the heading stage and the filling and ripening stage of late-season rice was0.42℃/10a,0.34℃/10a,0.57℃/10a;0.44℃/10a,0.48℃/10a,0.46℃/10a respectively, but the decrease speed of the sunshine hours and the precipitation during the heading stage and the filling and ripening stage of late-season rice was5.16h/10a,5.22mm/10a;7.87h/10a,18.40mm/10a respectively, the climate changed brought the temperature is low and less sunshine and excessive precipitation that had an adverse effect on rice during the transplanting and returning green and to the tilling stage and booting stage. Therefore, the regional climate changed would be beneficial to early rice production, but had a negative effect on the yield potential of late rice.
     2. The regulation of different transplanting density and number seedlings per hill can improve the adaption to regional climate change ability of double-season rice
     The photosynthetic rate of early-season rice flag leaf increased with the increase of transplanting density, the photosynthetic rate of early-season rice flag leaf for different number seedlings per hill were B3>B4>B2. The photosynthetic rate, SPAD values of canopy leaves and canopy solar radiant interception rate of early-season rice for D45B3was the highest. The photosynthetic rate of late-season rice flag leaf decreased with the increase of transplanting density, the photosynthetic rate of late-season rice flag leaf for different number seedlings per hill are B2>B1>B3, the photosynthetic rate of late-season rice flag leaf for2seedlings with the transplanting density of22×104hills/ha (D22B2) was the highest. The number of seedlings per hill and the yield of early-season and late-season rice showed a single peak curve relationship. The yield of early-season rice for different transplanting density were D30>D45>D22, the yield of late-season rice for different transplanting density were D22>D30>D16. The higher would be obtained:33×104hills/ha for the early-season rice with3seedlings per hill and26x104hills/ha for the late-season rice with1seedling per hill.
     3. The regulation of different nitrogen fertilizer rates and transplanting density has significant effects on population characteristics, yield and its components of double-season rice of regional climate change
     The LAI of nitrogen rate of135kg/ha was the highest during late growth period of early-season rice, the LAI and dry matter accumulation increased with the increase of transplanting density, the solar radiation interception rate of canopy for early-season rice with the transplanting density of30×104hills/ha (D30) was the highest. The effect of nitrogen fertilizer rate on early-season rice grain number per panicle and seed setting rate were lower than that on the number of productive panicles and1000-grain weight. The effect of interaction of nitrogen fertilizer and transplanting density on grain number per panicle was significant. The yield of early-season rice for the nitrogen rate of135kg/hawas the highest, the yield of early-season rice for the nitrogen rate of180kg/ha was the second highest and they were10245.04kg/ha,9962.12kg/ha respectively. Both of the nitrogen rates of180kg/ha and transplanting density of22×104hills/ha (D22) for late-season rice would be obtain the highest solar radiation interception rate of canopy. The photosynthetic rate of late-season rice flag leaf for the nitrogen rate of180kg/ha was the highest during the heading stage and the photosynthetic rate of late-season rice flag leaf for transplanting density of22×104hills/ha was the highest. The canopy solar radiant interception rate of late-season rice for N180D16was the highest during the heading stage and during the milky stage N225D16was the highest. The nitrogen fertilizer rates had more effect on the late-season rice grain number per panicle and number of productive panicles, the number of productive panicles increased with the increase of transplanting density, but the grain number per panicle decreased with the increase of transplanting density. The late-season rice with the nitrogen rate of180kg/ha could get the maximum yield, the transplanting density had less effect on the yield of late-season rice, but the yield increased with the increase of transplanting density. In order to obtain the higher yield, the nitrogen rate and transplanting density were recommended as:N141.20kg/ha for the early-season rice with the transplanting density of36.60×104hills/ha and N190.30kg/ha for the late-season rice with the transplanting density of23.60×104hills/ha.
     4. The regulation of different nitrogen fertilizer rates and number seedlings per hill has significant effects on double-season rice of regional climate change
     The LAI of early-season rice increased with the increase of number seedlings per hill, in the booting stage the LAI of early-season rice increased0.3for3seedlings per hill in comparison with that under the condition of2seedlings per hill. Before the heading stage the LAI of early-season rice for the nitrogen rate of135kg/ha was the highest, but after the heading stage the nitrogen rate of180kg/ha was the highest. The solar radiation interception rate of canopy of early-season rice increased with the increase of nitrogen fertilizer rates, the solar radiation interception rate of canopy of early-season rice for different number seedlings per hill were B3>B2. The LAI of late-season rice increased with the increase of nitrogen fertilizer rates, the LAI of late-season rice for different number seedlings per hill were B2> B1.The number of productive panicles of early-season and late-season rice increased with the increase of nitrogen fertilizer rates, nitrogen fertilizer rates and the grain number per panicle showed a single peak curve relationship for early and late rice, The effects of different nitrogen fertilizer rates and number seedlings per hill on the grain number per panicle showed that both of the N135B3for early-season rice and N180B1for late-season rice were the highest. The yield of nitrogen rate of135kg/ha of early-season rice was the highest and nitrogen rate of180kg/ha was the second highest. The yield of early-season rice of3seedlings per hill was higher than that of2seedlings per hill. The yield of nitrogen rate of180kg/ha of late-season rice was the highest, but the yield of nitrogen rate of135kg/ha was higher than that of nitrogen rate of225kg/ha, the yield of lseeding per hill more than that of2seedlings per hill. The yield of nitrogen rate of180kg/ha for late-season rice of1seeding per hill was the highest and nitrogen rate of Okg/ha for late-season rice of1seeding per hill was the lowest.
     5. The population regulation theory and technique system will provide for adaptation to regional climate change of double-season rice
     According to the different climate change for double-seasons rice at each growth stages and take the high yield and high economic efficiency into consideration, the N fertilization rate, transplanting density and number seedlings per hill were recommended as:N141.20-145.20kg/ha for early-season rice with the transplanting density of33.40-36.60×104hills/ha of3seedlings per hill and N184.70-190.30kg/ha for late-season rice with the transplanting density of23.60-25.80×104hills/ha of lseeding per hill.
引文
[1]艾治勇,马国辉,青先国.超级杂交稻生理生态特性及高产稳产栽培调控的研究进展[J].中国水稻科学,2011,25(5):553-560.
    [2]艾治勇.长江中游地区双季稻气候变化下高产栽培理论与技术研究[D].湖南农业大学,2012.
    [3]敖和军,王淑红,邹应斌,等.超级杂交稻干物质生产特点与产量稳定性研究[J].中国农业科学,2008,41(7):1927-1936.
    [4]陈进红,郭恒德,毛国娟,等.杂交粳稻超高产群体干物质生产及养分吸收利用特点[J].中国水稻科学,2001,15(4):271-275.
    [5]陈进红,张国平,郭恒德,等.杂交粳稻超高产群体的冠层结构特点研究[J].应用生态学报,2003,14(6):913-916.
    [6]陈双溪.科学应对气候变化建设江西生态文明[J].气象与减灾研究,2008,31(1):17-22.
    [7]陈雨海,余松烈,于振文.小麦生长后期群体光截获量及其分布与产量的关系[J].作物学 报,2003,29(5):730-734.
    [8]陈周前,吴文革,刘襄,等.烯效唑对水稻生育的调控研究[J].安徽农业科学,1994,22(2):128-131.
    [9]戴其根,霍中洋,张洪程,等.抛秧水稻生长发育与产量形成的生态生理机制活棵立苗及其生态生理特点[J].作物学报,2001,27(3):278-285.
    [10]戴其根,霍中洋,张洪程,等.抛秧水稻生长发育与产量形成的生态生理机制Ⅲ.秧苗地面水平向上的分布格局及其生态生理效应[J].作物学报,2001,27(6):802-810.
    [11]董红敏,李玉娥,陶秀萍,等.中国农业源温室气体排放与减排技术对策[J].农业工程学报,2008,24(1):269-273.
    [12]方福平,程式华.论中国水稻生产能力[J].中国水稻科学,2009,23(6):559-566.
    [13]方展森,关丽君,王枫林,等.北方水稻早育稀植栽培技术的研究[J].吉林农业科学,1991,(3):1-4.
    [14]傅玮东,姚艳丽,毛炜峄.棉花生长期的气候变化对棉花生产的影响—吉回族自治州为例[J].于旱区研究,2009,26(1):142-148.
    [15]高懋芳,邱建军,刘三超,等.我国低温冷冻害的发生规律分析[J].中国生态农业学报,2008,16(5):1167-1172.
    [16]高明超,杨伟光.气候变化及其对农作物的影响[J].现代农业科技,2010,(1):292-293
    [17]葛道阔,金之庆,石春林,等.气候变化对中国南方水稻生产的阶段性影响及适应性对策[J].江苏农业学报,2002,18(1):1-8.
    [18]葛东生,张秀云,刘襄,等.杂交中稻及杂交晚稻适宜播期的研究[J].安徽农业科学,1995,23(1):22-23.
    [19]高旺盛,杨光立.粮食安全与农作制度建设.长沙:湖南科学技术出版社,2004.
    [20]郭萌生,张红林,谢勇,等.温度条件对杂交中晚稻结实率的影响[J].中国农业气象,2008,29(3):304-307.
    [21]韩春雷,魏树和,刘宪平,等.水稻高产群体的冠层特征及其与产量关系的研究[J].辽宁农业科学,1996,(4),24-27.
    [22]黄高宝.作物群体受光结构与作物生产力研究[J].生态学杂志,1999,18(1):59-65.
    [23]何丽.近百年全球气温变化对长江流域降水影响分析[J].资源环境与发展,2007,(4):4-7,3.
    [24]黄建晔,杨洪建,董桂春,等.开放式空气CO2浓度增高对水稻产量形成的影响[J].应用生态学报,2002,13(10):1210-1214.
    [25]黄建晔,董桂春,杨洪建,等.开放式空气CO2增高对水稻物质生产与分配的影响.应用生态学报,2003,14(2):253-257.
    [26]黄建晔,杨连新,杨洪建,等.开放式空气CO2浓度增加对水稻生育期的影响及其原因分析[J].作物学报,2005,31(7):882-887.
    [27]黄不生,吴俊恩,缪宝山,等.单季杂交稻高产群体的探讨[J].江苏农业科学,1980,(2):9-12,21.
    [28]黄示瑜,吴洁远,蒋兴龙,等.直播稻的生育特点和增产因素分析[J].广西农业科学,2003,(5):24-25,
    [29]洪盛茂,刘国平,俞向呱全球大气、CO2浓度变化特点简析[J].浙江气象,2002,23(2):28-32.
    [30]黄晚华,刘晓波,邓伟.湖南农业气象要素变化及对主要农作物的影响[J].湖南农业科学,2009,(1):61-64.
    [31]霍中洋.长江中游地区双季早稻超高产形成特征及精确定量栽培关键技术研究[D].扬州:扬州大学,2010.
    [32]胡忠孝.中国水稻生产形势分析[J].杂交水稻,2009,24(6):1-7.
    [33]蒋彭炎,姚长溪,任正龙,等.论早稻稀少平高产栽培法[J].浙江农业大学学报,1983,9(2):127-129.
    [34]蒋彭炎,冯来定,姚长溪.从水稻稀少平栽培法的高产效应看栽培技术和株型的关系[J].中国水稻科学,1987,1(2):111-117.
    [35]姜晓剑,汤亮,刘小军,等.中国主要稻作区水稻生产气候资源的时空特征[J].农业工程学报,2011,27(7):238-245.
    [36]姜文超,孙龙泉,肖伯群,等.播种期对两优培九产量及生育特性的影响[J].杂交水稻,2001,16(1):36-40.
    [37]金宝石,查良松.GIS支持下的粮食单产与光热水分布特征相关分析:以安徽省为例[J].中国农业气象,2006,27(1):1-5.
    [38]李军营,徐长亮,谢辉,等.CO2浓度升高加快水稻灌浆前期籽粒的生长发育进程[J].作物学报,2006,32(6):905-910.
    [39]凌启鸿,张洪程,程庚令,等.IR24大面积高产栽培技术途径—兼论小群体、壮个体栽培模式[J].江苏农业科学,1982,(9):1-10.
    [40]凌启鸿,苏祖芳,张洪程,等.水稻品种不同生育类型的叶龄模式[J].中国农业科学,1983,(1):1-8.
    [41]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993,26(6):1-11.
    [42]李木英,石庆华,王涛,等.氮肥运筹对陆两优996吸氮、干物质生产和产量的影响[J].江西农业大学学报,2008,30(4):187-193.
    [43]李木英,石庆华,王涛,等.种植密度对双季超级稻群体发育和产量的影响[J].杂交水稻,2009,24(2):72-77.
    [44]李木英,石庆华,黄才立,等.穗肥运筹对超级杂交稻淦鑫688源库特征和氮肥效益的影响[J].杂交水稻,2010,25(2):63-72.
    [45]林玉棋.Ⅱ优航2号作双季晚稻栽培的适宜氮肥用量和移栽密度探讨[J].杂交稻,2008,23(3):42-45.
    [46]刘立军,徐伟,吴长付,等.实地氮肥管理下的水稻生长发育和养分吸收特性[J].中国水稻科学,2007,21(2):167-173.
    [47]刘立军,杨立年,孙小淋,等.水稻实地氮肥管理的氮肥利用效率及其生理原因[J].作物学报,2009,35(9):1672-1680.
    [48]刘立军,薛亚光,孙小淋,等.水分管理方式对水稻产量和氮肥利用率的影响[J].中国水稻科学,2009,23(3):282-288.
    [49]刘建丰,袁隆平,邓启云,等.超高产杂交稻的光合特性研究[J].中国农业科学,2005,38(2):258-264.
    [50]刘军,余铁桥,贺汉林,等.超高产水稻产量形成的气候生态特点研究[J].湖南农业大学学报,1996,22(4):326-332.
    [51]刘可群,陈正洪,夏智宏.湖北省太阳能资源时空分布特征及区划研究[J].华中农业大学学报, 2007,26(6):888-893.
    [52]刘学冰,孙玉莹,范晓刚.冰稻抛秧高产高效原在浅析[J].北方水稻,2008,38(5):48-51.
    [53]卢景波.中国水稻产业-供需、流通与未来政策导向[J].中国稻米,2002,11-13.
    [54]陆魁东,宋忠华,居晶琳,等.一季超级稻高效栽培气象条件研究[J].作物研究,2003,17(4):196-197.
    [55]陆魁尔,屈右铭,张超,等.湖南气候变化对农作物生产潜力的响应[J].湖南农业大学学报,2007,33(1):9-13.
    [56]卢其尧.我国水稻生产光温潜力的探讨[J].中国农业气象,1980,1(1):1-11.
    [57]吕川根,王林,宗寿余,等.温度对水稻亚种间杂种育性及结实率的影响[J].作物学报,2002,28(4):499-504.
    [58]马殿荣,陈温福,王庆祥,等.水稻乳苗抛栽与其他栽培方式的比较研究[J].沈阳农业大学学报,2003,34(5):336-339.
    [59]马殿荣,陈温福,徐正进,等,不同栽培方式对水稻群体形态特征的影响[J].沈阳农业大学学报,2005,36(4):392-395.
    [60]马国辉,龙继锐,戴清明,等.超级杂交中稻Y两优1号最佳缓释氮肥用量和密度配置研究[J].杂交水稻,2008,23(6):73-77.
    [61]盘训记.超级杂交稻不同播期对产量和生育期的影响[J].湖南农业科学,2007,(6):77-78,80.
    [62]潘根兴,高民,胡国华,等.气候变化对中国农业生产的影响[J].农业环境科学学报,2011,30(9):1698-1706,
    [63]秦大河,丁一汇,王绍武,等.中国西部环境演变及其影响研究[J],地学前缘,2002,9(2):321-328.
    [64]秦大河,陈振林,,罗勇,等气候变化科学的最新认识[J].气候变化研究进展,2007,3(2):63-73.
    [65]青先国,水稻丰产高效实用技术[M].长沙:湖南科技出版社,2005.
    [66]任国玉,初子莹,周雅清,等.中国气温变化研究最新进展[J]。气候与环境研究,2005,10(4)701-715。
    [67]中广荣,王人潮,李云梅,等.水稻群丛结构和辐射传输分析[J].作物学报,2001,27(6):769-775.
    [68]施能,陈绿文.全球陆地年降水场的长期变化(1948-2000年)[J].科学通报,2002,47(21):1671.1674.
    [69]施雅风.全球变暖影响下中国自然灾害的发展趋势[J].自然灾害学报,1996,5(2):102-116.
    [70]宋艳玲,张强,董文杰.气候变化对新疆地区棉花生产的影响[J].中国农业气象,2004,25(3):15-20.
    [71]苏祖芳,周兴安,张亚洁,等.搁田始期对水稻成穗率、产量形成和群体物质的影响[J],中国水稻科学,1996,10(2):95-102.
    [72]唐国利,任国玉.近百年中国地表气温变化趋势的再分折[J].气候与环境研究,2005,10(4):791-797.
    [73]汤亮,朱相成,曹梦莹,等,水稻冠层光截获、光能利用与产量的关系[J].应用生态学报,2012,23(5):1269-1276
    [74]唐启源,邹应斌,米湘成,等.不同施氮条件下超级杂交稻的产量形成特点与氮肥利用[J].杂交水稻,2003,18(1):44-48.
    [75]屠其璞,邓自旺,周晓兰.中国近117年年平均气温变化的区域特征研究[J].应用气象学报,1999,10(增刊):34-41.
    [76]王馥棠.CO2浓度增加对植物生长和农业生产的影响[J].气象,1993,19(7):8-13.
    [77]王国忠,彭斌,陆峥嵘,等.直播水稻物质生产特点及其高产调控技术研究[J].上海农业学报,2002,18(2):32-37.
    [78]王建林,徐正进.穗型和行距对水稻冠层受光态势的影响[J].中国水稻科学,2005,19(5):422-426.
    [79]王润元,张强,刘宏谊,等.气候变暖对河西走廊棉花生长的影响[J].气候变化研究进展,2006,2(1):40-42.
    [80]王绍武,罗勇,闻新宇,等.近千年全球温度变化研究的新进展[J].气候变化研究进展,2007,3(1):14-19.
    [81]王淑红,邹应斌,冯跃华,等.超级稻“三定”栽培法研究Ⅱ.不同施肥量对超级杂交稻产量及生长生理特性的影响[J].中国农学通报,2006,22(6):141-146.
    [82]王熹,俞美玉,陶龙兴.烯效哇对稻苗的生物学效应[J].中国水稻科学,1993,7(4):199-204.
    [83]王熹,姚福德,高成伟,等.多效哇对水稻的生物效应及其应用[J].中国水稻科学,1988,2(1):29-35.
    [84]王修兰,徐师华.气候变暖对土壤化肥用量和肥效影响的实验研究[J].气象,1996,22(7):22-26.
    [85]王英,曹明奎,陶波,等.全球气候变化背景下中国降水量空间格局的变化特征[J].地理研究,2006,25(6):1031-1041.
    [86]王志敏,王树安.发展超高产技术,确保中国未来16亿人口的粮食安全[J].中国农业科技导报,2000,2(3):8-11.
    [87]魏金连,潘晓华.夜间温度升高对早稻生长发育及产量的影响[J].江西农业大学学报,2008,30(3):427-432.
    [88]温怀楠,赵建平,刘金弟,等.单季晚稻持续高产的群体特性分析[J].上海农业学报,2002,18(3):28-34.
    [89]吴桂成,张洪程,戴其根,等.南方粳型超级稻物质生产积累及超高产特征的研究[J].作物学报,2010,36(11):1921-1930.
    [90]吴志祥,周兆德.气候变化对我国农业生产的影响及对策[J].华南热带农业大学学报,2004,10(2):7-11.
    [91]吴春赞,叶定池,林华,等.栽插密度对水稻产量及品质的影响[J].中国农学通报,2005,21(9):190-191,205.
    [92]夏宝军,陈仕界,朱忙才.水稻超高产基本特征及栽培技术[J].现代农业科技,2010,(15):84.
    [93]夏新奎,严泽群,胡雪竹,等.化学调控对水稻形态、生理特性和产量的影响[J].2000,10(1):12-15.
    [94]肖风劲,张海东,王春乙,等.气候变化对我国农业的可能影响及适应性对策[J].自然灾害学报,2006,15(6):327-331.
    [95]肖炜.播种期对超级稻产量形成及稻米品质的影响[J].中国稻米,2008,(5):41-43.
    [96]熊伟,陶福禄,许吟隆,等.气候变化情景‘下我国水稻产量变化模拟[J].中国农业气象,2001,22(3):1-5.
    [97]熊玉唐,王兴武,冯世杰,等.水稻旱育秧增产效果研究[J].耕作与栽培,2001,(3):48-50.
    [98]徐春梅,王丹英,邵国胜,等.施氮量和栽插密度对超高产水稻中22产量和品质的影响[J].中国水稻科学,2008,22(5):50-512.
    [99]徐正进,孙晓杰,中崎铁也,等.日本超高产水稻品种的形态生理特点及其与物质生产的关系[J].沈阳农业大学学报.1991,22(增刊):34-42.
    [100]闫川,丁艳锋,王强盛,等.行株距配置对水稻茎秆形态生理与群体生态的影响[J].中国水稻科学,2007,21(5):530-536.
    [101]颜振德.杂交水稻在稻麦两熟区的高产栽培技术[J].中国农业科学,1978,(2):26-33.
    [102]杨桂山.中国热带气旋灾害及全球变暖背景下的可能趋势分析[J].自然灾害学报,1996,5(2):47-54.
    [103]杨惠杰,李义珍,杨仁崔,等.云南超高产水稻与龙海高产稻性状的比较[J].福建稻麦科技,1998,16(3):38-40.
    [104]杨惠杰,杨高群,李义珍,等.杂交稻特优175的超高产生理生态特性研究[J].福建稻麦科技,2002,19(4):1-3.
    [105]杨建吕,朱庆森,曹显祖,等.水稻群体冠层结构与光合特性对产量形成作用的研究[J].中国农业科学.1992,15(4):7-14.
    [106]杨梢娜,俞巧钢,叶静,等.施氮水平对杂交晚粳浙优12产量及氮素利用效率的影响[J].植物营养与肥料学报,2010,16(5):1120-1125.
    [107]杨沈斌,中双和,赵小艳,等.气候变化对长江中下游稻区水稻产量的影响[J].作物学报,2010,36(9):1519-1528.
    [108]杨守仁,张龙步等.水稻超高产育种的理论和方法[J].中国水稻科学,1996,10(2):150-120
    [109]尹必文,吴文革,魏安季,等.不同水分管理对杂交水稻产量及其构成的影响[J].杂交水稻.2011,26(6):37-39.
    [110]虞海燕,刘树华,赵娜,等.1951-2009年中国不同区域气温和降水量变化特征[J].气象与环境学报,2011,27(4):1-11.
    [111]于强,王天铎,刘建栋,等.玉米株型与冠层光合作用的数学模拟研究Ⅰ.模型与验证[J].作物学报,1998,24(1):7-15.
    [112]]喻足衡,陈年镛,陈振团.丰优香占直播栽培生长特性及栽培技术初探[J].杂交水稻,2004,19(2):50-52.
    [113]曾凯,周玉,宋忠华.气候变暖对江南双季稻灌浆期的影响极其观测规范探讨[J].气象,2011,37(4):468-473.
    [114]曾勇军,石庆华,潘晓华,等.长江中下游双季稻高产株型特征初步研究[J].作物学报,2009,35(3):546-551.
    [115]翟盘茂,任福民,张强.中国降水极值变化趋热势检测[J].气象学报,1999,57(2):208-216.
    [116]张桂莲,杜娟,刘国华,等.不同育秧方式对陆两优996秧苗素质及产量性状的影响[J].湖南农业大学学报,2008,34(2):123-126.
    [117]张洪程,苏祖芳,戴其根,等.麦茬小苗单季稻改善群体质量的高产节本技术[J].江苏农学院学报,1989,10(2):1-6.
    [118]张洪程,吴桂成,李德剑,等,杂交粳稻13.5t.hm-2超高产群体动态特征及形成机制的探讨[J].作 物学报,2010,36(9):1547-1558.
    [119]张洪程,吴桂成,吴文革,等.水稻“精苗稳前、控蘖优中、大穗强后”超高产定量化栽培模式[J].中国农业科学,2010,43(13):2645-2660.
    [120]张洪程,王秀芹,戴其根,等.施氮量对杂交稻两优培九产量、品质及吸氮特性的影响[J].中国农业科学,2003,36(7):800-806.
    [121]张娇艳,吴立广,张强.全球变暖背景下我国热带气旋灾害趋势分析[J].热带气象学报,2011,27(4):442-453.
    [122]张强,邓振镛,赵映东,等.全球气候变化对我国西北地区农业的影响[J].生态学报,2008,28(3):1210-1218.
    [123]张永泰,李爱民,陆仁铮.水稻旱育秧适宜密度阂值探讨[J].耕作与栽培,1998,(6):11-13.
    [124]张强.长江中游地区双季早稻超高产群体特征及氮素吸收利用的研究[D].扬州:扬州大学,2010.
    [125]张镇铭,姚金富,管耀祖,等.化控与粒肥施用对防止杂交中稻早衰的效应[J].杂交水稻,2002,17(3):33-35.
    [126]张建平,赵艳霞,王春乙,等.气候变化对我国南方双季稻发育和产量的影响[J].气候变化研究进展,2005,1(4):151-156.
    [127]张宇,王馥棠.气候变暖对我国水稻生产可能影响的数值模拟试验研究[J].应用气象学报,1995,6(增刊):19-24.
    [128]张宇,王馥棠.气候变暖对中国水稻生产可能影响的研究[J].气象学报,1998,56(3):369-376.
    [129]赵松岭,李凤民,张大勇,等.作物生产是一个种群过程[J].生态学报,1997,17(1):101-104.
    [130]郑同松,王吉明,鲁长贵.不同育秧方式对早稻生育及产量的影响初探[J].安徽农业科学,1997,(2):183-184.
    [131]中国国土资源部.2007年中国国土资源公报[J].国十资源通讯,2008,(8):23-28.
    [132]周以鸿.云南不同地区水稻产量与气候因素关系的探讨[J].云南农业大学学报,1990,5(1):7-10.
    [133]朱德峰,石庆华,张洪程.超级稻品种配套栽培技术[M].北京:金盾出版社,2008.
    [134]Acreche M M, Briceno-Felix G, Martin Sanchez J A, et al. Radiation interception and use efficiency as affected by breeding in Mediterranean wheat. Field Crops Research,2009,110:90-97.
    [135]Bradley R S, H F Diaz, Eischeid J K et al. Precipitation fluctuations over Northern Hemisphere land areas since the mid-19th center [J]. Science,1987,237(4811):171-175.
    [136]Campbell C S, Heilman J L, Mclnnes K J, et al. Seasonal variation in radiation use efficiency of irrigated rice. Agricultural and Forest Meteorology,2001,110:45-54.
    [137]Cassman K G, Harwood R R. The nature of agricultural systems:Food security and environmental balance. Food Policy,1995,20:439-454.
    [138]Chen SG, Shao BY, Impens I, et al. Effects of plant canopy structure on light interception and photosynthesis. Journal of Quantitative Spectroscopy and Radiative Transfer,1994,52:115-123.
    [139]Dong S-T, Hu C-H, Yue S-S.1992.The characteristics of canopy photo synthesis of summer corn and its relation with canopy structure and ecological conditions. Acta Phytoeco logica et al.Geobo tanica Sinica,16:372-378.
    [140]Diaz H F, R S Bradley, J K Eischeid. Precipitation fluction over global land areas since the late 1800 s [J].J Geophy Res,1989,94(D 1):1195-1210.
    [141]Falkowski P, Scholes R J, Boyle E, et al. The Global Carbon Cycle-A Test of Our Knowledge of Earth as a System [J]. Science,2000,290:291-296.
    [142]Gleick P H, Sdams R M, Amasino R M, et al. Climate change and the integrity of science. Science,20]0,328:689-690.
    [143]Horie T, ohnishi M, Angus J F, et al. Physiological characteristics of high-yielding rice inferred from cross-location experiments [J].Field Crops Research,1997,52:55-67.
    [144]Imai K, Coleman D F, Yanagisawa T.1985. In crease in atmospheric partial pressure of carbon dioxide and growth and yield of rice (Oryza sativaL). Jpn J Crop Sci,54:413-418.
    [145]IPCC.2001. Climate Change:The Scientific Basis. Cambridge:Cambridge Press.
    [146]Kurt M Cuffey, Francoise Vimeux. Covariation of carbon dioxide and temperature from the Vostokice core after deuterium-excess correction [J]. Nature,2001,412,523-527.
    [147]Peng S B, Huang JL, Sheehy JE, et al. Rice yields decline with higher night temperature from global warming [J]. PNAS,2004, 101(27):9971-9975.
    [148]Peng S B, Cassman KG, Virmani SS, et al. Yield potential trends of tropical rice since release of IR8 and the challenge of increasing rice yield potential [J].Crop science,1999,39:1552-1559.
    [149]Ruiz R A, Bertero H D. Light interception and radiation use efficiency in temperate quinoa (Chenopodium quinoa Willd) Cultivars. European Journal of Agronomy,2008,29:144-152.
    [150]ShimonoH.HasegwaaT.FujimuraS.IwmaaK.ResPonses of leaf Photosynthesis and Plant water-status in rice to low water temperature at different groeth stages [J]. Field Crops research.2004,89:71-83
    [151]Smith P et al. Agriculture. In:Climate Change 2007:Mitigation. Contribution of Working Group Ⅲ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (Metz B et al. eds).[M].Cambridge and New York. Cambridge University Press,2007.
    [152]Wei Xiong, Erda Lin, Hui Ju, et al. Climate change and critical thresholds in China s food security [J]. Climatic Change,2007,81:205-221.
    [153]Trenberth, K.E. Atmospheric moisture residence times and cycling:Implications for rainfall rates with climate change [J].Clim. Change,1998,39:667-694.
    [154]Xiao Hui-Lin. Climate change in relation to soil organic matter [J].Soil and Environmental Sciences (China),1999,8(4):300-304.
    [155]Zhang L, Vander Werf W, Bastiaans L, et al.Light interception and utilization in relay intercrops of wheat and cotton [J]. Field Crops Research,2008,107:29-42.
    [1]艾治勇.长江中游地区双季稻气候变化下高产栽培理论与技术研究[D].湖南农业大学,2012.
    [2]丁一江,戴晓苏.中国近百年来的温度变化[J].气象,1994,20(12):18-16.
    [3]葛道阔,金之庆,石春林,等.气候变化对中国南方水稻生产的阶段性影响及适应性对策[J].江苏农业报.2002,18(1):1-8
    [4]国家统计局.中国统计年鉴.2000,北京:中国统计出版社.
    [5]江敏,金之庆,石春林,等.长江中下游地区水稻孕穗开花期高温发生规律及其对产量的影响[J].生态学杂志,2010,29(4):649-656.
    [6]李林,张更生.水稻分蘖期的阴害研究[J].中国农业气象,1990,(8):14-16.
    [7]罗丽华,陈桂华,胡英,等.气象因素与早稻产量因子的相关性分析[J].自然资源学报,2010.25(10):1718-1726.
    [8]任国玉,郭军,徐铭志等.近50年中国地面气候变化基本特征[J].气象学报,2005,63(6):942-956.
    [9]肖风劲,张海东,王春乙,等.气候变化对我国农业的可能影响及适应性对策[J].自然灾害学报,2006,15(6):327-331.
    [10]熊振民,蔡洪法.中国水稻[M].北京:中国农业科技出版社,1992,273-383.
    [11]杨沈斌,申双和,赵小艳,等.气候变化对长江中下游稻区水稻产量的影响[J].作物学报,2010,36(9):1519-1528.
    [12]尹春梅,谢小立.桃源县水稻产量的气候影响分析[J].中国农业气象,2008,29(4):450-453.
    [13]曾翔,李阳生,李达模,等.影响杂交水稻结实率的因素分析及其关键调控技术[J].湖南农业科学,2003,(4):28-30,31.
    [14]张建平,赵艳霞,王春乙,等.气候变化对我国南方双季稻发育和产量的影响[J].气候变化研究进展,2005,1(4):151-156.
    [15]张宇,王馥棠.气候变暖对我国水稻生产可能影响的数值模拟试验研究[J].应用气象学报,1995,6(增刊):19-24.
    [16]张桂莲,刘思言,张顺堂,等.抽穗开花期不同高温处理对水稻开花习性和结实率的影响[J].中 国农学通报,2012,28(30):116-120.
    [17]张玉烛,张桂和,朱国奇,等.阴雨对早稻开花及受精结实的影响[J].中国水稻科学,1995,9(3):173-178.
    [18]赵海燕,姚凤梅,张勇,等.长江中下游水稻开花灌浆期气象要素与结实率和粒重的相关性分析[J].中国农业科学,2006,39(9):1765-1771.
    [19]郑建初,张彬,陈留根,等.抽穗期高温对水稻产量构成要素和稻米品质的影响及其基因型差异[J].江苏农业学报,2005,21(4):249-254.
    [20]Ekanayke I J, de Datta S K, Steponkus P L. Spikelet sterility and f lowering response of rice to water stress at anthesis [J]. Ann Bot,1989,63:257-264.
    [21]Murty K S, Sahu G. Impact of low-light stress on growth and yield of rice [M]. Weather and rice. Manila, Philippines:IRRI,1987:93-101.
    [22]Tao F L, Yokozawa M, Liu J Y, et al. Climate-crop yield relationships at provincial scales in China and the impacts of recent climate trends [J]. Clim Res,2008,38:83-94.
    [23]Yoshida S, Satake T, M ackill D S. High temperature stress in rice [M]. Manila, Plilippines:IRRI, 1981.
    [1]艾治勇,马国辉,青先国.超级杂交稻生理生态特性及高产稳产栽培调控的研究进展[J].中国水稻科学,2011,25(5):553-560.
    [2]陈锦新,王人民,陈国林.早籼稻不同基础群体和结构的初步研究[J].浙江农业大学学报,1996,22(3):294-300.
    [3]代姝玮,杨晓光,赵孟,等.气候变化背景下中国农业气候资源变化Ⅱ.西南地区农业气候资源时空变化特征[J].应用生态学报,2011,22(2):442-452.
    [4]丁涛,张洪程,袁秋勇.施氮量与每穴本数对丰优香占产量、品质及吸氮特性的影响[J].江苏农业科学,2005,(1):23-27.
    [5]丁颖.中国水稻栽培学[M].北京:中国农业出版社,1961.10-35.
    [6]韩春雷,魏树和,刘宪平,等.水稻高产群体的冠层特征及其与产量关系的研究[J].辽宁农业科学,1996,(3):24-27.
    [7]黄成林.安徽休宁倭竹光合生理特性的研究[J].安徽农业大学学报,2005,32(2):187-191.
    [8]葛道阔,金之庆,石春林,等.气候变化对中国南方水稻生产的阶段性影响及适应性对策[J].江苏农业学报,2002,18(1):1-8.
    [9]龚金龙,张洪程,李杰,等.水稻超高产栽培模式及系统理论的研究进展[J].中国水稻科学,2010,24(4):417-424.
    [10]陶诗顺,马均.杂交水稻强化栽培穗粒机构特点研究[J].杂交水稻,2004,19(6):39-41.
    [11]袁奇,于林惠,石世杰,等.机插秧每穴栽插苗数对水稻分蘖与成穗的影响[J].农业工程学报,2007,23(10):121·125.
    [12]蒋彭炎,姚长溪,任正龙,等.论早稻稀、少、平高产栽培法[J].浙江农业大学学报,1983,9(2):127-138.
    [13]焦石.水稻早育稀植密度试验初报[J].甘肃农业科技,1992,(7):11-12.
    [14]李志宏,刘宏斌,张福锁.应用叶绿素仪诊断冬小麦氮营养状况的研究[J].植物营养与肥料学报,2003,9(4):401-405.
    [15]鲁伟林,宋世枝,余新春,等.单双苗移栽对东交水稻群体特征及产量性状的比较研究[J].安徽农业科学,2006,34(13):3004-3005.
    [16]潘圣刚,曹凑贵,蔡明历,等.栽插密度及方式对杂交水稻”红莲优6号”产量和品质的影响[J].江西农业大学学报,2006,28(6):845-849.
    [17]彭长青,李世峰,卞新民,等.机插水稻高产栽培关键技术的适宜值[J].应用生态学报,2006,17(9):1619-1623.
    [18]钱银飞,张洪程,李杰,等.不同基本苗配置对机插稻产量和品质的影响[J].华北农学报,2009,24(增刊):316-322.
    [19]苏祖芳,霍中洋.水稻合理密植研究进展[J],耕作与栽培,2006,5:6-9.
    [20]夏冰,阳树英,刘清波.生态因子对水稻叶片光合生理功能的影响综述[J].作物研究2008,(2):140-142.
    [21]沈掌泉,王珂,朱君艳.叶绿素计诊断不同水稻品种氮素营养水平的研究初报[J].科技通报,2002,18(3):173-176.
    [22]帅细强,王石立,马玉平,等.基于ORYZA2000模型的湘赣双季稻气候生产潜力[J].中国农业气象,2009,30(4):575-581.
    [23]夏仲炎,谢元璋,文勇,等.水稻壮个体的增产机理及其讨论[J].中国稻米,1997,(1):33-35.
    [24]夏仲炎,谢元璋.水稻群体的个体质量与产量关系分析[J].生物数学学报,1998,13(2):230-233.
    [25]谢立勇,徐正进,林而达,等.水稻灌浆期群体光能截获与利用分析[J].中国农业气象,2005.26(4):207-209.
    [26]徐正进,陈温福,周鸿飞,等.直立穗型水稻群体生理生态特性及其利用前景[J].科学通报,1996,41(12):1122-1126.
    [27]杨惠杰,李义珍,黄育民,等.超高产水稻们产量构成和库源结构[J].福建农业学报,1999,14(1):1-5.
    [28]杨建吕,陈忠辉,杜永.水稻超高产群体特征及其栽培技术[J].中国农业科技导报,2004,6(4):37-40.
    [29]袁伟玲,曹凑贵,程建平.水稻产量及构成因素的灰色关联度分析[J].湖北农业科学,2005,(2):24-25.
    [30]赵松岭,李凤民,张大勇,等.作物生产是一个种群过程[J].生态学报,1997,17(1):101-104.
    [31]张建平,赵艳霞,王春乙.气候变化对我国南方双季稻发育和产量的影响[J].2005,4(1):151-156.
    [32]张四海,吴文革,黄义德,等.密肥条件对杂交中籼稻产量及其构成因素的影响[J].安徽农业科学,2008,36(9):3563-3564,3573.
    [33]赵海燕,姚凤梅,张勇,等.长江中下游水稻开花灌浆期气象要素与结实率和粒重的相关性分析[J].中国农业科学,2006,39(9):1765-1771.
    [34]Connor D J, Fereres E. Adynamic model of crop growth and partitioningof biomass [J]. Field crops research,1999,63:139-157.
    [35]Gravois K A, HelmsR S. Path an alysis of rice yield and yield components as affected by seeding rate [J]. Agron J,1992,84:1-4.
    [36]Kiniry J R, Jones C A, Toole J C O, et al.Radiation use efficiency in biomass accumulation prior to grain filling for five grain crop species [J].Field Crops Research,1989,20:51-64.
    [37][36]Kiniry J R, M cCauley G, Yun X, et al. Rice parameters describingcrop performance of four U S Cultivars [J].Agron J,2001,93:1354-1361.
    [38]Krishnan P, Swain D K, Bhaskar B C, et al.Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies [J].Agriculture, Ecosytems and Environment,2007,122:233-242.
    [39]Peng S B, Huang J L, Cassman K G, et al.The importance of maintenance breeding:A case study of the first miracle rice varity-IR8 [J]. Field Crops Research,2010,119:342-347.
    [l]敖和军,王淑红,邹应斌,等,超级杂交稻干物质生产特点与产量稳定性研究[J].中国农业科学,2008,41(7):1927-1936.
    [2]艾治勇,马国辉,青先国.超级杂交稻生理生态特性及高产稳产栽培调控的研究进展[J].中国水稻科学,2011,25(5):553-560.
    [3]陈雨海,余松烈,于振文.小麦生长后期群体光截获量及其分布与产量的关系[J].作物学报,2003,29(5):730-734.
    [4]龚金龙,张洪程,李杰,等.水稻超高产栽培模式及系统理论的研究进展[J].中国水稻科学,2010,24(4):417-424.
    [5]韩春雷,魏树和,刘宪平,等.水稻高产群体的冠层特征及其与产量关系的研究[J].辽宁农业科学,1996,(4):24-27.
    [6]黄成林.安徽休宁倭竹光合生理特性的研究[J].安徽农业大学学报,2005,32(2):187-191.
    [7]黄英金,罗永锋.水稻灌浆期耐热性的品种间差异及其与剑叶光合特性和内源多胺的关系[J].中国水稻科学,1999,13(4):205-210.
    [8]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103.
    [9]李迪秦,秦建权,张运波,等.品种与播期对齐穗期水稻群体光能截获量和干物质垂直分布的影响[J].核农学报,2009,23(5):858-863.
    [10]李木英,石庆华,王涛,等.种植密度对双季超级稻群体发育和产量的影响[J].杂交水 稻,2009,24(2):72-77.
    [11]林洪鑫,潘晓华,石庆华,等.施氮量与栽插密度对超级早稻中早22产量的影响[J].植物营养与肥料学报,2011,17(1):22-28.
    [12]林玉棋.Ⅱ优航2号作双季晚稻栽培的适宜氮肥用量和移栽密度探讨[J].杂交水稻,2008,23(3):42-45.
    [13]刘开吕,张秀清,王庆成,等.密度对玉米群体冠层内小气候的影响[J].生态学报,2000,24(4):489-493.
    [14]马国辉,龙继锐,戴清明,等.超级杂交中稻Y两优1号最佳缓释氮肥用量和密度配置研究[J].杂交水稻,2008,23(6):73-77.
    [15]夏冰,阳树英,刘清波.生态因子对水稻叶片光合生理功能的影响综述[J].作物研究,2008,(2):140-142.
    [16]徐春梅,王丹英,邵国胜,等.施氮量和栽插密度对超高产水稻中早22产量和品质的影响[J].中国水稻科学,2008,22(5):507-512.
    [17]杨惠杰,李义珍,杨仁崔,等.超高产水稻的干物质生产特性研究[J].中国水稻科学,2001,15(4):265-270.
    [18]张洪程,王秀芹,戴其根,等.氮肥和栽插密度对杂交稻“两优培九”产量及氮素吸收利用的影响[J].中国农业科学,2003,36(7):800-806.
    [19]钟旭华,黄农荣,郑海波.华南双季杂交稻氮素养分消耗量及其影响因素研究[J].植物营养与肥料学报,2007,13(4):569-576.
    [20]周江明,赵琳,董越勇,等.氮肥和栽植密度对水稻产量及氮肥利用率的影响[J].植物营养与肥料学报,2010,16(2):274-281.
    [21]周瑞庆,萧光玉,汪大明,等.施肥量对水稻产量及产量构成因素的影响[J].作物研究,1991,6(增刊):21-26.
    [22]曾勇军,石庆华,李木英,等.施肥和密度对一季稻群体质量及产量的影响[J].江西农业大学学报,2003,25(3):325-330.
    [23]Akita K, Tanaka N. Effects of planting density and planting patterns of young seedlings transplanting on the growth and yield of rice plants [J]. Jpn.J.Crop Sci.1992,61(1):80-86.
    [24]Acreche M M, Briceno-Felix G, Martin Sanchez J A, et al.Padiation interception and use efficiency as affected by breeding in Mediterranean wheat [J]. Field Crops Research,2009,110:90-97.
    [25]Campbell C S, Heilman J L, Mclnnes K J, et al. Seasonal variation in radiation use efficiency of irrigated rice [J]. Agricultural and Forest Meteorology,2001,110:45-54.
    [26]Cassman K G, Dobermann A, Walters D T.Agroecosystems nitrogen use efficiency and nitrogen management [J]. Ambio,2002,31:132-140.
    [27]Dong S-T, Hu C-H, Yue S-S.1992.The characteristics of canopy photo synthesis of summer corn and its relation with canopy structure and ecological conditions. Acta Phytoeco logica et Geobo tanica Sinica,16:372-378.
    [28]Kiniry J R, Jones C A, Toole J C O, et al. Radiation use efficiency in biomass accumulation prior to grain filling for five grain crop species [J].Field Crops Research,1989,20:51-64.
    [29]Peng S-B, Huang J-L, John E Sheehy, et al.Rice yield decline with higher night temperature from global warming [J]. PNAS,2004,101 (27):9971-9975.
    [30]Ruiz R A, Bertero H D. Light interception and radiation use efficiency in temperate quinoa (Chenopodium qu- inoa Willd) Cultivars. European Journal of Agronomy,2008,29:144-152.
    [31]Sinoquet H, Bonhomme R. Modeling radiative transfer in mixed and row intercropping systems [J].Agric For Meteorol,1992,62(5):219-240.
    [32]Stoop W A, Uphoff N, Kassam A.A review of agricultural research issues raised by the system of rice intensification (SRI) from Madagascar:Opportunities for improving farming systems for resource poor farmers [J]. Agric. Systems,2002,17(3):249-274.
    [33]Wei J Y, Shen Z, Pu S et al.How do nitrogen inputs to the Changjiang basin impact the Changjiang River nitrate:A temporal analysis for 1968-1997[J].Glob. Biogeochem. Cycl,2003,17(4):1091-1099.
    [34]Zhang L, Vander Werf W, Bastiaans L, et al.Light interception and utilization in relay inter-crops of wheat and cotton [J]. Field Crops Research,2008,107:29-42.
    [1]白由路,杨俐苹,金继运.测土配方施肥原理与实践[M].北京:中国农业出版社,2007,124.
    [2]陈德华,尹丽辉,邹应斌.推广和普及测土配方施肥技术的建议[J].湖南农业科学,2005,(5):47-48,51.
    [3]陈震.迈向21世纪的土壤科学[M].北京:中国农业科技出版社,2002,42-48.
    [4]段俊,梁承邺,黄毓文,等.不同类型水稻品种(组合)籽粒灌浆特性及库源关系的比较研究[J].中国农业科学,1996,29(3):66-73.
    [5]冯涛,杨京平,施宏鑫,等.高肥力稻田不同施氮水平下的氮肥效应和几种氮肥利用率的研究[J].浙江大学学报,2006,32(1):60-64.
    [6]李迪秦,唐启源,秦建权,等.施氮量与氮管理模式对超级稻产量和辐射利用率影响[J].核农学报,2010,24(4):809-814.
    [7]李荣刚.高产农田氮素肥效与调控途径:以江苏太湖地区稻麦两熟农区为例推及全省[D].北京:中国农业大学博士学位论文,2000.
    [8]李艳大,汤亮,张玉屏,等.水稻冠层光截获与叶面积和产量的关系[J].中国农业科学,2010,43(16):3296-3305.
    [9]刘宏斌,李志宏,张云贵.北京市农田土壤硝态氮的分布与累积特征[J].中国农业科学,2004,37:692-698.
    [10]凌启鸿.作物群体质量.上海科学技术出版社[M].2000,178-179.
    [11]]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].2005,38(12):2457-2467.
    [12]刘立军,徐伟,徐国伟,等.水稻实地氮肥管理技术的节氮效果及其机理[J].江苏农业学报,2005,21(3):155-161.
    [13]龙继锐,马国辉,宋春芳,等.超级杂交中稻节氮栽培氮用量及氮磷钾配比模式研究[J].农业现代化研究,2008,29(4):494-497.
    [14]鲁伟林,宋世枝,余新春,等.单双苗移栽对杂交水稻群体特征及产量性状的比较研究[J],安徽农业科学,2006,34(13):3004-3005.
    [15]骆建军,吴文安,解平.水稻节氮栽培效果初析[J].上海农业科技,2005,(3):50.
    [16]唐启源,邹应斌,米湘成,等.不同施氮条件下超级杂交稻的产量形成特点与氮肥利用[J].杂交水稻,2003,18(1):44-48.
    [17]晏娟,尹斌,张绐林,等.不同施氮量对水稻氮素吸收与分配的影响[J].植物营养与肥料学报,2008,14(5):835-839.
    [18]彭少兵,黄见良,钟旭华.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103.
    [19]苏祖芳,霍中洋.水稻合理密植研究进展[J].耕作与栽培,2006,(5):6-9.
    [20]唐启源,邹应斌,米湘成,等.不同施氮条件下超级杂交稻的产量形成特点与氮肥利用[J].杂交水稻,2003,18(1):44-48.
    [21]王仁雷,李霞,陈国祥,等.氮肥水平对杂交稻汕优63剑叶光合速率和RuBP羧化酶活性的影响[J].作物学报,2001,27(6):930-934.
    [22]徐春梅,王丹英,邵国胜,等.施氮量和栽插密度对超高产水稻中早22产量和品质的影响[J].中国水稻科学,2008,22(5):507-512.
    [23]杨安贵,陈国惠,卫云飞,等.水稻精量节肥防冶面源污染高产栽培模式研究[J].中国生态农业学报,2005,13(1):122-123
    [24]阮新民,施伏芝,罗志祥,等.氮肥水平对不同基因型水稻品种农学利用率的影响[J].安徽农业科学,2005,33(6):942-943.
    [25]袁隆平.超级杂交稻强化栽培理论与实践[M].长沙:湖南科技出版社,2006,187-195.
    [26]王仁雷,李霞,陈国祥,等.氮肥水平对杂交稻汕优63剑叶光合速率和RuBP羧化酶活性的影响[J].作物学报,2001,27(6):930-934.
    [27]杨惠杰,李义珍,杨仁崔,等.超高产水稻的干物质生产特性研究[J].中国水稻科学,2001,15(4):265-270.
    [28]杨益花,李庆魁,苏祖芳,等.拔节、抽穗期叶片SPAD值与杂交中籼稻产量及其构成因素的关系[J].耕作与栽培,2006,(4):12-13.
    [29]曾勇军,石庆华,李木英,等.施肥和密度对一季稻群体质量及产量的影响[J].江西农业大学学报,2003,25(3):325-330.
    [30]张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915-921.
    [31]张琴,张春华..缓腔释肥为何发展缓慢[J].中国农资,2004,(4-5):44-47.
    [32]张玉烛,刘云开,曾翔.水稻节氮增苗栽培技术与示范[J].作物研究,2006,20(4):312-314.
    [33]钟旭华,黄农荣,郑海波.华南双季杂交稻氮素养分消耗量及其影响因素研究[J].植物营养与肥料学报,2007,13(4):569-576.
    [34]周江明,赵琳,董越勇,等.氮肥和栽植密度对水稻产量及氮肥利用率的影响[J].植物营养与肥料学报,2010,16(2):274-281.
    [35]朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6
    [36]Ahmad A R, Zulkefli M, Ahmed M, Aminuddin B Y, Sharma M L, Zain M M. Environmental impact of agricultural inorganic pollution on groundwater resources of the Kelantan Plain, Malaysia. In:Aminuddin B Y, Sharma M L, and Willett I Red. Agricultural impacts on groundwater quality [J]. ACIAR Proceedings 1996.61:8-21.
    [37]Cassman KG, Dobermann A, Walters DT. Agro ecosystems、nitrogen use efficiency, and nitrogen management. Ambio,2002,31:132-140.
    [38]CPP (Intergovernmental Panel on Climate Change). The Science of Climate Change.1996. New York:Cambridge University Press:1995,1-572.
    [39]McDonald A T, Kay D. Water resources:Issues and strategies.Longman Scientific and Tech-nical, Harlow, UK,1988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700