用户名: 密码: 验证码:
Ni催化剂催化乙醇重整制氢的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢气作为一种高效清洁能源可同时解决能源危机和环境污染这两大难题。近几十年来,燃料电池技术的迅速发展为氢的应用提供了更广泛的空间。但由于氢气是二次能源,对制氢技术有着极强的依赖性。传统的制氢技术以化石原料为主,制氢过程存在着原料不可再生、温室气体排放等问题。而乙醇的重整制氢作为生物质间接制氢的方法之一,具有可再生性和CO2闭合循环(不净排放CO2)的特征,因此研究开发乙醇制氢具有重要的实际意义。本文应用热力学方法对乙醇水蒸汽重整、部分氧化和二氧化碳重整这三个重要乙醇制氢方法进行研究;用不同方法制备了一系列含镍催化剂,考察其在乙醇水蒸气重整反应中的催化性能;运用BET、TPR、XPS和XRD等多种技术对催化剂的宏观结构、表面性质、还原性以及镍与载体之间的相互作用等进行了研究,并把表征结果与催化剂的性能进行了关联。
     热力学计算表明,对于乙醇直接裂解(DE)、乙醇水蒸气重整反应(SRE)、乙醇部分氧化反应(POE)和乙醇二氧化碳重整反应(DRE),温度的升高有利于H2和CO的生成,不利于CH4和固态C的生成;惰性组分的添加有利于H2的生成和固态C的消除;压力的升高不利于H2的生成和固态C的消除;优化以后的操作条件适合为熔融碳酸盐燃料电池和固态氧化物燃料电池供原料。热力学和密度泛函(DFT)研究表明,乙醇裂解的路径为乙醇裂解生成甲烷和甲醛,甲醛再裂解生成H2和CO;在SRE中,生成的氢气有一部分来源于水分子中的氢,水分子中的氢也参与了生成甲烷、甲醛和甲醇。
     用泡沫镍制备的Ni金属催化剂催化SRE,酸处理后比表面增大、反应活性升高;温度的升高促进了H2和CO的生成,但是H2和CO的产率低于热力学平衡值;H2O/C2H5OH比的升高导致H2和CO2产率增加、CO产率先升高后下降、甲烷产率单调减少;液时空速的增大对H2和CO的生成不利。
     用浸渍法制备的10NixCu/MgO/γ-Al2O3系列催化剂催化SRE , 10Ni5Cu/MgO/γ-Al2O3表现出最优良的性能,923K时在该催化剂上乙醇转化率为100%,氢气收率为71%,并且有高的H2/CO比。增加水醇比有利于氢气和CO的生成,抑制甲烷的生成。随着液时空速的增加,氢气收率减少。
     利用DFT模拟了CO在纯金属Ni(111)表面上的吸附。结果表明,Ni(111)表面上桥式CO吸附有利,这种吸附方式使C–O键被最大程度地削弱;在CO向Ni供电的同时,Ni原子中的d电子有明显的反馈现象。由于Cu原子在Ni-Cu双金属催化剂表面上富集,而且Cu向Ni供电,使得CO分子中的C–O键加强,因而C–O键断裂生成炭的倾向得以抑制,所以Cu的加入提高了催化剂的抗积炭性能。C–O键裂解生成的炭减少,炭加氢生成甲烷的量也减少了。
     用共沉淀法、柠檬酸络合法和尿素燃烧法制备的含镍金属氧化物(NiO-ZnO,NiO-A12O3和NiO-MgO)催化剂催化SRE的结果表明,尿素燃烧法制备的NiO-MgO催化剂在低温(873K)下具有良好的活性;在液时空速达20 ml g-1 h-1时仍具有高活性和选择性。
Hydrogen is an efficient and clean energy, which can simultaneously solve the energy crisis and environmental pollution. In the last few decades, the rapid development of fuel cell technology broadens the application of hydrogen. However, in the traditional hydrogen production methods, fossil materials are used, which are non-renewable and discharge greenhouse gases. The steam reforming of bio-ethanol is one of the indirect biomass to hydrogen ways, which is a CO2-closed cycle (not to generate new CO2). Research and development of hydrogen production from ethanol is of great theoretical and practical significance. In this paper, the thermodynamics of steam reforming of ethanol (SRE), partial oxidation of ethanol (POE) and carbon dioxide reforming of ethanol (DRE) were studied; a series of nickel based catalysts were prepared by different methods, characterized by BET, TPR, XPS and XRD, and studied in the ethanol steam reforming.
     The thermodynamic results showed that for the direct decomposition of ethanol (DE), SRE, POE and DRE, high temperature favored H2 and CO formation, but unfavored CH4 and coke formation; the addition of inert component favored H2 production and coke elimination; high pressure unfavored H2 production and coke elimination. The optimal operating conditions were found for the supply of fuels to molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC). The noncatalytic reaction path was investigated through Density Function Theory (DFT) and thermodynamic analysis. The results showed that ethanol is first decomposed to methane and formaldehyde, and then formaldehyde is converted to H2 and CO. In SRE, the hydrogen partially comes from the water molecules, and water is also involved in the production of methane, formaldehyde and methanol.
     The SRE was studied over Ni metal catalyst. It is found that acid treatment increased the surface area and activity of the catalysts; high temperature promoted the formation of H2 and CO, but the yields of H2 and CO were still lower than the thermodynamic equilibrium values; the increase of H2O/C2H5OH molar ratio increased the yields of H2 and CO2; increasing LHSV decreased the yields of H2 and CO.
     The SRE was also investigated over a series of 10NixCu/MgO/γ-Al2O3 catalysts prepared by an impregnation method. 10Ni5Cu/MgO/γ-Al2O3 exhibited excellent catalytic performance. Ethanol conversion rate and the hydrogen yield were 100% and 71% over this catalyst, respectively. The increase of water-to-ethanol molar ratio increased the yield of hydrogen, but decreased the yields of methane and CO. The increase of LHSV decreased the yield of hydrogen.
     The adsorption of CO on the surface of Ni(111) was investigated through DFT. The results showed that CO was easy to be adsorbed in a bridge mode on the surface of Ni(111), and C–O bond was weakened. There were appreciable electron feedbacks from Ni d orbits. With the addition of Cu, Cu enriched on the surface of the catalyst and donated electron to Ni, which made the C–O bond strengthen and therefore the carbon formation was restrained. Methane formation, resulting from the hydrogenation of deposited carbon, was reduced.
     The SRE was also investigated over Ni metal oxide catalysts prepared by precipitation, citric acid complexing and urea combustion methods. The results showed that NiO-MgO catalyst gave the highest activity and hydrogen yield at low temperatures; the activity of the catalysts did not change significantly with LHSV below 20 ml·g-1·h-1.
引文
[1] Dun S, Hydrogen Futures: Toward a sustainable energy system.Worldwatch lnstitute, Washington, DC, 2001
    [2] Parsons Inc, EG&G Services, Fuel Cells: A Handbook, 5th ed., US Department of Energy, 2000, 5-19: 8-22
    [3] Appleby AJ, Foulkes FR, A Fuel Cell Handbook, 2nd ed., Kreiger Publishing Co., 1993, 22
    [4]徐振刚,吴春来,煤气化制氢技术,低温与特气, 2001, 8(6): 28-31
    [5]曹征彦,中国洁净煤技术,中国物资出版社, 1998, 200-303
    [6]陈丹之,化工百科全书(第13卷),北京:化工出版社, 95-99, 111-113
    [7] PenaMA, Gomez JP, New catalytic routes for syngas and hydrogen prodution. Applied Catalysis A: General, 1996, 144: 47-57
    [8] Reitz TL, Ahmed S, Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction. Journal Molecular Catalysis A: Chemistry, 2000, 162: 275-285
    [9] De Wild PJ, Verhaak MJFM, Catalytic production of hydrogen from methanol, Catalysis Today, 2000, 60: 3-10
    [10] Ma L, Gong B, Tran T, Wainwright MS, Cr2O3 promoted skeletal Cu catalysis for the reactions of methanol steam reforming and water gas shift. Catalysis Today, 2000, 63: 499-505
    [11] Lin YM, Rei MH, Study on the hydrogen production from methanol steam reforming in supported palladium membrane reactor, Catalysis Today, 2000, 67(1-3): 77-84
    [12] Guo CS, Takezawa N, Steam reforming of methanol on binary Cu/ZnO catalysts, Journal of Molecular Catalysis A: Chemistry, 1997, 124: 123-126
    [13] Agrell J, Birgvrsson H, Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation, Journal of Power Sources, 2002, 106: 249-257
    [14] Velu S,Suzuki K,Okazaki M,Kapoorc MP, Osakia T, Ohashi F, Oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts for the selective production of hydrogen for fuel cells: Catalyst characterization and performance evaluation, Journal of Catalysis, 2000, 194: 373-384
    [15] Velu S, Suzuki K, Kapoor MP, Ohashia F, Osaki T, Selective production ofhydrogen for fuel cells via oxidative steam reforming of methanol over CuZnAl(Zr)-oxide catalysts, Apllied Catalysis A: General, 2001, 213: 47-63
    [16] Murcia-Mascarós S, Navarro RM, Gómez-Sainero L, Costantino U, Nocchetti M, Fierro JLG., Oxidative methanol reforming reactions on CuZnAl catalysts derived from hydrotalcite-like precursors, Journal of Catalysis, 2001, 198: 338-347
    [17] Lindstr?m B, Pettersson LJ, Development of a methanol fuelled reformer for fuel cell applications, Journal of Power Sourees, 2003, 118: 71-78
    [18] Geissler K, Newson E, Vogel F, Truong TB, Hottinger P, Wokaun A, Autothermal methanol reforming for hydrogen production in fuel cell applications, Physical Chemistry Chemical Physics, 2001, 3: 289-293
    [19]潘相敏,马建新,周伟,邬敏忠,燃料电池电动车车载甲醇重整器研究进展.能源技术, 2004, 25(1), 22-26
    [20]曾毅,王公应,天然气制乙炔及下游产品研究开发与展望,石油与天然气化工, 34(2), 89-93
    [21] Ridler DE, Twigg MV, Steam reforming. In: Twigg MV, Editor, 1996. Catalyst Handbook, Mason Publishing Ltd, London, England
    [22] Nielsen-Rostrup JR, Dybkjaer I, Christiansen LJ, NATO ASI chemical reactor technology for environmentally safe reactors and products, In: Kluwer, Dordrecht, 1992: 249-258
    [23] Saterfield CN. Heterogeneous catalysis in industrial practice. McGraw-Hill, New York, 1980
    [24] Dicks AL, Hydrogen generation from natural gas for the fuel cell systems of tomorrow, Journal of Power Sources, 1996, 61: 113-124
    [25] Van Hook JP, Methane steam reforming. Catalysis Reviews, 1980, 21: 1-51
    [26] Clarke SH, Dicks AL, Pointon K, Smith TA, Swann A, Catalytic aspects of the steam reforming of hydrocarbons in internal reforming fuel cells, Catalysis Today, 1997, 38: 411-423
    [27] Li B, Kado S, Mukainakano Y, Miyazawa T, Miyao T, Naito S, Okumura K, Kunimori K, Tomishige K, Surface modification of Ni catalysts with trace Pt for oxidative steam reforming of methane, Journal of Catalysis, 2007, 245(1): 144-155
    [28] Mori N, Nakamura T, Noda K, Sakai O, Takahashi A, Ogawa N, Sakai H, Reactor configuration and concentration polarization in methane steam reforming by a membrane reactor with a highly hydrogen-permeable membrane, Industrial & Engineering Chemistry Research, 2007, 46(7): 1952-1958
    [29] Yu W, Ohmori T, Yamamoto T, Endo A, Nakaiwa M, Itoh N, Optimal design and operation of methane steam reforming in a porous ceramic membrane reactor for hydrogen production, Chemical Engineering Science, 2007, 62(18-20): 5627-5631
    [30] Ma Y, Xu Y, Demura M, Hirano T, Catalytic stability of Ni3Al powder for methane steam reforming, Applied Catalysis B: Environmental, 2008, 80(1-2): 15-23
    [31] Rakass S, Oudghiri-Hassani H, Rowntree P, Abatzoglou N, Steam reforming of methane over unsupported nickel catalysts, Journal of Power Sources, 2006, 158 (1): 485-496
    [32] Ouni F, Khacef A, Cormier JM, Effect of oxygen on methane steam reforming in a sliding discharge reactor, Chemical Engineering & Technology, 2006, 29(5): 604-609
    [33] Yang Y, Du X, Yang L, Huang Y, Xian H, Investigation of methane steam reforming in planar porous support of solid oxide fuel cell, Applied Thermal Engineering 2009, 29(5-6): 1106-1113
    [34] Tsuru T, Yamaguchi K, Yoshioka T, Asaeda M, Methane steam reforming by microporous catalytic membrane reactors, AIChE Journal, 2004, 50(11): 2794-2805
    [35] Pistonesi C, Juan A, Irigoyen B, Amadeo N, Theoretical and experimental study of methane steam reforming reactions over nickel catalyst, Applied Surface Science, 2007, 253(9): 4427-4437
    [36] Ashcroft AT, Cheetham AK, Ford JS, Selective oxidation of methane to synthesis gas using transition metal catalysts, Nature, 1990, 344: 319-321
    [37]路勇,邓存,丁雪加,沈师孔, Ni/Al2O3催化剂上甲烷部分氧化制合成气,催化学报, 1996, 17(1): 28-33
    [38] Larentis AL, de Resende NS, Salim VMM, Pinto JC, Modeling and optimization of the combined carbon dioxide reforming and partial oxidation of natural gas, Applied Catalysis A: General, 2001, 215: 211-224
    [39]滕云,陈跃强,助剂对甲烷部分氧化催化剂Ni/A12O3催化性能的影响,化学研究与应用, 2003, 15(1): 58-62
    [40] Yu J, KangX, Yu Z, Studies of catalytic partial oxidation of methane to synthesis gas, Journal of Natural Gas Chemstry, 1997, 6(1): 30-36
    [41] Pino L, A comparative study of Pt/CeO2 catalysts for catalytic partial oxidation of methane to syngas for application in fuel cell electric vehicles, Applied Catalysis A: General, 2003, 243: 135-146.
    [42] Mhadeshwar AB, Vlachos DG., A Catalytic reaction mechanism for methane partial oxidation at short contact times, reforming, and combustion, and for oxygenate decomposition and oxidation on platinum, Industrial & Engineering Chemistry Research, 2007, 46 (16): 5310-5324
    [43] Tavazzi I, Beretta A, Groppi G, Forzatti P, Development of a molecular kinetic scheme for methane partial oxidation over a Rh/α-Al2O3 catalyst, Journal of Catalysis, 2006, 241(1): 1-13
    [44] Dalle ND, Degenstein NJ, Horn R, Canu P, Schmidt LD, Modeling spatially resolved profiles of methane partial oxidation on a Rh foam catalyst with detailed chemistry, Journal of Catalysis, 2008, 258(1): 131-142
    [45] Requies J, Cabrero MA, Barrio VL, Cambra JF, Güemez MB, Arias PL, La Parola V, Pe?a MA, Fierro JLG, Nickel/alumina catalysts modified by basic oxides for the production of synthesis gas by methane partial oxidation, Catalysis Today. 2006, 116(3): 304-312
    [46] Horn R, Williams KA, Degenstein NJ, Schmidt LD, Syngas by catalytic partial oxidation of methane on rhodium: Mechanistic conclusions from spatially resolved measurements and numerical simulations, Journal of Catalysis, 2006, 242(1): 92-102
    [47] Chen Y, Zhou W, Shao Z, Xu N, Nickel catalyst prepared via glycine nitrate process for partial oxidation of methane to syngas, Catalysis Communications. 2008, 9(6): 1418-1425
    [48] Choudhary VR, Mondal KC, Choudhary TV, Partial oxidation of methane to syngas with or without simultaneous steam or CO2 reforming over a high-temperature stable-NiCoMgCeOx supported on zirconia-hafnia catalyst, Applied Catalysis A: General, 2006, 306(7): 45-50
    [49] Yao S, Gu L, Sun C, Li J, Shen W, Combined methane CO2 reforming and dehydroaromatization for enhancing the catalyst stability, Industrial & Engineering Chemistry Research, 2009, 48 (2): 713-718
    [50] Kima DK, Maier WF, Combinatorial discovery of new autoreduction catalysts for the CO2 reforming of methane, Journal of Catalysis, 2006, 238(1): 142-152
    [51] Sahli N, Petit C, Roger AC, Kiennemann A, Libs S, Bettahar MM, Ni catalysts from NiAl2O4 spinel for CO2 reforming of methane, Catalysis Today, 2006, 113, (3-4): 187-193
    [52] Daza CE, Gallego J, Moreno JA, Mondragón F, Moreno S, Molin R, CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides, Catalysis Today, 2008(133-135): 357-366
    [53] Koo KY, Roh HS, Seo YT, Seo DJ, Yoon WL, Park SB, Coke study on MgO-promoted Ni/Al2O3 catalyst in combined H2O and CO2 reforming of methane for gas to liquid (GTL) process, Applied Catalysis A: General, 2008, 340(2): 183-190
    [54] Choudhary VR, Mondal KC, CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal-oxide catalyst, Applied Energy, 2006, 83(9): 1024-1032
    [55] Tao X, Qi F, Yin Y, Dai X, CO2 reforming of CH4 by combination of thermal plasma and catalyst, International Journal of Hydrogen Energy, 2008, 33(4):1262-1265
    [56] Liu H, Li S, Zhang S, Wang J, Zhou G, Chen L, Wang X, Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas, Catalysis Communications, 2008, 9(1): 51-54
    [57] Zhang WD, Liu BS, Tian YL, CO2 reforming of methane over Ni/Sm2O3–CaO catalyst prepared by a sol–gel technique, Catalysis Communications, 2007, 8(4): 661-667
    [58] Zhu X, Huo P, Zhang Y, Cheng D, Liu C, Structure and reactivity of plasma treated Ni/Al2O3 catalyst for CO2 reforming of methane, Applied Catalysis B: Environmental, 2008, 81(1-2): 132-140
    [59] Huang B, Li X, Ji S, Lang B, Habimana F, Li C, Effect of MgO promoter on Ni-based SBA-15 catalysts for combined steam and carbon dioxide reforming of methane, Journal of Natural Gas Chemistry, 2008, 17(3): 225-231
    [60] Choudhary VR, Mondal KC, Choudhary TV, CO2 Reforming of Methane to Syngas over CoOx/MgO Supported on Low Surface Area Macroporous Catalyst Carrier: Influence of Co Loading and Process Conditions, Industrial & Engineering Chemistry Research, 2006, 45(13): 4597–4602
    [61] Li Y, Wang Y, Zhang X, Mi Z, Thermodynamic analysis of autothermal steam and CO2 reforming of methane, International Journal of Hydrogen Energy, 2008, 33 (10): 2507-2514
    [62] Wang HM, Experimental studies on hydrogen generation by methane autothermal reforming over nickel-based catalyst, Journal of Power Sources, 2008, 177(2): 506-511
    [63] Escritori JC, Dantas SC, Soares RR, Hori CE, Methane autothermal reforming on nickel–ceria–zirconia based catalysts, Catalysis Communications, 2009, 10(7): 1090-1094
    [64] Halabi MH, de Croon MHJM, van der Schaaf J, Cobden PD, Schouten JC, Modeling and analysis of autothermal reforming of methane to hydrogen in a fixed bed reformer, Chemical Engineering Journal, 2008, 137(3): 568-578
    [65] Hoang DL, Chan SH, Ding OL, Hydrogen production for fuel cells by autothermal reforming of methane over sulfide nickel catalyst on a gamma alumina support, Journal of Power Sources, 2006, 159(2): 1248-1257
    [66] Hou Z, Gao J, Guo J, Liang D, Lou H, Zheng X, Deactivation of Ni catalysts during methane autothermal reforming with CO2 and O2 in a fluidized-bed reactor, Journal of Catalysis, 2007, 250(2): 331-341
    [67] Ding OL, Chan SH, Autothermal reforming of methane gas–Modelling and experimental validation, International Journal of Hydrogen Energy, 2008, 33(2): 633-643
    [68] Zahedi nezhad M, Rowshanzamira S, Eikani MH, Autothermal reforming of methane to synthesis gas: Modeling and simulation, International Journal of Hydrogen Energy, 2009, 34(3): 1292-1300
    [69] Cai X, Dong X, Lin W, Autothermal Reforming of Methane over Ni Catalysts Supported on CuO-ZrO2-CeO2-Al2O3, Journal of Natural Gas Chemistry, 2006, 15(2): 122-126
    [70] Feio LSF, Hori CE, Mattos LV, Zanchet D, Noronha FB, Bueno JMC, Partial oxidation and autothermal reforming of methane on Pd/CeO2–Al2O3 catalysts, Applied Catalysis A: General, 2008, 348(2): 183-192
    [71]李文兵,齐智平,甲烷制氢技术研究进展,天然气工业, 2005, 25(2): 165-168
    [72] Ranzi E, Dente M, Goldaniga A, Bozzano G, Faravelli T, Lumping procedures in detailed kinetic modeling of gasification, pyrolysis, partial oxidation and combustion of hydrocarbon mixtures, Progress in Energy and Combustion Science, 2001, 27(1): 99-139
    [73] Ming Q, Healey T, Allen L, Irving P, Steam reforming of hydrocarbon fuels, Catalysis Today, 2002, 77(1-2): 51-64
    [74] Lessing PA, Materials for hydrogen generation via water electrolysis, Journal of Materials Science, 2007, 42(10): 3477-3487
    [75] Shimizu N, Hotta S, Sekiya T, Oda O, A novel method of hydrogen generation by water electrolysis using an ultra-short-pulse power supply, Journal of Applied Electrochemistry, 2006, 36(4): 419-423
    [76] De Souza RF, Loget G, Padilha JC, Martini EMA, de Souza MO, Molybdenum electrodes for hydrogen production by water electrolysis using ionic liquid electrolytes, Electrochemistry Communications, 2008, 10(11): 1673-1675
    [77] De Souza RF, Padilha JC, Gon?alves RS, Rault-Berthelot J, Dialkylimidazolium ionic liquids as electrolytes for hydrogen production from water electrolysis, Electrochemistry Communications, 2006, 8(2): 211-216
    [78] Hacker V, Fankhauser R, Faleschini G, Fuchs H, Friedrich K, Muhr M, Kordesch K, Hydrogen production by steam–iron process, Journal of Power Sources, 2000, 86: 531-535
    [79] Parmon VN, Photoproduction of hydrogen (an overview of modern trends), Advanced Hydrogen Energy (Hydrogen Energy Progress), 1990, 8: 801-813
    [80] Wang D, Czernik S, MontanéD, Mann M, Chornet E, Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions. Industrial & Engineering Chemistry Research, 1997, 36 (5): 1507-1518
    [81] Orecchini F, Bocci E, Biomass to hydrogen for the realization of closed cycles of energy resources, Energy, 2007, 32(6): 1006-1011
    [82] Wang D, Czernik S, Chornet E, Production of hydrogen from biomass by catalyticsteam reforming of fast pyrolysis oils, Energy & Fuels, 1998, 12 (1): 19-24
    [83] Asisov RI, Vakar AK, Gutsol AF, Givotov VK, Krasheninnikov EG, Krotov MF, Rusanov VD, Fridman AA, Sholin GV, Plasma chemical methods of energy carrier production, International journal of hydrogen energy, 1985, 10(7-8): 475-477
    [84] Yanguas-Gil A, Hueso JL, Cotrino J, Caballero A, González-Elipea AR, Reforming of ethanol in a microwave surface-wave plasma discharge, Applied Physics Letters, 2004, 85 (18): 4004-4006
    [85] Aubry O, Met C, Khacef A, Cormier JM, On the use of a non-thermal plasma reactor for ethanol steam reforming, Chemical Engineering Journal, 2005, 106(3): 241-247
    [86] Schulten R, Nuclear energy as a primly energy source for hydrogen production, International Journal of Hydrogen Energy, 1980, 5: 281-286
    [87]邢新会,张种,发酵生物制氢研究进展,生物加工过程, 2005, 3(l): l-7
    [88]李永峰,任南琪,杨传平,胡立杰,郑国香,一株高效产氢产酸细菌的鉴定与产氢特性,中国环境科学, 2005, 25(2): 210-213
    [89] Choudhary TV, Sivadinarayana C, Goodman DW, Catalytic ammonia decomposition: COx-free hydrogen production for fuel cell applications, Catalysis Letters, 2001, 72(3-4): 197-201
    [90] Fukuda K, Dokiya M, Kameyama T, Kotera Y, Catalytic Decomposition of Hydrogen Sulfide, Industrial and Engineering Chemistry Research Fundamentals, 1978, 17 (4): 243-248
    [91] Garcia EY, Laborde MA, Hydrogen production by the steam reforming of ethanol: Thermodynamic analysis, International Journal of Hydrogen Energy, 1991, 16: 307-309
    [92] Vasudeva K, Mitra N, Umasankar P, Steam reforming of ethanol for hydrogen production: Thermodynamic analysis, International Journal of Hydrogen Energy, 1996, 21: 13-18
    [93] Freni S, Maggio G, Cavallaro S, Ethanol steam reforming in a molten carbonate fuel cell: A thermodynamic approach, Journal of Power Sources, 1996, 62(1): 62-67
    [94] Freni S, Maggio G, Energy balance of different internal reforming MCFC configurations, International Journal of Energy Research, 1997, 21(3): 253-259
    [95] Comas J, Laborde M, Amadeo N, Thermodynamic analysis of hydrogen production from ethanol using CaO as a CO2 sorbent, Journal of Power Sources, 2004, 138: 61-67
    [96] Semelsberger TA, Lee F, Borup L, Inbody MA, Equilibrium products from autothermal processes for generating hydrogen-rich fuel-cell feeds, International Journal of Hydrogen Energy, 2004, 29: 1047-1064
    [97] Tsiakaras P, Demin A, Thermodynamic analysis of a solid oxide fuel cell system fuelled by ethanol, Journal of Power Sourees, 2001, 102: 210-217
    [98] Suttichai A, Varong P,Surnitra C,Navadoi L, Thermodynamic analysis for a solid oxide fuel cell with direct internal reforming fueled by ethanol, Chemical Engineering Science, 2004, 59: 6015-6020
    [99] Ioannides T, Thermodynamic analysis of ethanol processors for fuel cell applications, Journal of Power Sources, 2001, 92: 17-25
    [100] Sheng PY, Yee A, Bowmaker GA, H2 Production from ethanol over Rh–Pt/CeO2 catalysts: The role of Rh for the efficient dissociation of the carbon–carbon bond, Journal of Catalysis, 2002, 208: 393-403
    [101] Comas J, Marino F, Laborde M, Amadeo N, Bio-ethanol steam reforming on Ni/Al2O3 catalyst, Chemical Engineering Journal, 2004, 98: 61-68
    [102] Freni S, Cavallaro S, Mondello N, Spadaro L, Frusteri F, Steam reforming of ethanol on Ni/MgO catalysts: H2 production for MCFC, Journal of Power Sources, 2002, 108: 53-57
    [103] Srinivas D, Satyanarayana CVV, Potdar HS, Ratnasamy P, Structural studies on NiO-CeO2- ZrO2 catalysts for steam reforming of ethanol, Applied Catalysis A: General, 2003, 246: 323-334
    [104] Freni S, Cavallaro S, Mondello N, Spadaro L, Frusteri F, Production of hydrogen for MC fuel cell by steam reforming of ethanol over MgO supported Ni and Co catalysts, Catalysis Communications, 2003, 4(6): 259-268
    [105] Cavallaro S, Ethanol steam reforming on Rh/Al2O3 catalysts, Energy & Fuels, 2000, 14: 1195-1199
    [106] Sun J, Qiu XP, Wu F, Zhu WT, H2 from steam reforming of ethanol at low temperature over Ni/Y2O3, Ni/La2O3 and Ni/Al2O3 catalysts for fuel-cell application, International Journal of Hydrogen Energy, 2005, 30: 437-445
    [107]孙杰,吴锋,邱新平,王芳,郝少军,刘媛, Ni/Al2O3和Ni/La2O3催化剂上低温乙醇水蒸气重整制氢.催化学报, 2005, 25: 551-555
    [108] Akande AJ, Idem RO, Dalai AK, Synthesis, characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production, Applied Catalysis A:General, 2005, 287: 159-175
    [109] Klouz V, Fierro V, Denton P, Katz H, Lisse JP, Bouvot-Mauduit S, Mirodatos C, Ethanol reforming for hydrogen production in a hybrid electric vehicle: process optimization, Journal of Power Sources, 2002, 105: 26-34
    [110] Basagiannis AC, Panagiotopoulou P, Verykios XE, Low temperature steam reforming of ethanol over supported noble metal catalysts, 2008, 51(1-4): 2-12
    [111] Mavrikakis M, Barteau MA, Oxygenate reaction pathways on transition metal surfaces, Journal of Molecular Catalysis A: Chemical, 1998, 131, 135-147
    [112] Kugai J, Velu S, Song C, Low-temperature reforming of ethanol over CeO2-supported Ni-Rh bimetallic catalysts for hydrogen production, Catalysis Letter, 2005, 101(3-4): 255-264
    [113] Wanat EC, Suman B, Schmidt LD, Partial oxidation of alcohols to produce hydrogen and chemicals in millisecond-contact time reactors, Journal of Catalysis, 2005, 235: 18-27
    [114] Hsu SN, Bi J, Wang W, Yeh C, Wang C, Low-temperature partial oxidation of ethanol over supported platinum catalysts for hydrogen production, International Journal of Hydrogen Energy, 2008, 33(2): 693-699
    [115] Mattos LV, Noronha FB, Partial oxidation of ethanol on supported Pt catalysts Journal of Power Sources, 2005, 145: 10-15
    [116] Salge JR, Deluga GA, Schmidt LD, Catalytic partial oxidation of ethanol over noble metal catalysts, Journal of Catalysis, 2005, 235: 69-78
    [117] Cai J, Luo L, Study on Hydrogen production via partial oxidation of ethanol over Au/CeO2 catalyst, Chinese Journal of Rare Earth, 2007, 28(1): 80-83
    [118] Xi JY, Wang ZF, Wang WP, Lu GX, Investigation of partial oxidation of ethanol to hydrogen over CuZnNi catalysts, Jornal of Molecular Catalysis (China), 2001, 15: 255-259
    [119] Xu J, Zhang X, Zenobi R, Yoshinobu J, Xu Z, Yates JT, Ethanol decomposition on Ni (111): observation of ethoxy formation by IRAS and other methods, Surface Science, 1991, 256: 288-293
    [120] Mari?o F, Boveri M, Baronetti G, Laborde M, Hydrogen production via catalytic gasification of ethanol. A mechanism proposal over copper–nickel catalysts, International Journal of Hydrogen Energy, 2004, 29: 67-74
    [121] Fierro V, Akdim O, Provendier H, Mirodatos C, Ethanol oxidative steam reforming over Ni-based catalysts, Journal of Power Sources, 2005, 145(2): 659-666
    [122] Mari?o F, Boveri M, Baronetti G, Laborde M, Hydrogen production from steam reforming of bioethanol using Cu/Ni/K/γ-Al2O3 catalysts, Effect of Ni, International Journal of Hydrogen Energy, 2001, 26: 665-668
    [123] Mari?o F, Baronetti G, Jobbagy M, Laborde M, Cu-Ni-K/γ-Al2O3 supported catalysts for ethanol steam reforming formation of hydrotalcite-type compounds as a result of metal-support interaction, Applied Catalysis A: General, 2003, 238: 41-54
    [124] Luengo CA, Ciampi G, Cencig MO, Steckelberg C, Laborde MA, A novel catalyst system for ethanol gasification, International Journal of Hydrogen Energy, 1992, 17, (9): 677-681
    [125] Wang W, Wang Z, Ding Y, Xi J, Lu G, Partial oxidation of ethanol to hydrogenover Ni–Fe catalysts, Catalysis Letter, 2002, 81: 63-68
    [126] Deluga GA, Salge JR, Schmidt LD, Verykios XE, Renewable hydrogen from ethanol by autothermal reforming, Science, 2004, 303(5660): 993-997
    [127] Morton D, Cole-Hamilton DJ, Utuk ID, Paneque-Sosa M, Manuel L, Hydrogen production from ethanol catalysed by group 8 metal complexes, Journal of the Chemical Society, Dalton transactions, 1989, 3: 489-495
    [128] Wheeler C, Jhalani A, Klein EJ, Tummala S, Schmidt LD, The water-gas-shift reaction at short contact times, Journal of Catalysis, 2004, 223: 191-194
    [129] Cimenti M, Hill JM, Thermodynamic analysis of solid oxide fuel cells operated with methanol and ethanol under direct utilization, steam reforming, dry reforming or partial oxidation conditions, Journal of Power Sources, 2009, 186(2): 377-384
    [130] Mattos LV, Noronha FB, Hydrogen production for fuel cell applications by ethanol partial oxidation on Pt/CeO2 catalysts: the effect of the reaction conditions and reaction mechanism, Journal of Catalysis, 2005, 233: 453-463
    [131] Costa LOO, Silva AM, Borges LEP, Mattos LV, Noronha FB, Partial oxidation of ethanol over Pd/CeO2 and Pd/Y2O3 catalysts, Catalysis Today, 2008, 138(3-4): 147-151
    [132] Navarro RM, Alvarez-Galvan MC, Sanchez MC, Rosa F, Fierro JLG, Production of hydrogen by oxidative reforming of ethanol over Pt catalysts supported on Al2O3, Applied Catalysis B: Environmental, 2005, 55: 229-234
    [133] Fierro V, Klouz V, Akdim O, Mirodatos C, Oxidative reforming of biomass derived ethanol for hydrogen production in fuel cell applications, Catalysis Today, 2002, 75(1-4): 141-144
    [134] Sadi F, Duprez D, Gerard F, Miloudi A, Hydrogen formation in the reaction of steam with Rh/CeO2 catalysts: a tool for characterising reduced centres of ceria, Journal of Catalysis, 2003, 213: 226-234
    [135] Ni M, Leung DYC, Leung MKH, A review on reforming bio-ethanol for hydrogen production, International Journal of Hydrogen Energy, 2007, 32(15): 3238-3247
    [136] Markova D, Bazbauers G, Valters K, Rochlitz L, Optimization of bio-ethanol autothermal reforming and carbon monoxide removal processes, Journal of Power Sources, In Press, doi:10.1016/j.jpowsour.2009.01.095
    [137] Frusteri F, Freni S, Chiodo V, Donato S, Bonura G, Cavallaro S, Steam and auto-thermal reforming of bio-ethanol over MgO and CeO2 Ni supported catalysts, International Journal of Hydrogen Energy, 2006, 31(15): 2193-2199
    [138] Vesselli E, Comelli G, Rosei R, Freni S, Frusteri F, Cavallaro S, Ethanol auto-thermal reforming on rhodium catalysts and initial steps simulation on single crystals under UHV conditions, Applied Catalysis A: General, 2005, 281(1-2): 139-147
    [139] De Lima SM, Silva AM, Graham UM, Jacobs G, Davis BH, Mattos LV, Noronha FB, Ethanol decomposition and steam reforming of ethanol over CeZrO2 and Pt/CeZrO2 catalyst: Reaction mechanism and deactivation, Applied Catalysis A: General, 2009, 352(1-2): 95-113
    [140] Vizcaíno AJ, Carreroa A, Calles JA, Ethanol steam reforming on Mg- and Ca-modified Cu–Ni/SBA-15 catalysts, Catalysis Today, Article in Press, doi:10.1016/j.cattod.2008.11.020
    [141] Haga F, Nakajima T, Miya H, Mishima S, Catalytic properties of supported cobalt catalysts for steam reforming of ethanol, Catalysis Letter, 1997, 48: 223-227
    [142] Mari?o FJ, Cerrella EG, Duhalde S, Jobbagy M, Laborde MA, Hydrogen from steam reforming of ethanol: Characterization and performance of copper-nickel supported catalysts, International Journal of Hydrogen Energy, 1998, 23: 1095-1101
    [143] Youn MH, Seo JG, Park S, Park DR, Jung JC, Kim P, Song IK, Hydrogen production by auto-thermal reforming of ethanol over Ni-Ti-Zr metal oxide catalysts, Renewable Energy, 2009, 34(3): 731-735
    [144] Liguaras DK, Goundani K, Verykios XE, Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured Ru catalysts, International Journal of Hydrogen Energy, 2004, 29: 419-427
    [145] Liguaras DK, Goundani K, Verykios XE, Production of hydrogen for fuel cells by catalytic partial oxidation of ethanol over structured Ni catalysts, Journal of Power Sources, 2004, 30: 30-37
    [146] Cavallaro S, Chiodo V, Vita A, Freni S, Hydrogen production by auto-thermal reforming of ethanol on Rh/Al2O3 catalyst, Journal of Power Sources, 2003, 123: 10-16
    [147] Jankhah S, Abatzoglou N, Gitzhofer F, Thermal and catalytic dry reforming and cracking of ethanol for hydrogen and carbon nanofilaments' production, International Journal of Hydrogen Energy, 2008, 33(18): 4769-4779
    [148] Giunta P, Amadeo N, Laborde M, Hydrogen production from ethanol steam reforming: Fixed bed reactor design, International Journal of Chemical Reactor Engineering, 2008, 6: 1-16
    [149] Singhto W, Laosiripojana N, Assabumrungrat S, Charojrochku S, Steam reforming of bio-ethanol over Ni on Ce-ZrO2 support: Influence of redox properties on the catalyst reactivity, Songklanakarin Journal of Science & Technology, 2006, 28(6): 1251-1264
    [150] Yanguas-Gil A, Hueso JL, Cotrino J, Caballero A, González-Elipea AR, Reforming of ethanol in a microwave surface-wave plasma discharge, Applied Physics Letters, 2004, 85(18): 4004-4006
    [151] Urasaki K, Tokunaga K, Sekine Y, Kikuchi E, Matsukata M, Hydrogen production by steam reforming of ethanol using cobalt and nickel catalysts supported on strontium titanate, Chemistry Letters, 2005, 34(5): 668-669
    [152] Larminie J, Dicks A, Fuel Cell Systems Explained (Second Edition), John Wiley & Sons Ltd: UK, 2003
    [153] Liao PH, Yang HM, Preparation of catalyst Ni–Cu/CNTs by chemical reduction with formaldehyde for Steam reforming of methanol, Catalysis Letters, 2007, 121(3-4): 274-282
    [154] Vaidya PD, Rodrigues AE, Insights into steam reforming of ethanol to produce hydrogen for fuel cells, Chemical Engineering Journal, 2006, 117: 39-49
    [155] Chica A, Sayas S, Effective and stable bioethanol steam reforming catalyst based on Ni and Co supported on all-silica delaminated ITQ-2 zeolite, Catalysis Today, Article in Press, doi:10.1016/j.cattod.2008.12.024
    [156] Fatsikostas AN, Verykios XE, Reaction network of steam reforming of ethanol over Ni-based catalysts, Journal of Catalysis, 2004, 225: 439-452
    [157] Morgenstern DA, Fornango JP, Low-temperature reforming of ethanol over copper-plated Raney nickel: A new route to sustainable hydrogen for transportation, Energy & Fuels, 2005, 19: 1708-1716
    [158] García VM, López E, Serra M, Llorca J, Dynamic modeling of a three-stage low-temperature ethanol reformer for fuel cell application, Journal of Power Sources, Article in Press, doi:10.1016/j.jpowsour.2008.12.055
    [159] Silva AM, de Farias AMD, Costa LOO, Barandas APMG, Mattos LV, Fraga MA, Noronha FB, Partial oxidation and water–gas shift reaction in an integrated system for hydrogen production from ethanol, Applied Catalysis A: General, 2008, 334(1-2): 179-186
    [160] Mattos LV, Noronha FB, The influence of the nature of the metal on the performance of cerium oxide supported catalysts in the partial oxidation of ethanol, Journal of Power Sources, 2005, 152: 50-59
    [161] Huang VL, Xie J, Chen R, Chu D, Chu W, Hsu AT, Effect of iron on durability of nickel-based catalysts in auto-thermal reforming of ethanol for hydrogen production, International Journal of Hydrogen Energy, 2008, 33(24): 7448-7456
    [162] De LSM, da Cruz IO, Jacobs G, Davis BH, Mattos LV, Noronha FB, Steam reforming, partial oxidation, and oxidative steam reforming of ethanol over Pt/CeZrO2 catalyst, Journal of Catalysis, 2008, 257(2): 356-368
    [163] Wang WP, Wang ZF, Ding Y, Xi JY, Lu GX, Partial Oxidation of Ethanol to Hydrogen over Ni-Fe Catalysts, Catalysis Letter, 2002, 81 (1-2): 63-68
    [164] Rabenstein G, Hacker V, Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: A thermodynamicanalysis, Journal of Power Sources, 2008, 185: 1293-1304
    [165] Cai W, Wang F, Zhan E, van Veen AC, Mirodatos C, Shen W, Hydrogen production from ethanol over Ir/CeO2 catalysts: A comparative study of steam reforming, partial oxidation and oxidative steam reforming, Journal of Catalysis, 2008, 257: 96-107
    [166] Galetti AE, Gomez MF, Arrúa LA, Abello MC, Hydrogen production by ethanol reforming over NiZnAl catalysts: Influence of Ce addition on carbon deposition, Applied Catalysis A: General, 2008, 348(1): 94-102
    [167] Nair H, Liszka MJ, Gatt JE, Baertsch CD, Effects of metal oxide domain size, dispersion, and interaction in mixed WOx/MoOx catalysts supported on Al2O3 for the partial oxidation of ethanol to acetaldehyde, Journal of Physical Chemistry C, 2008, 112 (5): 1612–1620
    [168] Marinov NM, A detailed chemical kinetic model for high-temperature ethanol oxidation, International Journal of Chemmical Kinetics, 1999, 31: 183-189
    [169] Silva AM, Barandas APMG, Costa LOO, Borges LEP, Mattos LV, Noronha FB, Partial oxidation of ethanol on Ru/Y2O3 and Pd/Y2O3 catalysts for hydrogen production, Catalysis Today, 2007, 129: 297-304
    [170] Guarido CEM, Cesar DV, Souza MMVM, Schmal M, Ethanol reforming and partial oxidation with Cu/Nb2O5 catalyst, Catalysis Today, In Press, doi:10.1016/j.cattod. 2008.08.030
    [171] Cheekatamarla PK, Finnerty CM, Synthesis gas production via catalytic partial oxidation reforming of liquid fuels, International Journal of Hydrogen Energy, 2008, 33(19): 5012-5019
    [172] De Oliveira-Vigier K, Abatzoglou N, Gitzhofer F, Dry-reforming of ethanol in the presence of a 316 stainless steel catalyst, Canadian Journal of Chemical Engneering, 2005, 83: 978-984
    [173] Jankhah S, Abatzoglou N, Gitzhofer F, Blanchard J, Oudghiri-Hassani H, Synthesis of nanocarbons via ethanol dry reforming over a carbon steel catalyst, Chemical Engneering Journal, 2008, 139: 532-539
    [174] Jankhah S, Abatzoglou N, Gitzhofer F, The use of catalytic reforming reactions for CO2 sequestration as carbon nanotubes, International Journal of Hydrogen Energy, 2008, 33: 4769-4779
    [175]李云华, Ni金属基整体型催化剂催化甲烷转化制备合成气的研究,博士学位论文,天津大学, 2007
    [176] Turner JA, Sustainable hydrogen production, Science, 2004, 305(5686): 972-974
    [177] Chen Z, Yan Y, Elnashaie SSEH, Catalyst deactivation and engineering control for steam reforming of higher hydrocarbons in a novel membrane reformer, Chemical Engnering Science, 2004, 59(10): 1965-1978
    [178] Profeti LPR, Ticianelli EA, Assaf EM, Ethanol steam reforming for production of hydrogen on magnesium aluminate-supported cobalt catalysts promoted by noble metals, Applied Catalysis A: General, In Press, doi:10.1016/j.apcata.2009.02.040
    [179] Sousa Jr. R, dos Anjos DM, Tremiliosi-Filho G, Gonzalez ER, Coutanceau C, Sibert E, Léger JM, Kokoh KB, Modeling and simulation of the anode in direct ethanol fuels cells, Journal of Power Sources, 2008, 180(1): 283-293
    [180] Lin SSY, Kim DH, Ha SY, Metallic phases of cobalt-based catalysts in ethanol steam reforming: The effect of cerium oxide, Applied Catalysis A: General, 2009, 355(1-2): 69-77
    [181] Nedyalkova R, Casanovas A, Llorca J, MontanéD, Electrophoretic deposition of Co–Me/ZnO (Me=Mn, Fe) ethanol steam reforming catalysts on stainless steel plates, International Journal of Hydrogen Energy, Article in Press, doi:10.1016/j.ijhydene.2009.01.050
    [182] Wang S, Lu GQM, CO2 reforming of methane on Ni catalysts: Effects of the support phase and preparation technique, Applied Catalysis B: Environmental, 1998, 16: 269-277
    [183] Velu S, Suzuki K, Hashimoto S, Satoh N, Ohashi F, Tomura S, The effect of cobalt on the structural properties and reducibility of CuCoZnAl layered double hydroxides and their thermally derived mixed oxides, Journal of Material Chemistry, 2001, 11: 2049-2060
    [184] Youn MH, Seo JG, Kim P, Kim JJ, Lee HI, Song IK, Hydrogen production by auto-thermal reforming of ethanol over Ni/γ-Al2O3 catalysts: Effect of second metal addition, Journal of Power Sources, 2006, 162: 1270-1274
    [185] De Lima SM, Colman RC, Jacobs G, Davis BH, Souza KR, de Lima AFF, Appel L G., Mattos LV, Noronha FB, Hydrogen production from ethanol for PEM fuel cells. An integrated fuel processor comprising ethanol steam reforming and preferential oxidation of CO, Catalysis Today, In Press, doi:10.1016/j.cattod.2009.02.006
    [186] Zhang L, Li W, Liu J, Guo C, Wang Y, Zhang J, Ethanol steam reforming reactions over Al2O3 SiO2-supported Ni–La catalysts, Fuel, 2009, 88(3): 511-518
    [187] Fishtik I, Alexander A, Datta R, Geana D, A thermodynamic analysis of hydrogen production by steam reforming of ethanol via response reactions, International Journal of Hydrogen Energy, 2000, 25(1): 31-45
    [188] Bergamaski K, Gonzalez ER, Nart FC, Ethanol oxidation on carbon supported platinum-rhodium bimetallic catalysts, Electrochimica Acta. 2008, 53(13): 4396-4406
    [189] Goula MA, Kontou SK, Tsiakaras PE, Hydrogen production by ethanol steam reforming over a commercial Pd/γ-Al2O3 catalyst, Applied Catalysis B: Environmental, 2004, 49(2): 135-144
    [190] Gallucci F, de Falco M, Tosti S, Marrelli L, Basile A, Co-current and counter-current configurations for ethanol steam reforming in a dense Pd–Ag membrane reactor, International Journal of Hydrogen Energy, 2008, 33(21): 6165-6171
    [191] Fishtik I, Alexander A, Datta R, A thermodynamic analysis of hydrogen product by steam reforming of ethanol via response, 2000, 25: 31-35
    [192] Wang C, Lee C, Bi J, Siang J, Liu J, Yeh C, Study on the steam reforming of ethanol over cobalt oxides, Catalysis Today, Article in Press, doi:10.1016/j.cattod. 2008.12.010
    [193] Fatsikostas AN, Kondarides DI, Verykios XE, Reaction network of steam reforming of ethanol over Ni-base catalysts, Journal of Catalysis, 2004, 225: 439-452
    [194] Fatsikostas AN, Kondarides DI, Verykios XE, Production of hydrogen for fuel cells by reforming of biomass-derived ethanol, Catalysis Today, 2002, 75: 145-155
    [195] Sun GB, Hidajat K, Wu XS, Kawi S, A crucial role of surface oxygen mobility on nanocrystalline Y2O3 support for oxidative steam reforming of ethanol to hydrogen over Ni/Y2O3 catalysts, Applied Catalysis B: Environmental, 2008, 81(3-4): 303-312
    [196] Deng X, Sun J, Yu S, Xi J, Zhu W, Qiu X, Steam reforming of ethanol for hydrogen production over NiO/ZnO/ZrO2 catalysts, International Journal of Hydrogen Energy, 2008, 33(3): 1008-1013
    [197] Romero-Sarria F, Vargas JC, Roger AC, Kiennemann A, Hydrogen production by steam reforming of ethanol: Study of mixed oxide catalysts Ce2Zr1.5Me0.5O8: Comparison of Ni/Co and effect of Rh, Catalysis Today, 2008, 133-135: 149-153
    [198]杨宇,吴排,马建新,载体对镍催化剂乙醇水蒸气重整制氢反应性能的影响,催化学报, 2005, 26: 131-137
    [199] Vargas JC, Libs S, Roger AC, Study of Ce-Zr-Co fluorite-type oxide as catalysts for hydrogen production by steam reforming of bio-ethanol, Journal of Catalysis, 2005, 107-108: 417-425
    [200] Salge JR,Deluga GA, Schmidt LD, Catalytic Partial oxidation of ethanol over noble metal ctata1ysts, Journal of Catalysis, 2005, 235: 69-78
    [201] De Rogatis L, Montini T, Lorenzut B, Fornasiero P, NixCuy/Al2O3 based catalysts for hydrogen production, Energy & Environmental Science, 2008, 1: 501 - 509
    [202] Patil KC, Arunab ST, Mimani T, Combustion synthesis: an update, Current Opinion in Solid State and Materials Science, 2002, 6(6): 507-512
    [203] Xanthopoulou G, Vekinis G, Investigation of catalytic oxidation of carbon monoxide over a Cu–Cr-oxide catalyst made by self-propagating high-temperature synthesis, Applied Catalysis B: Environmental, 1998, 19(1): 37-44
    [204] Xanthopoulou G, Vekinis G, Deep oxidation of methane using catalysts and carriers produced by self-propagating high-temperature synthesis, Applied Catalysis A: General, 2000, 199(2): 227-238
    [205] Bera P, Patil KC, Jayaram V, Subbanna GN, Hegde MS, Ionic dispersion of Pt and Pd on CeO2 by combustion method: Effect of metal–Ceria interaction on catalytic activities for NO reduction and CO and hydrocarbon oxidation, Journal of Catalysis, 2000, 196(2): 293-301
    [206] Bera P, Patil KC, Hegde MS, Oxidation of CH4 and C3H8 over combustion synthesized nanosize metal particles supported onα-Al2O3, Physical Chemistry Chemical Physics, 2000, 2(3): 373-378
    [207] Yoshida T, Tanak T, Yoshida H, Funabiki T, Yoshida S, Study on the dispersion of nickel ions in the NiO-MgO system by X-ray absorption fine structure, Journal of Physical Chemistry, 1996, 100(6): 2302-2309
    [208] Ulla MA, Spretz R, Lombardo E, Daniell W, Kn?zinger H, Catalytic combustion of methane on Co/MgO: characterisation of active cobalt sites, Applied Catalysis B: Environmental, 2000, 129(2): 217-229
    [209] Borowecki T, Nickel catalysis for steam reforming of hydrocarbons: phase composition and resistance to coking, Applied catalysis, 1984, 10(3): 273-280

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700