用户名: 密码: 验证码:
不同生态地点和施氮水平下超级稻产量表现及其养分吸收积累规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
施肥是水稻获得高产的重要措施,但长期大量施用化肥,尤其是氮肥,不仅会导致氮肥利用率降低,而且还会引起环境污染。本研究通过在不同生态地点和不同施氮水平条件下,研究超级稻的产量形成特点及其不同产量水平下超级稻的氮肥利用率和养分吸收积累规律,探明中国超级稻生产能否实现高产与氮高效利用的协调统一。据此,于2011~2012年在湖南长沙、广西宾阳、广东怀集、海南海口、贵州兴义进行多年多点联合试验,其中海口、长沙和兴义为一季稻,宾阳和怀集为双季稻。试验采用裂区设计,以氮肥为主区,设施氮量为225、112.5、0kg/hm2,分别记为N1\N2\N3;以品种为副区,超级杂交稻两优培九、Y两优1号和超级常规稻玉香油占、高产常规稻黄华占为材料。主要结果如下:
     1超级稻产量表现
     不同生态地点下超级稻产量差异显著,其中以兴义点的产量最高,与长沙、海口、宾阳、怀集相比、分别增产了22.86%、36.79%、83.20%、160.55%。超级稻产量基因型差异显著,在一季稻试验点,超级杂交稻产量均显著高于超级常规稻,平均高了10.5%,双季稻试验点,超级杂交稻产量优势不明显。不同施肥处理下超级稻产量差异显著,其中,2011年宾阳点以N2处理高于N1处理;长沙和怀集点则是以N1处理高于N2;2012年,除怀集早稻和海口点外,兴义、长沙、怀集晚稻均以N2处理高于N1处理。
     2超级稻产量构成
     不同生态地点对超级稻的产量构成影响显著。有效穗、每穗粒数、颖花量、结实率均以兴义点较高,怀集点较低。不同生态地点间超级杂交稻的粒重差异较小,杂交稻与常规稻的粒重差异较大,但两优培九与Y两优1号、玉香油占与黄华占间的粒重差异较小。超级稻的产量构成基因型差异显著,每穗粒数以玉香油占最多,黄华占最少,有效穗以黄华占最多,玉香油占最少。相关分析表明,超级稻收获产量与有效穗、颖花量、每穗粒数、结实率呈显著正相关。
     3超级稻干物质生产及收获指数
     不同生态地点对超级稻的干物质生产量影响显著。齐穗期和成熟期干物质生产量,以兴义点较高,怀集点较低。干物质生产量基因型差异显著,在产量大于9t hm-2的试验点,超级杂交稻显著高于超级常规稻。相关分析还表明,超级稻齐穗期、成熟期和齐穗期至成熟期的干物质生产量与收获产量呈高度正相关。不同生态地点下收获指数差异显著,以兴义点最高,为0.553~0.572;不同施肥处理下收获指数差异显著,其中以N3处理的收获指数较高。相关分析表明,超级稻的收获产量与收获指数呈显著正相关。
     4超级稻氮、磷、钾养分吸收量
     不同生态地点、施肥处理对超级稻植株氮、磷、钾养分吸收量影响显著;氮吸收量以兴义点最高,分别比长沙、海口、宾阳和怀集高了23.5%、98.2%、68.7%、175.6%;植株磷、钾的吸收量以长沙点较高,分别为4.3~4.7g m-2、20.5-21.7g m-2。除2012年宾阳早稻和怀集晚稻外,不同施肥处理间超级稻植株的氮、磷、钾吸收量,均一致呈N1>N2>N3。
     5超级稻氮、磷、钾养分收获指数
     超级稻的氮、磷、钾收获指数不同生态地点、施肥处理间差异显著。氮、磷的收获指数以兴义点较高,平均分别为0.690和0.777,钾收获指数以海口点较高,平均为0.135。随着产量水平的提高,氮、磷收获指数呈升高趋势。不同施肥处理下超级稻氮、磷、钾的收获指数以N3处理较高,N1处理较小。相关分析表明,收获产量与成熟期氮、磷的收获指数呈显著正相关,与钾收获指数关系不显著。超级稻氮、磷、钾收获指数基因型变化趋势不明显。
     6超级稻每生产1000kg稻谷氮、磷、钾养分需要量
     不同生态地点对超级稻每生产1000kg稻谷氮、磷、钾的需要量影响显著。需氮量以怀集点最低,为13.5~16.9kg,长沙点最高,为22.0~23.6kg(除2011宾阳点外);需磷量以兴义点最低,宾阳点较高;需钾量以兴义点和怀集点较低。相关分析表明,收获产量与每生产1000kg稻谷氮、磷、钾的需要量呈显著负相关。
     7超级稻氮肥利用率
     不同生态地点、施肥处理对超级稻氮肥利用率有显著影响。氮肥农学利用率以怀集点较高,氮肥偏生产力和氮肥吸收利用率以兴义点较高。不同施肥处理超级稻的氮肥农学利用率、氮肥偏生产力、氮肥吸收利用率均一致以N2大于N1。不同产量水平下,超级稻的氮肥利用率,随着产量水平的升高,呈增加趋势。
     综上所述,不同生态地点、施肥处理、超级稻品种间的产量及氮肥利用率差异显著。超级稻产量最高的兴义点,其肥料利用率也较高,证明超级稻可以实现高产与养分高效利用协调统一,在超级稻生产上,应按照超级稻种植区域,确定适合的目标产量,采用与目标产量相一致的定量化栽培技术和群体发育调控技术,实现高产稳产高效的超级稻生产。同时,氮素高效利用率也应作为超级稻品种选育的指标。
Chemical fertilizer application plays an important role for the yield increase in rice production. However, overuse of chemical fertilizer, especially the nitrogen (N) fertilizer, can not only reduce the N use efficiency but also cause the environmental problem. In the present study, we analyzed yield formation characteristics of super rice grown under different ecological conditions and N application rates as well as N use efficiency and N accumulation characteristics under different yield levels. Our objective was to determine whether it is possible to achieve both high yield and high N use efficiency in super rice production in China. Field experiments were conducted in five major rice-producing provinces in China in2011and2012. The experimental sites were located in Binyang, Huaiji, Haikou, Changsha, and Xingyi of Guangxi, Guangdong, Hainan, Hunan, and Guizhou provinces, respectively. Four super rice varieties (Liangyoupeijiu, Y liangyou1, Yuxiangyouzhan, and Huanghuazhan) were grown in single-rice growing season in Haikou, Changsha and Xingyi and in double-rice growing seasons in Binyang and Huaiji under three N rates (N1:225kg/hm2, N2:112.5kg/hm2, N3:0kg/hm2). The treatments were arranged in a split-plot design with N rates as main plots and varieties as subplots. The experiment was replicated three times. The results were shown as following:
     1Yield performance of super rice
     A significant difference in grain yield was observed among the experimental sites. Xingyi produced the highest grain yield, which was22.7%,36.8%,83.2%and160.6%higher than that produced in Changsha, Haikou, Binyang, and Huaiji, respectively. A significant difference in grain yield was observed among the varieties. Average grain yield of super hybrid varieties (Liangyoupeijiu and Y liangyou1) was10.5%higher than that of super inbred varieties (Yuxiangyouzhan and Huanghuazhan) in Haikou, Changsha, and Xingyi, however, there was an insignificant difference in grain yield between super hybrid varieties and super inbred varieties in Binyang and Huaiji. A significant difference in grain yield was observed among the three N rates. In2011, grain yield was higher under N2than under N1in Bingyang, whereas in Changsha and Huaiji, it was higher under N1than under N2. In2012, except Huaiji and Haikou, grain yield under N2was higher than that under N1.
     2Yield components of super rice
     There was a significant difference in yield components among the experimental sites. Panicles per m2, spikelets per panicle, spikelets per m2and grain filling were relatively higher in Xingyi, whereas those were relatively lower in Huaiji. A significant difference in grain weight was observed between super hybrid cultivars and super inbred cultivars but not between the same groups. Yield components of super rice were significantly affected by genotype. The spikelets per panicle was the lowest in Huanghuazhan and highest in Yuxiangyouzhan. On the contrary, the panicles per m2was the lowest in Yuxiangyouzhan and highest in Huanghuazhan. At maturity, the grain yield of super rice was positively correlated to the panicles per m2, spikelets per m2, spikelets per panicle, and grain filling.
     3Biomass production and harvest index of super rice
     A significant difference in biomass of super rice was observed among the experimental sites. Dry matter production at heading and maturity were relatively higher in Xingyi but were relatively lower in Huaiji. Dry matter production of super rice was significantly affected by genotype. When grain yield>9t ha-1, dry matter production of super hybrid cultivars was higher than that of super inbred cultivars at heading and maturity. However, when grain yield<9t ha-1,there was an insignificant difference in dry matter production between super hybrid cultivars and super inbred cultivars. Grain yield of super rice was positively correlated to the dry matter accumulation at heading and maturity as well as from heading to maturity under different ecological conditions and N application rates. The harvest index of super rice was significantly affected by N application rate. N3had the highest harvest index. A significant difference in harvest index of super rice was observed among the experimental sites. Xingyi had the highest harvest index, which was0.553-0.578. At maturity, the grain yield of super rice was positively correlated to the harvest index.
     4N, P and K uptake amounts of super rice
     Significant differences in N, P and K uptake amounts were observed among the N application rates and the experimental sites. The highest N uptake amount was observed in Xingyi, which was23.5%,98.2%,67.8%, and175.6%higher than Changsha, Haikou, Binyang, and Huaiji, respectively. The higher P and K uptake amounts was observed in Changsha, which were4.3~4.7g m-2and20.5~21.7g m-2, respectively. Except early rice in Binyang and late rice in Huaiji, the N, P and K uptake amount was ordered as:N1>N2>N3.
     5N, P and K harvest indexes of super rice
     There were significant differences in N, P and K harvest indexes among the N application rates and the experimental sites. The highest N and P harvest indexes was observed in Xingyi, which was0.690and0.777across the four varieties. The highest K harvest index was achieved in Haikou, which was0.135across the four varieties. With the increase of grain yield, the N and P harvest indexes were increased. The N, P and K harvest indexes under N3were higher than those under N1. Grain yield was positively correlated to the N and P harvest indexes but not correlated to K harvest index. Differences in N, P and K harvest index were small and inconsistent across the four varieties.
     6N, P and K uptake amount aboveground plants to produce1000kg grain of super rice
     A significant difference in N, P and K uptake amount aboveground plants to produce1000kg grain was observed among the experimental sites. N requirement for producing1000kg grain was the lowest in Huaiji, which was13.5~16.9kg, and was highest in Changsha, which was22.0~23.6kg. P requirement for producing1000kg grain was the lowest in Xingyi, and was highest in Binyang. K requirement for producing1000kg grain was the lowest in Xingyi and Huaiji. The grain yield was negatively correlated to the N, P and K uptake amount aboveground plants to produce1000kg grain.
     7N use efficiency of super rice
     There was a significant difference in N use efficiency among the experimental sites and the three N rates. The higher N agronomy efficiency was observed in Huaiji, while the higher partial factor production and N recovery efficiency was observed in Xingyi. N agronomy efficiency, partial factor production and N recovery efficiency under N2was higher than those under N1. Furthermore, the N use efficiency was increased with increasing grain yield.
     The above findings indicated that a significant difference in nitrogen use efficiency and grain yield of super rice was observed among the five experimental sites and the three N rates and genotypes, and the highest grain yield of super rice was achieved in Xingyi, and the higher fertilizer use efficiency as well. It can make a conclusion that there was a closely coordinated relationship existed between higher yield and higher N use efficiency in super rice. In super rice production in a given planting area, a target yield should be decided according local ecological condition, and then using correspondingly quantified cultivation techniques and population regulating techniques to achieve the target yield and high N use efficiency. In addition, the high N use efficiency should be taken as the selection target in rice breeding.
引文
[1]Zhu D F. Bridging the rice yield gap in China. In:Papademetriou MK, Dent FJ, Herath EM, eds. Bridging the rice yield gap in the Asia-Pacific Region. Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific, Bangkok, Thailand,2000, pp.69-83.
    [2]Fan M, Lu S, Jiang R, et al. Triangular transplanting pattern and split nitrogen fertilizer application increase rice yield and nitrogen fertilizer recovery. Agron. J.2009,101:1421-25.
    [3]Normile D. Reinventing rice to feed the world. Science 2008,321:330-33.
    [4]Jiang Q, Goto S, Takamura H. LUCC and accompanied soil degradation in China from 1960s to 1990s. JGeosci Res Northeast Asia,2002,5:62-71.
    [5]Zhang Q. Strategies for developing green super rice. Proc Natl Acad Sci USA.2007,104: 16402-16409
    [6]程式华,廖西元,闵绍楷.中国超级稻研究:背景、目标和有关问题的思考[J].中国稻米,1998(1):3-5.
    [7]程式华,曹立勇,陈深广,等.后期功能型超级杂交稻的概念及生物学意义[J].中国水稻科学,2005,19(3):280-284
    [8]徐庆国.超级稻的研究现状与发展对策探讨[J].作物研究,2006,(1):13-16,25.
    [9]农业部办公厅.农业部关于发布2012年超级稻确认品种的通知(农办科[2012]13号)[EB/OL].(2012-03-01) http://www.mlr.gov.cn/xwdt/bmdt/201203/t20120301-1069193.htm
    [10]王玉琪,曹茸.超级稻的光荣与梦想[EB/OL]. (2011-11-24)[2012-01-06] http://www. caas. net.cn/caasnew/nykjxx/nyxw/58373.shtml
    [11]敖和军,王淑红,邹应斌,等.超级杂交稻干物质生产特点与产量稳定性研究[J].中国农业科学,2008,41(7):1927-1936.
    [12]薛亚光,陈婷婷,杨成,等.中粳稻不同栽培模式对产量及其生理特性的影响[J].作物学报,2010,36(3):466-476
    [13]Ying J F, Peng S B, He Q G, et al. Comparison of high-yield rice in tropical and subtropical environments I. Determinants of grain and dry matter yields. Field Crops Research,1998,57: 71-84
    [14]杨惠杰,李义珍,杨仁崔,等.超高产水稻的干物质生产特性研究[J].中国水稻科学,2001,15(4):265-270
    [15]谢华安,张建福,王乌齐,等.超级稻育种实践和前景[J].分子植物育种,2006,4,(3):4-10.
    [16]邹应斌,籼型超级杂交水稻高产栽培研究进展[J].沈阳农业大学学报,2007,38(5):707-713
    [17]Peng S B, Yang J C. Current status of research on high-yielding and high efficiency in resource use and improving grain quality in rice. Chinese Journal of Rice Science,2003,17:275-280
    [18]彭少兵.论新时期作物栽培管理在全球水稻增产中的作用[J].作物研究,2008,22(4):207-208
    [19]薛亚光,王康君,颜晓元,等.不同栽培模式对杂交粳稻常优3号产量及养分吸收利用效率的影响[J].中国农业科学,2011,44(23):4781-4792
    [20]薛亚光,葛立立,王康君,等.不同栽培模式对超级杂交粳稻群体质量的影响[J].作物学报,2013,39(2):280-291
    [21]蒋鹏,黄敏,MD. Ibrahim,等.“三定”栽培对双季超级稻产量及生理特性的影响[J].作物学报,2011,37(5):855-867
    [22]蒋鹏,黄敏,MD. Ibrahim,等.“三定”栽培对双季超级稻养分吸收积累及氮肥利用率的影响[J].作物学报,2011,37(12):2194-2207
    [23]邹应斌.籼型超级杂交水稻高产栽培研究进展[J].耕作与栽培,2006,(5):1-5
    [24]Wu X J. Prospects of developing hybrid rice with super high yield. Agronomy Journal,2009,101: 688-695
    [25]Zhang H, Xue Y G, Wang Z Q, et al. Morphological and physiological traits of roots and their relationships with shoot growth in "super" rice. Field Crops Research,2009,113:31-40
    [26]Zhang Y B, Tang Q Y, Zou Y B, et al. Yield potential and radiation use efficiency of "super" hybrid rice grown under subtropical conditions. Field Crops Research,2009,114:91-98
    [27]Huang M, Zou Y B, Jiang P, et al. Relationship between grain yield and yield components in super hybrid rice. Agricultural Sciences in China,2011,10(10):1537-1544
    [28]袁小乐,潘晓华,石庆华,等.超级早晚稻的产量与产量构成特点[J].江西农业大学学报,2009,31(1):49-53
    [29]Sheehy J E, Dionora M J, Mitchell PL. Spikelet numbers, sink size and potential yield in rice. Field Crops Research,2001,71:77-85
    [30]张洪程,吴桂成,李德剑,等.杂交粳稻13.5t hm-2超高产群体动态特征及形成机制的探讨[J].作物学报,2010,36(9):1547-1558
    [31]李义珍,黄育民,庄占龙,等.杂交稻高产结构研究[J].福建省农科院学报,1995,10(1):1-6
    [32]吴合洲,马钧,王贺正,等.超级杂交稻的生长发育和产量形成特性研究[J].杂交水稻,2007,22(5):57-62
    [33]袁平荣,孙传清,杨从党,等.云南籼稻每公顷15吨高产的产量及其结构分析[J].作物学报,2000,26(6):756-762
    [34]杨惠杰,李义珍,杨仁崔.云南超高产水稻与龙海高产稻性状的比较[J].福建稻麦科技,1998,16(3):38-40
    [35]吴文革,张洪程,吴桂成,等.超级稻群体籽粒库容特征的初步研究[J].中国农业科学,2007,40(2):250-257
    [36]陈爱忠,潘晓华,吴建富,等.施氮量对双季超级稻产量、干物质生产及氮素吸收利用率的影响[J].杂交水稻,2011,26(2):58-63
    [37]曾勇军,石庆华,潘晓华,韩涛.长江中下游双季稻高产株型特征初步研究[J].作物学报,2009,35(3):546-551
    [38]刘建丰,袁隆平,邓启云,等.超高产杂交稻的光合特性研究[J].中国农业科学,2005,38(2):258-264
    [39]杨惠杰,杨仁崔,李义珍,等.水稻超高产品种的产量潜力及产量构成因素分析[J].福建农业学报,2000,15(3):1-8.
    [40]龚金龙,胡亚杰,龙厚元,等.大穗型杂交粳稻产量构成因素协调特征及穗部性状[J].中国农业科学,2012,45(11):2147-2158
    [41]张洪程,端木银熙,吴文革,等.蒋巷千亩连片水稻超高产栽培实践与技术分析[J].江苏农业科学2005,3:20-22
    [42]杨从党,朱德峰,周玉萍,等.不同生态条件下水稻产量及其构成因子分析[J].西南农业学报,2004,14:35-39
    [43]吴桂成,张洪程,钱银飞,等.粳型超级稻产量构成因素协同规律及超高产特征的研究[J].中国农业科学,2010,43(2):266-277
    [44]李刚华,张国发,陈攻磊,等.超高产常规粳稻宁粳1号和宁粳3号群体特征及对氮的响应[J].作物学报,2009,35(6):1106-1114
    [45]潘胜刚,黄胜奇,张帆,等.超级稻栽培杂交稻中籼稻的生长发育特性[J].作物学报,2011,37(3):537-545
    [46]肖跃成,吴爱国,王宝金,等.甬优8号产量850kg 667m2以上的超高产特性及配套技术的探讨[J].中国稻米,2010,16(1):56-58
    [47]李志鹏,钱晓刚,滕飞龙,等.水稻1000kg/667m2的群体密度效应初步研究[J].栽培与耕作,2009,1:14-16
    [48]张耗,谈桂露,薛亚光,等.江苏省粳稻品种近60年演进过程中产量与形态生理特征的变化[J].作物学报,2010,36(1):133-140
    [49]Yang J C, Zhang J H. Crop management techniques to enhance harvest index in rice. Journal of Experimental Botany,2010,61:3177-3189.
    [50]Peng S B, Cassman K G, Virmani S S, et al. Yield potential trends of tropical rice since release of IR8 and the challenge of increasing rice yield potential. Crops Sci,1999,39:1552-1559
    [51]魏树和,陈温福,徐正进,等.水稻收获指数研究的回顾与展望[J].垦殖与稻作,2001(增):1-3.
    [52]吕川根,宗寿余,郑克武,等.超级杂交稻“两优培九”的群体生长分析[J].江苏农业学报,2003,19(4):198-204
    [53]王熹,陶龙兴,俞美玉,等.超级杂交稻协优9308生理模型的研究[J].中国水稻科学,2002,16(1):38-44
    [54]邹应斌,黄见良,屠乃美,等.“旺壮重”栽培对双季杂交稻产量形成及生理特性的影响[J].作物学报,2001,27(3):343-350
    [55]杨建昌,杜永,吴长付,等.超高产粳型水稻生长发育特性的研究[J].中国农业科学,2006,39(7):1336-1345
    [56]张洪松,岩田忠寿.粳型杂交稻与常规稻的干物质生产及营养特性[J].西南农业学报,1995,8(4):11-16
    [57]朱庆森,张祖建,杨建昌,等.亚种间杂交稻产量源库特征[J].中国农业科学,1997,30(3):52-59
    [58]凌启鸿,张洪程,蔡建中,等.水稻高产群体质量及其优化控制探讨[J].中国农业科学,1993,26(6):1-11
    [59]杨惠杰,杨仁崔,李义珍,等.水稻超高产的决定因素[J].福建农业学报,2002,17(4):199-203
    [60]袁隆平.新株型育种进展[J].杂交水稻,2011,26(4):72-74
    [61]翟虎渠,曹树青,万建民,等.超级杂交稻灌浆期光合功能与产量的关系[J].中国科学(C辑),2002,32(3):211-217
    [62]郭兆武,肖浪涛,罗孝和,等.超级杂交稻“两优培九”剑叶叶鞘的光合功能[J].作物学报,2007,33(9):1508-1515
    [63]刘莉莉,李合松,王学华,等.超级杂交稻光合同化物的运转分配特性[J].核农学报,2008,22(6):865-868
    [64]杨俊,刘莉莉,王慧群,等.超级杂交稻生育后期上部三片叶同化产物的转运分配[J].湖南农业大学学报(自然科学版),2009,35(3):221-224
    [65]陈炳松,张云华,李霞,等.超级杂交稻两优培九生育后期的光合特性和同化产物的分配[J].作物学报,2002,28(6):777-782
    [66]吕川根,邹江石.两个超级杂交稻与汕优63光合株型的比较研究[J].中国农业科学,2003,36(6):633-639
    [67]李霞,焦德茂.超级杂交稻“两优培九”的光合生理特性[J].江苏农业学报,2002,18(1):9-13
    [68]王荣富,张云华,焦德茂,等.超级杂交稻及其亲本生育后期的光抑制和早衰特性[J].作物学报,2004,30(4):393-397
    [69]张云华,钱立生,王荣富.超级杂交稻两优培九及其亲本低温强光适应性[J].激光生物学报,2008,17(1):75-80
    [70]王荣富,张云华,钱立生,等.超级杂交稻两优培九及其亲本的光氧化特性[J].应用生态学报,2003,14(8):1309-1312
    [71]欧志英,林桂珠,彭长连.超高产杂交稻培矮64S/E32和两优培九剑叶对高温的响应[J].中国水稻科学,2005,19(3):249-254
    [72]王彦荣,华泽田,陈温福,等.粳型超级杂交稻辽优3225根系生理特性研究[J].中国水稻科学,2003,17(1):37-41
    [73]唐文邦,邓化冰,肖应辉,等.两系杂交稻C两优系列组合的高产根系特征[J].中国农业科学,2010,43(14):2859-2868
    [74]刘桃菊,戚昌瀚,唐建军.水稻根系建成于产量及其构成关系的研究[J].中国农业科学,2002,35(11):1416-1419
    [75]郑景生,林文,姜照伟,等.超高产水稻根系发育形态学研究[J].福建农业学报,14(3):1-6
    [76]朱德峰,林贤青,曹卫星.超高产水稻品种的根系分布特点[J].南京农业大学学报,2000,23(4):5-8
    [77]黄农荣,钟旭华,王丰,等.超级杂交稻结实期根系活力与籽粒灌浆特性研究[J].中国农业科学,2006,39(9):1772-1779
    [78]黄敏,莫润秀,邹应斌,等.超级稻的产量构成特点和籽粒灌浆特性分析[J].作物研究,2008,22(4):249-253
    [79]袁隆平.两系法杂交水稻研究的进展[J].中国农业科学,1990,23,(3):1-6
    [80]黄锦文,梁义元,梁康迳,等.不同类型水稻籽粒灌浆的生理生化特性研究[J].中国生态农业学报,2003,11(1):10-13
    [81]黄升谋,邹应斌,刘春林.杂交水稻两优培九强、弱势粒结实生理研究[J].作物学报,2005,31(1):102-107
    [82]谢光辉,杨建昌,王志琴,等.水稻籽粒灌浆特性及其与籽粒生理活性的关系[J].作物学报,2001,27(5):557-565
    [83]谈桂露,张耗,付景,等.超级稻花后强、弱势粒多胺浓度变化及其与籽粒灌浆的关系[J].作物学报,2009,35(12)2225-2233
    [84]朱德峰,林贤青,陈苇,等.超级稻协优9308营养特性与施肥技术[J].中国稻米,2002,(2):18-19
    [85]邹应斌,陈玉梅,徐国生,等.双季超级稻产量和氮磷钾吸收的基因型差异[J].作物研究,2008,22(4):225-229
    [86]敖和军,王淑红,邹应斌,等.不同施肥水平下超级杂交稻对氮、磷、钾的吸收积累[J].中国农业科学,2008,41(10):3123-3132
    [87]Singh U, Ladha J K, Castillo E G, et al. Genotypic variation in nitrogen use efficiency in medium- and long-duration rice. Field Crops Research,1998,58:35-53
    [88]Witt C, Dobermann A, Abdulrachman S, et al. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia. Field Crops Research,1999,63:113-138
    [89]Samonte S O PB, Wilson L T, Medley J C, et al. Nitrogen utilization efficiency:relationships with grain yield, grain protein, and yield-related traits in rice. Agronomy Journal,2006,98: 168-176
    [90]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12):2457-2467
    [91]杜永,刘辉,杨成,等.超高产栽培迟熟中粳稻养分吸收特点的研究[J].作物学报,2007,33(2):208-215
    [92]唐启源,邹应斌,米湘成,等.不同施氮条件下超级杂交稻的产量形成特点与氮肥利用[J].杂交水稻,2003,18(1):44-48
    [93]吕川根,胡凝,姚克敏,等.超高产杂交稻两优培九齐穗期株型的区域差异及对冠层结构的影响[J].中国水稻科学,2009,23(5):529-536
    [94]刘广林,陈传华,罗群昌,等.两系杂交稻“两优培九”在南宁的生态适应性研究[J].广西热带农业,2009,(5):1-5
    [95]邹江石,李义珍,吕川根.两系杂交稻两优培九产量构成及其生态关联[J].杂交水稻,2008, 23(6):65-72
    [96]吕川根,胡凝,相国根,等.两系杂交稻两优培九穗增重特性及与气象条件的关系[J].江苏农业学报,2009,25(3):454-458
    [97]吕川根,胡凝,姚克敏,等.两系杂交稻品种两优培九作物生长率的气候模型及分析[J].中国农业科技导报,2010,12(4):62-67
    [98]Woonho Yang, Peng S B, Rebecca C Laza, et al. Yield gap analysis between dry and wet season rice crop grown under high-yielding management conditions. Agronomy Journal,2008,100(5): 1390-1395
    [99]彭少兵,黄见良,钟旭华,等.提高中国稻田氮肥利用率的研究策略[J].中国农业科学,2002,35(9):1095-1103
    [100]钟旭华,黄农荣,郑海波.华南双季杂交稻氮素养分消耗量及其影响因素研究[J].植物营养与肥料学报,2007,13(4):569-576
    [101]Cassman K G, Dobermanm A, Walters D T. Agroecosystem, nitrogen use efficiency, and nitrogen management. Ambio,2002,31:132-140
    [102]张福锁,王激清,张卫峰,等.中国主要粮食作物肥料利用率现状与提高途径[J].土壤学报,2008,45(5):915-924
    [103]周江明,余华波,周海鹏,等.不同地力水平下不同养分水平对超级稻产量及养分利用率的影响[J].华北农学报,2008,23(增刊):267-273
    [104]尹秀英,许文良,冯君.吉林省稻田土壤营养元素与水稻产量的相互关系[J].长春科技大学学报,2001,31(1):74-77
    [105]叶全宝,张洪程,魏海燕,等.不同土壤及施氮条件下水稻氮肥利用效率和增产效应研究[J].作物学报,2005,31(11):1422-1428
    [106]王学林,李玲,李建平.测土配方施肥技术在水稻上的应用与效果初探[J].中国农学通报,2009,25(6):155-158
    [107]梁嘉陵,王爱武.三江平原沼泽土种稻营养诊断与施肥技术研究[J].黑龙江农业科学,1994,(5):10-12
    [108]钟旭华,黄农荣,张海波,等.水稻“三控”施肥技术规程[J].广东农业科学,2007,(5):13-15,43
    [109]邹应斌,夏胜平.超级杂交稻“三定”栽培技术[M].湖南:湖南科技出版社,2010,PP:17-19
    [110]Wang G H, Dobermann A, Witt C, et al. Performance of site-specific nutrient management for irrigated rice in southeast China. Agron J,2001,93:869-878
    [111]Angus J F, Williams R L, Durkin C O. MANAGE RICE:decision support for rice crop management. In:R. Ishii and T. Horieed. Crop Research in Asia:Achievements and perspective. Proceedings of the 2nd Asia crop Science Conference.21-23 August,1995, Fukui, Japan.1996: 274-279.
    [112]Ten Berge H F M, Thiyagarajan T M, Shi Q H, et al. Numerical optimization of nitrogen application to rice. Part Ⅰ. Description of MANAGE RICE. Field Crops Research,1997,51; 29-42
    [113]陈军,叶荣榕,李程勋,等.不同氮肥运筹方式对水稻氮素利用率及产量的影响[J].福建农业学报,2012,27(7):759-763
    [114]Li M Y, Shi Q H, Huang C L, et al. Effects of panicle fertilizer application on source-sink characteristics and nitrogen fertilizer use efficiency of Ganxin688. Agricultural science & technology,2011,12(10):1495-1502,1524
    [115]王夏雯,王绍华,李刚华,等.氮素穗肥对水稻幼穗细胞分裂素和生长素浓度的影响及其与颖花量发育的关系[J].作物学报,2008,34(12):2184-2189
    [116]罗学超,龚金龙,胡雅杰,等.不同叶龄期追施穗肥对杂交中粳稻产量及品质的影响[J].江苏农业科学,2012,40(3):57-59
    [1]Huang M, Zou YB. Comparison of grain filling characteristics between two super rice cultivars with remarkable difference in grain weight. World Applied Science Journal,2009,6:674-679
    [2]Wu X J. Prospects of developing hybrid rice with super high yield. Agronomy Journal,2009,101: 688-695
    [3]Zhang H, Xue Y G, Wang Z Q, et al. Morphological and physiological traits of roots and their relationships with shoot growth in "super" rice. Field Crops Research,2009,113:31-40
    [4]Zhang Y B, Tang Q Y, Zou Y B, et al. Yield potential and radiation use efficiency of "super" hybrid rice grown under subtropical conditions. Field Crops Research,2009,114:91-98
    [5]Huang M, Zou Y B, Jiang P, et al. Relationship between grain yield and yield components in super hybrid rice. Agricultural Sciences in China,2011,10(10):1537-1544
    [6]袁小乐,潘晓华,石庆华,等.超级早晚稻的产量与产量构成特点[J].江西农业大学学报,2009,31(1):49-53
    [7]彭少兵.论新时期作物栽培管理在全球水稻增产中的作用[J].作物研究,2008,22(4):207-208
    [8]敖和军,王淑红,邹应斌,等.超级杂交稻干物质生产特点与产量稳定性研究[J].中国农业科学,2008,41(7):1927-1936.
    [9]顾伟,李刚华,杨从党,等.特殊生态区水稻超高产生态特征研究[J].南京农业大学学报, 2009,32(4):1-6
    [10]Ying J F, Peng S B, He Q R, et al. Comparison of high-yield rice in tropical and subtropical environments:Ⅰ. Determinants of grain and dry matter yields. Field Crops Res,1998,57:71-84
    [11]Woonho Yang, Peng S B, Rebecca C. Laza, et al. Yield gap analysis between dry and wet season rice crop grown under high-yielding management conditions. Agronomy Journal,2008,100(5): 1390-1395
    [12]陈达刚,周新桥,李丽君,等.超级稻产量构成因素与产量的关系研究[J].广东农业科学,2008,(7):3-6
    [13]吴合洲,马钧,王贺正,等.超级杂交稻的生长发育和产量形成特性研究[J].杂交水稻,2007,22(5):57-62
    [14]袁平荣,孙传清,杨从党,等.云南籼稻每公顷15吨高产的产量及其结构分析[J].作物学报,2000,26(6):756-762
    [15]邹应斌.超级稻的适宜种植区域与“三定”栽培法[J].作物研究,2006,20(1):17-19
    [16]邹应斌,敖和军,王淑红,等.超级稻“三定”栽培法研究Ⅰ.概念与理论依据[J].中国农学通报,2006,22(5):158-162
    [17]Yoshida, S. Fundamentals of rice crop science. IRRI, Los Banos, the Philippines. PP:71-74
    [18]杨惠杰,杨仁崔,李义珍,等.水稻超高产品种的产量潜力及产量构成因素分析[J].福建农业学报,2000,15(3):1-8
    [19]Evans L T, Fisher R A. Yield potentials:its definition, measurement, and significance. Crop Science,1999,39:1544-1551
    [20]Mohapatra P K, Sahu S K. Heterogeneity of primary branch development and spikelet survival in rice in relation to assimilates of primary branches. Journal of Experimental Botany,1991,42: 871-879
    [21]高良艳,周鸿飞.水稻产量构成因素与产量的分析[J].辽宁农业科学,2007,(1):26-28
    [22]吴桂成,张洪程,钱银飞,等.粳型超级稻产量构成因素协同规律及超高产特征的研究[J].中国农业科学,2010,43,(2):266-276
    [23]吴文革,张洪程,吴桂成,等.超级稻群体籽粒库容特征的初步研究[J].中国农业科学,2007,40(2):250-257
    [24]杨建昌,杜永,吴长付,等.超高产粳型水稻生长发育特性的研究[J].中国农业科学,2006,39(7):1336-1345
    [25]杨惠杰,杨仁崔,李义珍,等.水稻超高产品种的产量潜力及产量构成因素分析[J].福建农业学报.2000,15(3):1-8.
    [1]Zhu D F Bridging the rice yield gap in China. In:Papademetriou MK, Dent FJ, Herath EM, eds. Bridging the rice yield gap in the Asia-Pacific Region. Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific, Bangkok, Thailand,2000, PP:69-83.
    [2]Peng S B, Gassman K G, Virmani S S, et al. Yield potential trends of tropical rice since release of IR8 and the challenge of increasing rice yield potential. Crop Science,1999,39:1552-1559
    [3]凌启鸿,张洪程,丁艳峰,等.水稻高产技术的新发展—精确定量栽培[J].中国稻米,2005,(1):3-7
    [4]Yoshida S. Fundamentals of rice crop science. International Rice Research Institute, Los Banos, Philippines.269 pp
    [5]Austin R B, Bingham J, Blackwell R D, et al. Genetic improvements in winter wheat yields since 1990 and associated physiological changes. J. Agric. Sci. (Camb),1980,94,675-689.
    [6]Evans L T, Visperas R M, Vergara B S. Morphological and physiological changes among rice varieties used in the Philippines over the last seventy years. Field Crops Res,1984,8:105-125
    [7]Akita S, Improving yield potential in tropical rice. In:Progress in Irrigated Rice Research. International Rice Research Institute, Los Banos, Philippines,1989, PP:41-73.
    [8]Amano T, Zhu Q, Wang Y, et al. Case studies on high yields of paddy rice in Jiangsu Province, China:I. Characteristics of grain production. Jpn. J. Crop Sci,1993,62(2):261-214
    [9]Zhang Q. Strategies for developing green super rice. Proc Natl Acad Sci USA,2007,104: 16402-16409
    [10]张耗,谈桂露,薛亚光,等.江苏省粳稻品种近60年演进过程中产量与形态生理特征的变化[J].作物学报,2010,36(1):133-140
    [11]Yang J C and Zhang J H. Crop management techniques to enhance harvest index in rice. Journal of Experimental Botany,2010,61:3177-3189.
    [12]Ying J F, Peng S B, He Q G, et al. Comparison of high-yield rice in tropical and subtropical environments I. Determinants of grain and dry matter yields. Field Crops Research,1998,57: 71-84
    [13]魏树和,陈温福,徐正进,等.水稻收获指数研究的回顾与展望[J].垦殖与稻作,2001(增):1-3.
    [14]杨惠杰,杨仁崔,李义珍,等.水稻超高产的决定因素[J].福建农业学报,2002,17(4):199-203
    [15]Yuan L. Breeding of super hybrid rice. In:Peng S., Hardy B. (Eds.), Rice research for food security and poverty alleviation. International Rice Research Institute, Los Banos, Philippines, 2001, pp:143-149
    [16]Wu X J. Prospects of developing hybrid rice with super high yield. Agron. J.2009,101:688-695
    [17]Yoshida S. Rice. In:Smith W. H., Banta S. J. (Eds), Potential Productivity of Field Crops under Different Environments. International Rice Research Institute, Los Banos, Philippines,1983, PP: 103-127
    [18]敖和军,王淑红,邹应斌,等.超级杂交稻干物质生产特点与产量稳定性研究[J].中国农业科学,2008,41(7):1927-1936
    [19]Peng S B, Huang J L, Sheely J E, et al. Rice yield decline with higher night temperature from global warming. Proceedings of the National Academy of Science,2004,101:9971-9975
    [20]Loomis R S, Connor D J. Crop ecology:productivity and management in agricultural systems. Cambridge Univ. Press, Cambridge,1992,538 pp.
    [21]邹应斌.籼型超级杂交稻高产栽培研究进展[J].栽培与耕作,2006,(5):1-5
    [22]杨惠杰,李义珍;杨仁崔:等.超高产水稻的干物质生产特性研究[J].中国水稻科学,2001,15(4):265-270
    [23]邹应斌,黄见良,屠乃美,等.“旺壮重”栽培对双季杂交稻产量形成及生理特性的影响[J].作物学报,2001,27(3):343-350
    [24]杨建昌,杜永,吴长付,等.超高产粳型水稻生长发育特性的研究[J].中国农业科学,2006, 39(7):1336-1345
    [25]吴桂成,张洪程,戴其根,等.南方粳型超级稻物质生产积累及超高产特征的研究[J].作物学报,2010,36(11):1921-1930
    [26]凌启鸿.作物群体质量[M].北京:中国农业出版社,2005
    [27]凌启鸿,苏祖芳,张海泉.水稻成穗率与群体质量的关系及其影响因素的研究[J].作物学报,1995,21(4):463-469
    [28]魏金连,潘晓华.不同生育阶段夜温升高对双季水稻干物质生产与养分吸收的影响[J].生态学杂志,2009,28(12):2521-2525
    [29]Sinclair R G, Bai Q. Analysis of high wheat yields in northwest China. Agricultural Systems,1997, 53:373-385
    [1]凌启鸿,张洪程,戴其根,等.水稻精确定量施氮研究[J].中国农业科学,2005,38(12):2457-2467
    [2]王学林,李玲,李建平.测土配方施肥技术在水稻上的应用与效果初探[J].中国农学通报,2009,25(6):155-158
    [3]梁嘉陵,王爱武.三江平原沼泽土种稻营养诊断与施肥技术研究[J].黑龙江农业科学,1994,(5):10-12
    [4]钟旭华,黄农荣,张海波,等.水稻“三控”施肥技术规程[J].广东农业科学,2007,(5):13-15,43
    [5]蒋鹏,黄敏,MD. Ibrahim,等.“三定”栽培对双季超级稻养分吸收积累及氮肥利用率的影响[J].作物学报,2011,37(12):2194-2207
    [6]邹应斌,夏胜平.超级杂交稻“三定”栽培技术.湖南:湖南科技出版社,2010,pp:17-19
    [7]Wang G H, Dobermann A, Witt C, et al. Performance of site-specific nutrient management for irrigated rice in southeast China. Agron J,2001,93:869-878
    [8]Angus J F, Williams R L, Durkin C O. MANAGE RICE:decision support for rice crop management. In:R. Ishii and T. Horieed. Crop Research in Asia:Achievements and perspective. Proceedings of the 2nd Asia crop Science Conference.21-23 August,1995, Fukui, Japan.1996: 274-279.
    [9]Ten Berge H F M, Thiyagarajan T M, Shi Q H, et al. Numerical optimization of nitrogen application to rice. Part Ⅰ. Description of MANAGE RICE. Field Crops Research,1997,51; 29-42
    [10]叶全宝,张洪程,魏海燕,等.不同土壤和氮肥水平下水稻氮利用效率和增产效应研究[J].作物学报,2005,31(11):1422-1428
    [11]江立庚,曹卫星,甘秀芹,等.不同施氮水平对南方早稻氮素吸收利用及其产量和品质的影响[J].2004,37(4):490-496
    [12]张洪程,王秀芹,戴其根,等.施氮量对杂交稻两优培九产量、品质及吸氮特性的影响[J].中国农业科学,2003,36(7):800-806
    [13]江立庚,甘秀芹,韦善清,等.水稻物质生产与氮、磷、钾、硅素积累特点及其互相关系[J].应用生态学报,2004,15(2):226-230
    [14]李刚华,张发国,陈功磊,等.超高产常规粳稻宁粳1号和宁粳3号群体特征及对氮的响应[J].作物学报,2009,35(6):1106-1114
    [15]吴桂成,张洪程,戴其根,等.南方粳型超级稻物质生产积累及超高产特征的研究[J].作物学报,2010,36(11):1921-1930
    [16]Zhang Y B, Tang Q Y, Zou Y B, et al. Yield potential and radiation use efficiency of "super" hybrid rice grown under subtropical conditions. Field Crops Research,2009,114:91-98
    [17]Ying J F, Peng S B, He Q G, et al. Comparison of high-yield rice in tropical and subtropical environments I. Determinants of grain and dry matter yields. Field Crops Research,1998,57: 71-84
    [18]杨惠杰,李义珍,杨仁崔,等.超高产水稻的干物质生产特性研究[J].中国水稻科学,2001,15(4):265-270
    [19]周江明,俞乒乓,吴新明,等.不同水平氮磷钾对超级稻养分吸收和运转的影响[J].浙江农业学报,2009,21(1):39-44
    [20]蒋鹏,黄敏,MD. Ibrahim,等.“三定”栽培对超级稻养分吸收积累及氮肥利用率的影响[J].作物学报,2011,37(12):2194-2207
    [21]邹应斌,陈玉梅,徐国生,等.双季超级稻产量和氮磷钾吸收的基因型差异[J].作物研究,2008,22(4):225-229
    [22]Singh U, Ladha J K, Castillo E G, et al. Genotypic variation in nitrogen use efficiency in medium- and long-duration rice. Field Crops Research,1998,58:35-53
    [23]Witt C, Dobermann A, Abdulrachman S, et al. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia. Field Crops Research,1999,63:113-138
    [24]Samonte S O PB, Wilson L T, Medley J C, et al. Nitrogen utilization efficiency:relationships with grain yield, grain protein, and yield-related traits in rice. Agronomy Journal,2006,98:168-176
    [25]敖和军,王淑红,邹应斌,等.不同施肥水平下超级杂交稻对氮、磷、钾的吸收积累[J].中国农业科学,2008,41(10):3123-3132
    [26]俞巧钢,叶静,样梢娜,等.不同施氮量对单季稻养分吸收及氨挥发损失的影响[J].中国水稻科学,2012,26(4):487-494
    [27]孙永健,孙园园,李旭毅,等.水氮互作对水稻氮磷钾吸收、运转及分配的影响[J].作物学报,2010,36(4):655-664
    [28]邹长明,秦道珠,徐明岗,等.水稻的氮磷钾养分吸收特性及其与产量的关系[J].南京农业大学学报,2002,25(4):43-46
    [29]单玉华,王余龙,山本由德,等.常规籼稻与杂交籼稻氮素利用效率的差异[J].江苏农业研究,2001,22(1):12-15
    [30]张传胜,龙银成,周娟,等.不同产量类型籼稻品种氮素吸收利用特征研究[J].扬州大学学报(农业与生命科学版),2004,25(2):17-21
    [31]Shukla A K, Ladha J K, Singh V K, et al. Calibrating the leaf color chart for nitrogen management in different genotypes of rice and wheat in a systems perspective. Agron J,2004,96:1606-1621
    [32]Singh B, Singh Y, Ladha J K, et al. Chlorophyll meter-and leaf color chart-based nitrogen management for rice and wheat in Northwestern India. Agron J,2002,94:821-829
    [33]Alam M M, Ladha J K, Khan S R, et al. Leaf color chart for managing nitrogen fertilizer in lowland rice in Bangladesh. Agron J,2005,97:949-959
    [34]Peng S B, Roland J B, Huang J L, et al. Strategies for overcoming low agronomic nitrogen use efficiency in irrigated rice systems in China. Field Crops Res,2006,96:37-47
    [35]徐富贤,熊洪,张林,等.西南稻区不同地域和施氮水平对杂交种稻氮、磷、钾吸收积累的影响[J].作物学报,2011,37(5):882-894
    [36]邹应斌,陈玉枚,徐国生,等.双季超级稻产量和氮磷钾吸收的基因型差异[J].作物研究,2008,22(4):225-229
    [37]Singh U, Ladha J K, Castillo E G, et al. Genotypic variation in nitrogen use efficiency in medium-and long-duration rice. Field Crops Research,1998,58:35-53
    [38]Witt C, Dobermann A, Abdulrachman S, et al. Internal nutrient efficiencies of irrigated lowland rice in tropical and subtropical Asia. Field Crops Research,1999,63:113-138
    [39]Samonte S O PB, Wilson L T, Medley J C, et al. Nitrogen utilization efficiency:relationships with grain yield, grain protein, and yield-related traits in rice. Agronomy Journal,2006,98:168-176

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700