用户名: 密码: 验证码:
叶片—转子—轴承耦合系统的非线性动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着近代旋转机械的设计向高转速、轻柔结构的趋势发展,叶片和转子的柔性在许多特定的情况下处于同一量级。高转速的转子系统常常处于超临界运动状态,低转速时可以视为刚性的旋转部件,高转速时必须考虑为弹性部件参与耦合振动。因此,在研究高转速转子系统的动力学行为时,不能再将叶片和转轴分开考虑,而是要建立更为精确的考虑叶片和转轴耦合效应的动力学模型。
     另一方面,随着旋转机械机组容量的增大和设计参数的提高,非线性因素对系统动力学性能的影响也越来越显著。轴承作为旋转机械必不可少的结构之一,其中的油膜力是转子系统重要的非线性激励源。而非线性油膜力引发的油膜涡动和油膜振荡是转子系统较常见的故障。因此有必要建立由叶片、转子和轴承构成的耦合非线性动力学模型,并应用现代非线性动力学理论研究该系统的分岔、混沌等非线性动力学特性。
     本文针对航空发动机、燃气轮机等大型旋转机械设计制造中存在的问题,建立了叶片-转子-轴承耦合系统的非线性动力学模型,利用该模型研究了叶片、转子和轴承的耦合动力学特性,取得了一些创新性成果。具体的研究内容和成果有:
     采用Lagrange方程建立了叶片-转子-轴承耦合系统的非线性动力学模型。利用集中质量法将转子系统离散,为分析叶片对转子的惯性效应并考虑系统的时变性,将叶片模化为单摆模型。为将模型简化,首先,应用正交变换将与转子横向运动发生耦合的叶片1-节径运动和叶片其它节径运动解耦,从而将耦合的非线性系统由8 + 2 n ( n≥3)个自由度降低至12个自由度,同时得到了2n-4个描述叶片k-节径( k≠1)运动的相互独立的线性微分方程。然后,利用周期变换将耦合时变微分方程转化为常系数微分方程。在两次变换后,获得了一个含有12个自由度的常系数耦合非线性方程组和2n-4个相互独立的线性微分方程。这个降维方法即保留了叶片和转子之间的耦合效应,又降低了非线性微分方程组的维数,提高了耦合系统的求解效率,为高效准确地分析系统的非线性动力学特性奠定了基础。
     当采用刚性转子假设时,叶片-刚性转子-轴承系统非线性动力学模型的自由度数进一步降至4。利用短轴承非线性油膜力模型获得非线性油膜力。对耦合模型的数值分析显示了叶片-刚性转子-轴承系统的动力学特性,与不考虑叶片振动的情况相比较,揭示了叶片振动对刚性转子-轴承系统非线性动力学特性的影响。
     为分析柔性叶片、弹性转子和轴承之间的耦合动力学特性,利用对称转子假设,分别建立了叶片-单盘转子-轴承系统模型和叶片-双盘转子-轴承系统模型。由于转子的对称性,这两个模型都忽略圆盘的偏转运动和叶片的平面外运动,解耦后的模型中,系统的自由度数分别缩减至8和12。通过对模型的求解,着重分析了叶片振动和弹性转子—轴承系统之间的耦合效应。
     对于非对称转子,在建立叶片-转子-轴承系统动力学模型时,将陀螺力矩对转子的影响考虑在内。此模型较全面的考察了转子与叶片的耦合效应。通过求解12个自由度的耦合非线性系统,分析了叶片振动对转子动特性的影响,并详细讨论了叶片刚度和长度等参数对转子动力学行为的影响。为分析耦合系统中叶片的振动特性,将叶片k-节径运动微分方程的解析解离散,结合耦合模型中叶片1-节径运动的数值解,获得了叶片的平面内和平面外运动的动态响应,揭示了耦合系统中叶片振动蕴含的非线性特性。
     对带有外伸端结构的转子,建立了叶片-悬臂转子-挤压油膜轴承系统的动力学模型。挤压油膜阻尼器的油膜力采用Raynolds边界条件下的短轴承假设的非线性油膜力模型。该模型含有两个圆盘,其中一个圆盘位于两个轴承之间,另一个圆盘在转子的外伸端上,而且在每个圆盘上都带有若干弹性叶片。叶片-悬臂转子-挤压油膜轴承耦合系统解耦后共有24个自由度。通过对系统进行数值求解,分析了叶片振动对悬臂转子动力学行为的影响。研究表明在分析此类系统的动力学特性时,必须考虑叶片、转子和轴承之间的耦合效应。
Nowadays, in the practical design, rotating systems become lighter and more flexible with higher operating speed, and the flexibilities of the blade and rotor are close to each other in some situations. The working rotating speed of the rotor is often above the critical speed, and many rotating components, which may be assumed to be rigid at the low speed, should to be considered to be elastic components which may couple to the rotor vibration as the rotating speed is getting higher. Actually, an effective modeling strategy that addresses the interaction between the rotor and the blade is crucial in estimating system performance.
     On the other hand, improving the parameters of the rotating machinery, the effect of the nonlinear factor on the behavior of the rotor is more significantly. The journal bearing is one of the necessary components of the rotating machine, and the nonlinear oil film force of the journal bearing is one of the nonlinear factors in the rotor system and can cause the occurrence of the oil whirl and oil whip which may cause the failure of the machine. Therefore, the precise nonlinear model should be developed to describe the interaction between the rotor, blade and bearing, and to be used to analyze the nonlinear behaviors such as the bifurcation and chaos by the theory of the nonlinear dynamics.
     In the design and manufacture of large-scale rotating machinery such as aircraft engines and steam turbines, the coupling dynamics of rotor-bearing systems with blades is a crucial problem. In this dissertation, a coupling nonlinear dynamical model of the blade-rotor- bearing system is developed to analyze the interaction between the rotor, blade and bearing. Research achievements on the coupling dynamics of blade-rotor-baering model are obtained, and this may be beneficial to the engineering applications. The main contents and achievements are listed here.
     The nonlinear coupling model of the blade-rotor-bearing system is established by the Lagrange approach. The lumped mass method is used to discrete the rotor, and the blades are modeled as pendulums to emphasize the inertia coupling between blades and rotor. To reduce the coupling model, first, orthogonal transformations are employed to decouple the one nodal diameter equations of motion, which are coupled with the equations of motion of the rotor, from k-nodal diameter ( k≠1) equations of motion for an array of elastic blades. The coupling equations with 8 + 2n( n≥3)-degree-of-freedom are divided into two parts: one is the coupling nonlinear model with 12-degree-of- freedom which describe the interaction between the motion of the rotor and the 1-nodal diameter motion of blades, the others are the independent linear system with (2n-4)-degree-of-freedom which describe the k-nodal diameter ( k≠1) motion of blades. Then, the coupling equations of the blade-rotor-bearing system are transferred to a time-invariant model in terms of periodic transformations. After the two sets of transformations, the coupling nonlinear model is reduced to a lower dimensional system which can be easily solved numericaly in comparison with the solving of the original coupling system.
     With the assumption of a rigid rotor, the degree-of-freedom of the blade-rigid rotor-bearing system is reduced to 4. The nonlinear oil film force model based on the short bearing theory is adopted here. The system is numericaly solved and the dynamical responses of the system are used to analyze the nonlinear dynamical behaviors of the coupling model. The bifurcation diagrams for the corresponding rigid rotor-bearing model, in which the effect of the vibration of blade is neglected, are given as a comparison of the results obtained from the blade-rigid rotor-bearing model.
     To analyze the interaction between the elastic blade, flexible rotor and journal bearing, the model of blade-rotor-bearing systems with both single and double disks are proposed respectively based on the assumption of the symmetrical rotor, in which the deflection motions of the rotor and the out-of-plane motion of blades are neglected. After decoupling, the degree-of-freedom of these two models are reduced to 8 and 12, respectively. Then the coupling interaction between the elastic blade and rotor-bearing system is investigated.
     With the assumption of the asymmetrical rotor, the model of the blade-rotor-bearing system with the gyroscopic moment is developed. Obtaining the numerical solutions of the coupling model with the 12-degree-of-freedom, the nonlinear dynamical behavior of the coupling system is investegated. And the effect of the different stiffnesses and lengths of the blade on the behavior of the rotor is discussed. By analyzing the responses of the in-plane and out-of-plane motion of blades, the nonlinear characteristic of the vibration of blades is shown.
     For the overhung rotor, the model of the blade-cantilever rotor- squeeze film bearing model is established. In the model, there are two disks on the rotor, one is fixed between two bearing, and the other is fixed at the end of the overhung rotor. The many elastic blades are fixed to each disk. The oil film force of the squeeze film damper based on the theory of short bearing with the Raynolds boundary is adopted. After decoupling, there exist 24 equations in the coupling nonlinear system. Using the numerical solutions of the coupling system, the effect of the vibration of blades on the nonlinear dynamical behavior of the overhung rotor is shown.
引文
1钟一锷,何衍宗,王正,等.转子动力学.北京:清华大学出版社, 1987.
    2张文.转子动力学理论基础.北京:科学出版社, 1990.
    3闻邦椿,顾家柳,夏松波,等.高等转子动力学-理论、技术与应用.北京:机械工业出版社, 1999.
    4闻邦椿,武新华,丁千,等.故障旋转机械非线性动力学的理论与试验.北京:科学出版社, 2004.
    5黄文虎,夏松波,焦映厚,等.旋转机械非线性动力学设计基础理论与方法.北京:科学出版社, 2006.
    6张新江.转子-轴承系统非线性动力学研究.哈尔滨工业大学博士学位论文.2001:18~93.
    7 D. R. Chivens. The Natural Frequencies and Critical Speed of a Rotating Flexible Shaft-disk System. Arizone: Arizone State University. 1973.
    8 L. E. El-Bayoumy, A. V. Srinivasan. Influence of Mistuning on Rotor-Blade Vibration. American Institute of Aeronautics and Astronautics Journal. 12:460~464.
    9 A. V. Srinivasan. Vibrations of Bladed-disk Assemblies: a Selected Survey. Journal of Vibration and Acoustics. 1984, (106): 165~168.
    10 S. H. Crandall, J. Dugundji. Forced Backward Whirling of Aircraft Propeller-Engine Systems. IMechE, C290/80. 1980: 265~270.
    11 N. Hagawara, Y. Ono, H. Iizima. Forward and Backward Whirling Natural Frequencies of Blade Group. JSME. 1985, 51(463): 555~564.
    12 E. F. Crawley, D. R. Mokadam. Stagger Angle Dependence of Inertial and Elastic Coupling in Bladed Discs. ASME Journal of Vibration, Acoustics, Stress and Reliability in Design. 1984, (106): 181~188.
    13 M. Sakata, K. Kimura, S.K. Park, H. Ohnabe, Vibration of BladedFlexible Rotor due to Gyroscopic Moment. J of Sound and Vibration. 1989, 113(3):417~430.
    14 J. Padovan, F. K. Choy. Nonlinear Dynamics of Rotor/Blade/Casing Rub Interactions. Journal of Turbomachinery, 1987, (109): 527~534.
    15 N. Lesaffre, J. J. Sinou, F. Thouverez. Contact Analysis of a Flexible Bladed-Rotor. European Journal of Mechanics A/Solids. 2007, (26): 541~557.
    16 S. B. Chun, C. W. Lee. Vibration Analysis of Shaft~bladed Disc System by Using Substructure Synthesis and Assumed Modes Method. Journal of Sound and Vibration. 1996, (189): 587~608.
    17 S. K. Sinha. Dynamic Characteristics of a Flexible Bladed-Rotor with Coulomb Damping due to Tip-Rub, Journal of Sound and Vibration. 2004, (273): 875~919.
    18 C. H. Yang, S. C. Huang. The Influence of Disk’s Flexibility on Coupling Vibration of Shaft-disk-blades System. Journal of Sound and Vibration. 2007, (301): 1~17.
    19 A. A. S. Shahab, J. Thomas. Coupling Effects of Disc Flexibility on the Dynamic Behavior of Multi Disk~shaft Systems. Journal of Sound and Vibration. 1987, (114): 435~452.
    20 B. O. Al-Bedoor. Dynamic Model of Coupled Shaft Torsional and Blade Bending Deformations in Rotors. Computer Methods in Applied Mechanics and Engineering. 1999, (168): 177~190.
    21 S. J. Wildheim. Natural Frequencies of Rotating Bladed Discs Using Clamped~Free Blade Modes, AMSE Journal of vibration, Acoustics, Stress and Reliability in Design. 1983, (105), 416~424.
    22 P. J. Magari, L. A. Shultz. Development of a Rotating Blade Finite Element with an Application to the Analysis of Helicopter Rotor Systems, AIAA Student Journal. 1987: 17~27.
    23 P. Priolo, C. Sitza. Efficiency of Annular Finite Elements for Flexural Vibrations of Thick Disks, Journal of Sound and vibration. 1987, (144): 435~452.
    24 J. Kirkhope, G. J. Wilson. A Finite Element Analysis for theVibration Modes of a Bladed Disc, Journal of Sound and Vibration. 1976, (49): 469~482.
    25 S. H. Hsieh, J. F. Abel. Comparison of Two Finite Element Approaches for Analysis of Rotating Bladed-Disc Assemblies. 1995, (182): 91~107.
    26 G. Genta, A. Tonoli. A Harmonic Finite Element for the Analysis of Flexural, Torsional and Axial Rotordynamic Behavior of Discs. Journal of Sound and Vibration. 1996,196(1): 19~43.
    27 G. Genta, A. Tonoli. A Harmonic Finite Element for the Analysis of Flexural, Torsional and Axial Rotordynamic Behavior of Blade Arrays. Journal of Sound and Vibration. 1997, 107(5): 693~720.
    28马晓秋,王亲猛,张锦,等.带干摩擦阻尼结构叶/盘系统动力学分析.航空动力学报. 2002, 17(1): 110~114.
    29周传月,邹经湘,闻雪友,等.燃气轮机叶片-轮盘耦合振动特性计算.航空学报. 2000, 21(6): 545~547.
    30周传月,邹经湘,闻雪友,等.循环对称结构振动特性计算的新方法.哈尔滨工业大学学报. 2000, 32(5): 24~33.
    31周传月,邹经湘,闻雪友,等.燃气轮机叶片轮盘振动特性分析.热能动力工程. 2005, 87(15): 205~209.
    32 R.G. Loewy, N. Khader. Structural Dynamics of Rotating Bladed~Disk Assemblies Coupled with Flexible Shaft Motions. AIAA J. 1984, 22(9): 1319~1327.
    33 I. Y. Shen. Closed-form Forced Response of a Damped, Rotating Multiple Disk/spindle System. ASME Journal of Applied Mechanics. 1997, (64): 343~352.
    34 H. P. Lee, T. H. Tan, G. S. B. Leng. Dynamic Stability of Spinning Timoshenko Shafts with a Time-dependent Spin Rate. Journal of Sound and Vibration. 1997, 199(3): 401~415.
    35 C. W. Lee, S. B. Chun. Vibration Analysis of a Rotor with Multiple Flexible Disks Using Assumed Modes Method. Journal of Vibration and Acoustics. 1998, 120(2): 87~94.
    36 H.S. Jia. On the Bending Coupled Natural Frequencies of a Spinning, Multispan Timoshenko Shaft Carrying Elastic Disks.Journal of Sound and Vibration. 1999, 211(4): 623~649.
    37 Y. J. Chiu, S. C. Huang. The Influence on Coupling Vibration of a Rotor System due to a Mistuned Blade Length. International Journal of Mechanical Sciences. 2007, (49): 522~532.
    38 W. Wang, J. Kirkhope. Component Mode Synthesis for Damped Rotor Systems with Hybrid Interfaces, Journal of Sound and Vibration. 1994, (177):393~410.
    39 V. Omprakash, V. Ramamurti. Natural Frequencies of Bladed Discs by a Combined Cyclic Symmetry and Rayleigh-Ritz Method, Journal of Sound and Vibration. 1988, (125) 357~366.
    40 J. H. Kuang, B. W. Huang. Mode Localization of a Cracked blade disk. ASME Journal of Engineering for Gas Trubines and Power. 1999, (121): 335~341.
    41 B. W. Huang. Effect of Number of Blases and Distribution of Cracks on Vibration Localization in a Cracked Pre~twisted blade system. International Journal of Mechanical Sciences. 2006, (48): 1~10.
    42 S. C. Huang, K. B. Ho. Coupled Shaft-torsion and Blade~bending Vibration of a Rotation Shaft-disk-blade unit. ASME Journal of Engineering for Gas Trubines and Power. 1996, (118): 100~106.
    43杨建刚,高斖.大型旋转机械叶片轴弯扭耦合振动问题的研究.动力工程. 2003, 23(4): 2569~2573.
    44 V. Omprakash, V. Ramamurti. Coupled Free Vibration Characteristics of Rotating Runed Bladed Disk Systems. Journal of Sound and Vibration. 1990, 140(3): 413~435.
    45 O. Turhan, G. Bulut. Linearly Coupled Shaft-torsional and Blade-bengding Vibrations in Multi~stage Rotor-blade Systems. Journal of Sound and Vibration. 2006, (296): 292~318.
    46 G. H. Jang, S. H. Lee, M. S. Jung. Free Vibration Analysis of A Spinning Flexible Disk-Spindle System Supported by Ball Bearing and Flexible Shaft Using the Finite Element Method and Subtructure Synthesis. Journal of Sound and Vibration. 2002, 251(1): 59~78.
    47江红,潘勇,孟庆集.汽轮机叶片-叶轮系统耦合振动特性的理论计算和实验研究.机械强度. 1996, 18(2): 25~29.
    48 I. F. Santos, C. M. Saracho, J. T. Smith, et al. Contribution to Experimental Validation of Linear and Non~linear Dynamic Models for Representing Rotor~blade Parametric Vibrations. Journal of Sound and Vibration. 2004, (271): 883~904.
    49 R. H. Christensen, I. F. Santos. Design of Active Controlled rotor~blade Systems Based on Time~variant modal analysis. Journal of Sound and Vibration, 2005, (280): 862~882.
    50 R. H. Christensen, I. F. Santos. Active Rotor~Blade Vibration Control Using Shaft~Based Electromagnetic Actuation. ASME Journal of Engineering for Gas Turbines and Power. 2006, (28): 644~652.
    51 C. A. Mota Soares, M. Petyt. Finite Element Dynamic Analysis of Practical Bladed Disks. Journal of Sound and Vibration. 1978, (61):561~566.
    52 R. Henry, G. Ferraris. Substructuring and Wave Propagation: an Efficient Technique for Impeller Dynamic Analysis. ASME Journal of Engineering for Gas Turbines and Power. 1984, (106): 2~10.
    53 G. Jacquet-Richardet, G. Ferraris, P. Rieutord. Frequencies and Modes of Rotating Flexible Bladed Disc-Shaft Assemblies: A Global Cyclic Symmetry Approach. Journal of Sound and Vibration. 1996, 191(5): 901~915.
    54 E. Chatelet, F. D’Ambrosio, G. Jacquet-Richardet. Toward Global Modelling Approaches for Dynamic Analyses of Rotating Assemblies of Trubomachines. Journal of Sound and Vibration. 2005, (282): 163~178.
    55 D.L. Thomas. Dynamics of Rotationally Periodic Structures. Int J Num Meth Engng. 1979, (14): 81~88.
    56 V. Ramamurti, P. Balasubramanian. Static Analysis of Circum Ferentially Periodic Structures With Potter’s Scheme. Computation Structure. 1986, (22): 427~431.
    57 V. Ramamurti, M. A. Rao. Dynamic Analysis of Spur Gear Teeth. Computation Structure. 1992, 7(4): 348~350.
    58 P. Balasubramanian, V. Ramamurti. Free Vibration Analysis of Symmetric Structures Comment in Apply Numercial Methanics. 1991, (7): 131~139.
    59赵宁,刘更,高平,等.计算循环对称结构振动特性的新方法.机械科学与技术. 1996, 15(5): 706~710.
    60张锦,刘晓平.叶轮机振动模态分析理论及数值方法.北京:国防工业出版社. 2001.
    61张锦,王文亮,陈向军.带N条叶片的轮盘耦合系统的主模态分析? CNV群上对称结构的模态分析.固体力学学报. 1984, (4): 469~481.
    62王文亮,杜作润.盘-叶系统模态分析的群论辅助子结构技术.复旦学报(自然科学版). 1989, 28(1): 73~77.
    63王文亮,张锦,陈向钧.盘-叶耦合系统的固有模态分析?CNV群上对称结构的模态综合.固体力学学报. 1988, 9(1): 15~23.
    64刘廷毅,张锦,王建明.叶片-轮盘-轴系统的耦合振动分析.燃气涡轮试验与研究. 1996, (1): 30~34.
    65张文,王文亮,王皓,等.叶片-盘-轴整体转子振动特性分析.航空动力学报. 1994, 9(2): 121~124.
    66 B. O. Al~Bedoor. Reduced-Order Nonlinear Dynamic Model of Coupled Shafted-Torsional and Blade-Bending Vibrations in Rotors. Journal of Engineering for Gas Trubines and Power. 2001, (123): 82~89.
    67 Y. Al~Nassar, B. O. Al~Bedoor. On the Vibration of a Rotating Blade Vibration on a Torsionally Flexible Shaft. Journal of Sound and Vibration. 2002, (259): 1237~1242.
    68 B. O. Al~Bedoor, A. A. Al-Qaisia. Stability Analysis of Rotating Blade Bending Vibration due to Torsional Excitation. Journal of Sound and Vibration. 1005, (282): 1065~1083.
    69 Okabe, Y. Otawara, R. kaneko. An Equivalent Reduced Modeling Method and its Application to Shaft-blade Coupled Torsional Vibration Analysis of a Turbine Generator Set. Proceedings of theInstitution of Mechanical Engineers, Part A: Power and Process Engineering. 1991, 205(3): 173~181.
    70郭力,朱均.汽轮发电机组转子-轮盘-叶片系统耦合扭转振动研究.汽轮机技术. 2001,43(4): 226~256.
    71 G. Genta. On the Stability of Rotating Blade Arrays. Journal of Sound and Vibration. 2004, (273): 805~836.
    72黄文虎,武新华,焦映厚,等.非线性转子动力学研究综述.振动工程学报. 2000, 13(4): 497~509.
    73孟光.转子动力学研究的回顾与展望.振动工程学报. 2002, 15(1): 1~9.
    74闻邦椿.故障旋转机械非线性动力学近期研究综述.振动工程学报. 2004, 17(增刊): 1~5.
    75 A. Muszyska. Whirl and Whip-rotor Bearing Stability Problems. Journal of Sound and Vibration. 1986, 110(3): 443~462.
    76 A. Muszyska. Stability of Whirl and Whip in Rotor/bearing Systems. Journal of Sound and Vibration. 1988, 127(1): 49~64.
    77 A. Muszyska. Rotordynamics. Boca Raton: CRC Press, 2005.
    78 G. Adiletta, A. Guido. Chaotic Motions of a Rigid Rotor in Short Journal Bearings. Journal of Nonlinear Dynamics. 1996, (10): 251~269.
    79 G. Adiletta, A. R. Guido, C. Rossi. Nonlinear Dynamics of a Rigid Unbalanced Rotor in Journal Bearings. Part I: Theoretical Analysis. Nonlinear Dynamics. 1997, (14): 57~87.
    80 G. Adiletta, A. R. Guido, C. Rossi. Nonlinear dynamics of a Rigid Unbalanced Rotor in Journal Bearings. Part II: Experimental Analysis. Nonlinear Dynamic. 1997, (14): 157~189.
    81 Q. Ding, A. Y. T. Leung. Numerical and Experimental Investigations on Flexible Multi~bearing Rotor Dynamics. ASME Journal of Vibration and Acoustics. 2005, (127): 408~415.
    82丁千,朗作贵,曹树谦.双跨柔性转子-轴承系统动力学理论与实验研究.工程力学. 2005, 22(2): 162~167.
    83张卫,朱均.转子-轴承系统稳定性的试验研究.机械工程学报. 1997, 33(6): 53~57.
    84祝长生,冯心海,徐健康.柔性转子挤压油膜阻尼器系统双稳态特性的实验研究.航空动力学报. 1988, 3(2): 105~108.
    85张家忠.挤压油膜阻尼器-滑动轴承-转子动力系统的非线性动力特性研究运动稳定性及分岔.西安交通大学博士学位论文. 1997
    86王立平,郑浩峻,李铁民,等.转子碰摩故障非线性特性的实验研究.汽轮机技术. 2002, 44(2): 101~102.
    87卢文秀,禇福磊.转子系统碰摩故障的实验研究.清华大学学报(自然科学版). 2005, 45(5): 614~617.
    88任朝晖,陈宏,李鹤,等.双盘悬臂转子轴承系统碰摩故障数值仿真与实验分析.中国机械工程, 2006, 17(17): 1829~1833.
    89毛居全,李朝峰,王得刚,等.转子支座松动故障的数值仿真与实验研究.机械与电子. 2008, 3: 3~6.
    90郑龙席,贺尔铭,朱述川,等.单盘含裂纹转子系统的非线性响应分析与实验研究.机械强度. 2003, 25(1): 1~4.
    91万方义,许庆余,宋笔锋,等.滑动轴承-转子系统非线性裂纹故障特征及其实验研究.应用力学学报, 2004, 21(3): 38~42.
    92郑艳平,朱厚军.裂纹转子的实验研究.汽轮机技术. 2006, 48(5): 354~266.
    93刘长利,姚红良,李鹤,等.碰摩裂纹转子轴承系统的周期运动稳定性及实验研究.应用力学学报. 2004, 21(4): 52~55.
    94孟泉,陈予恕.非线性转子-轴承失稳新机理的研究.非线性动力学学报. 1995, 3: 189~197.
    95陈予恕,孟泉.非线性转子-轴承系统的分叉.振动工程学报. 1996, 9(3): 266~275.
    96陈予恕,丁千,孟泉.非线性转子的低频振动失稳机理分析.应用力学学报. 1998, 15(1): 113~117.
    97吴敬东,侯秀丽,刘长春,等.非线性刚度转子系统主共振解析分析.中国机械工程. 2006, 17(5): 539~541.
    98 Y. B. Kim, S. T. Noah. Quasi-periodic Response and Stability Analysis for a Nonlinear Jeffcott Rotor. Journal of Sound and Vibration. 1996, 190(2): 239~253.
    99 Y. B. Kim, S. K. Choi. A Multiple Hamonic Balance Method forthe Internal Resonant Vibration of a Nonlinear Jeffcott Rotor. Journal of Sound and Vibration. 1997, 208(15): 745~761.
    100 P. Bonello, M. J. Brennan, R. Homes. Nonlinear Modelling of Rotor Dynamic Systems with Squeeze Film Dampers-An Efficient Integrated Approach. Journal of Sound and Vibration. 2002, 294(4): 743~773.
    101 L. Cveticanin. The Vibrations of a Textile Machine Rotor with Nonlinear Characteristics. Mechanism and Machine Theory. 1986, (21): 29~32.
    102 R. Ganesan. Dynamic Response and Stability of Rotor~support System with Non-symmetric Bearing Clearances. Mechanism and Machine Theory. 1996, (31): 781~798.
    103 J. C. Ji, C. H. Hansen. Nonlinear Oscillations of a Rotor in Active Magnetic Bearings. Journal of Sound and Vibration. 2001, 240(4): 599~621.
    104 L. Cveticanin. Free Vibration of a Jeffcott Rotor with Pure Cubic Nonlinear Elastic Property of the Shaft. Mechanism and Machine Theory. 2005, (40): 1330~1344.
    105 C. L. Chen, H. T. Yau, Chaos in the Imbalance Response of a Flexible Rotor Supported by Oil Film Bearings with Non~linear Suspension. Nonlinear Dynamics. 1998(16): 71~90.
    106林富生,张韬,孟光.挤压油膜阻尼器碰摩转子系统的非线性特性研究.振动与冲击. 2004, 23(1): 12~16.
    107孙政策,徐健学.碰摩转子的非线性动力学特性研究.动力工程. 2003, 23(1): 2205~2209.
    108禇福磊,冯冠平,张正松.碰摩转子系统中的阵法性及混沌现象.航空动力学报. 1996, 11(3): 261~264.
    109罗跃纲,曾海泉,李振平,等.基础松动碰摩转子系统的混沌特性研究.振动工程学报. 2003, 16(2): 184~188.
    110刘长利,姚红良,罗跃纲,等.松动碰摩转子轴承系统周期运动稳定性研究.振动工程学报. 2004, 17(3): 336~340.
    111刘长利,姚红良,李鹤,等.碰摩转子轴承系统的非线性动力响应行为.东北大学学报(自然科学版). 2003, 24(8): 802~805.
    112袁小阳,朱均.不平衡转子滑动轴承系统稳定性的非线性研究.振动与冲击. 1996, 15(1): 71~76.
    113张彦梅,陆启韶.非稳态油膜力作用下转子振动的分岔与稳定性分析.航空学报. 2003, 24(1): 36~38.
    114刘恒,陈绍汀.非线性系统全局动态特性分析的PCM法及其在转子轴承系统中的应用.应用力学学报. 1995, 12(3): 7~15.
    115郭丹,陈绍汀.非线性动力系统全局分析的变胞胞映射法与转子/轴承系统的全局稳定性.应用力学学报. 1996, 13(4): 8~15.
    116王立国,胡超,黄文虎.数学机械化在转子动力学研究中的初探.中国电机工程学报. 2001, 21(8): 5~9.
    117 Xia Songbo, Wang Liguo, Huang Wenhu, et al. A Method for Analyzing the Dynamic Behavior of Rotor-bearing System with Nonlinear Supports. IFTOMM, Sixth International Conference on Rotor Dynamics Rroceedings, Sydney(Australia). 2002, II: 471~477.
    118胡超,王岩,王立国,等.机械化数学在转子动力学中的应用.应用数学和力学. 2001, 21(8): 5~9.
    119 Wang Liguo, Huang Wenhu, Hu Chao. Application of Mechanized Mathematics in Rotor Dynamics. Symposium on Nonlinear Vibrations at the 18-th ASME Biennial Conference on Mechanical Vibration and Noise, Pittsburgh, Pennsylvania, DET2001/VIB -21628.
    120 Wang Liguo, Huang Wenhu, Hu Chao. Application of Finite Element Method in Time Domain to a Rotor System with Nonlinear Supports. Symposium on Nonlinear Vibrations at the 18~th ASME Biennial Conference on Mechanical Vibration and Noise, Pittsburgh, Pennsylvania, DET2001/VIB-21639.
    121吕延军,虞烈,刘恒.流体动压滑动轴承-转子系统非线性动力特性及稳定性.摩擦学学报. 2005, 25(1): 61~66.
    122 J. I. Inayat-Hussain, H. Kanki, N. W. Mureithi. Stability and Bifurcation of a Rigid Rotor in Cavitated Squeeze-film Dampers without Centering Springs. Tribology International. 2001, 34: 689~702.
    123 J. I. Inayat-Hussain, H. Kanki, N. W. Mureithi. On the Bifurcations of a Rigid Rotor Response in Squeeze-film Dampers. Journal of Fluids and Structures. 2003, 17: 433~459.
    124 J. I. Inayat-Hussain. Bifurcation of a Flexible Rotor Response in Squeeze-film Dampers without Centering springs. Chaos, Solitons and Fractals. 2005, 24: 583~596.
    125 J. I. Inayat-Hussain. Bifurcation in the Response of a Flexible Rotor in Squeeze-film Damper with Retainer Springs. Chaos, Solitons & Fractals, 2007, doi:10.1016/j. chaos. 2007. 01. 086.
    126崔颖,刘占生,黄文虎,等.高维转子-轴承系统非线性动力稳定性分析.哈尔滨工业大学学报. 2005, 37(11): 1465~1468.
    127崔颖,刘占生,冷淑香,等. 200MW汽轮发电机组转子-轴承系统的非线性稳定性研究.机械工程学报. 2005, 41(2): 170~175.
    128 T. S. Zheng, N. Hasebe. Calculation of Equilibrium Position and Dynamic Coefficients of a Journal Bearing Using Free Boundary Theory. ASME Journal of Tribology. 2000, 122(3): 616~621.
    129陈龙,郑铁生,张文,等.轴承非线性油膜力的一种变分近似解.应用力学学报. 2002, 19(3): 90~95.
    130刘大全,肖忠会,张文,等.滑动轴承非线性油膜力的一维直接解法.机械工程学报. 2005, 41(2): 51~56.
    131王丽萍,刘大全,张文,等.求滑动轴承非线性油膜力的加权有限元方法.工程力学. 2006, 23(5): 163~167.
    132王德强,张直明. Jeffcott转子-滑动轴承系统不平衡响应的非线性仿真.振动与冲击. 1999, 18(1): 57~62.
    133王小静,张直明,李志刚.汽轮发电机组常用轴承性能数据库系统的开发与研究.上海大学学报(自然科学版). 1996, 12(6): 635~640.
    134焦映厚,陈照波,夏松波,等.转子-非圆轴承系统非线性动力学行为的研究.航空动力学报. 2000, 15(4): 413~418.
    135孟志强,徐华,朱均.基于Poincaré变换的滑动轴承非线性油膜力数据库方法.摩擦学学报. 2001, 21(3): 223~227.
    136秦平,孟志强,朱均.滑动轴承非线性油膜力的网络模型.摩擦学学报. 2002, 22(3): 226~231.
    137秦平,沈钺,朱均.椭圆轴承-转子系统快速运动状态分析.西安交通大学学报. 2003, 37(1): 29~63.
    138 W. Zhang, H. S. Zhang, X. F. Xu. Study of General Nonlinear Formula of Oil-film Force Acting on a Journal with Unsteady Motion. Proceeding of Asia-Pacific Vibration Conference. 1997: 824~829.
    139 W. Zhang, etc. Nonlinear Dynamic Analysis of Rotor under a New Unsteady Nonlinear Oil-film Force Model for Finite Journal Bearing. Proceedings of Asia-Pacific Vibration Conference. 1999.
    140徐小峰,张文.一种非稳态油膜力模型下刚性转子的分岔和混沌特性.振动工程学报. 2000, 13(2): 247~253.
    141郭建萍,邱鹏庆,崔升,等.有限长轴承非稳态油膜力建模及非线性油膜失稳.振动工程学报. 2001, 14(1): 7~12.
    142张文,郑铁生,马建敏,等.油膜轴承瞬态非线性油膜力的力学建模及其表达式.自然科学进展. 2002, 12(3): 255~260.
    143杨金福,刘占生,于达仁,等.滑动轴承非线性油膜力研究.哈尔滨工业大学学报. 2003, 35(3): 257~260.
    144杨金福,刘占生,于达仁,等.滑动轴承非线性动态油膜力及稳定性的研究.动力工程, 2004, 24(4): 501~504.
    145季进臣,虞烈.高速对称刚性转子碰摩运动的稳定性分析.航空动力学报. 1999, 14(1): 65~68.
    146 G. Genta. Vibration of Structures and Machines, 3rd. New York: Springer. 1998.
    147倪振华.振动力学.西安:西安交通大学出版社. 1990.
    148刘红石. Rayleigh阻尼比例系数的确定.噪声与振动控制. 1999, 6: 21~22.
    149刘红石.相对误差与Rayleigh阻尼比例系数的确定.湖南工程学院学报. 2001, 11: 36~38.
    150曹树谦,陈予恕.多种非线性力作用下不平衡弹性转子的分岔特性.应用力学学报. 2003, 20(3): 56~60.
    151丁千,陈予恕.弹性转子-滑动轴承系统稳定性分析.应用力学学报. 2000, 17(3): 111~116.
    152袁惠群,闻邦椿,李鸿光.非线性转子局部碰摩故障的分岔与混沌行为.东北大学学报(自然科学版). 2000, 21(6): 610~613.
    153罗跃纲,金志浩,刘长利,等.非线性摩擦力对碰摩转子-轴承系统混沌运动的影响.东北大学学报(自然科学版). 2003, 24(9): 843~846.
    154罗跃纲,李振平,曾海泉,等.非线性刚度转子系统碰摩的混沌行为.东北大学学报(自然科学版). 2002, 23(9): 895~898.
    155李振平,罗跃纲,姚红良,等.具有裂纹-碰摩耦合故障转子-轴承系统的动力学研究.应用力学学报. 2003, 20(3): 136~140.
    156李松涛,许庆余.迷宫密封-滑动轴承-转子系统的非线性动力稳定性.航空学报. 2003, 24(3): 226~229.
    157李松涛,许庆余,万方义,等.迷宫密封不平衡转子动力系统的稳定性与分岔.应用数学和力学. 2003, 24(11): 1141~1150.
    158曹树谦.高维复杂转子系统非线性动力学的若干现代问题研究.天津大学博士学位论文.2002.
    159郑惠萍.滑动轴承不平衡转子系统非线性动力学稳定性及其稳定裕度的研究.天津大学博士学位论文. 2000.
    160郑铁生,伍晓红.复杂非线性转子-轴承系统动力特性数值分析.力学学报. 2001, 33(3): 377~389.
    161丁千,陈予恕,曹树谦,等.转子-轴承系统的非稳态分岔.振动工程学报. 2003, 16(2): 189~193.
    162丁千,郎作贵,曹树谦.双跨柔性转子-轴承系统动力学理论与实验研究.工程力学. 2005, 22(2): 162~167.
    163罗跃纲,闻邦椿.双跨转子系统裂纹-松动耦合故障的非线性响应.航空动力学报. 2007, 22(6): 996~1001.
    164 C. W. Lee, H. S. Jia, C. S. Kim et al. Tuning of Simulated Natural Frequencies for a Flexible Shaft-multiple Flexible Disk System. Journal of Sound and Vibration. 1997, 207(4): 435~451.
    165沈松,郑兆昌,应怀樵.非稳态油膜力作用下非对称转子分岔特性.振动工程学报. 2002, 15(4): 410~414.
    166沈松,郑兆昌,应怀樵.非对称转子-轴承-基础系统的非线性振动.振动与冲击. 2004, 23(4): 31~39.
    167孟光,夏南.多自由度强非线性柔性转子-挤压油膜阻尼器系统的分岔与混沌响应.航空学报. 2003, 24(1): 42~45.
    168 W. Y. Qin, G. R. Chen, G. Meng. Nonlinear Response of a Rub~impact Overhung Rotor. Chaos, Solitons and Fractals. 2004, 19: 1161~1172.
    169 H. S. Kim, M. Cho, S. J. Song. Stability Analysis of a Turbine Rotor System with Alford Force. Journal of Sound and Vibraion. 2003, 260: 167~182.
    170虞烈,刘恒.轴承-转子系统动力学.西安:西安交通大学出版社. 2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700