用户名: 密码: 验证码:
二烯烃低温选择加氢镍基催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温蒸汽裂解、催化裂化或热裂化过程所产生的低碳烯烃中常存在微量的共轭二烯烃和炔烃,虽然含量较少,但这些二烯烃和炔烃在烯烃后加工特别是烯烃聚合过程中是有害杂质,需要除去。采用选择性加氢脱除二烯烃是一种有效的手段,制备活性高、选择性好的催化剂是关键所在。本论文对选择性加氢脱二烯烃用非贵金属Ni基催化剂的制备活化进行了研究,设计和研发了一种双助剂金属催化剂,具有良好的二烯选择加氢活性,选择性和稳定性。
     本文首先对单金属催化剂进行制备、表征及性能研究。采用等体积浸渍法制备一系列镍基催化剂,通过BET,XRD,H_2-TPR,和XPS等表征方法研究了其比表面积、晶相结构、还原温度,还原度和表面元素的价态以及催化剂使用前后性质的变化,并以异戊二烯选择加氢为探针反应,考察了制备方法、制备条件和预处理条件等影响因素,研究了催化剂表面氧化镍与不同晶型氧化铝载体之间的相互作用的区别以及对催化性能的影响。结果表明,以Al(OH)_3为载体前驱体制备的(γ+ )-Al_2O_3和(κ+θ)-Al_2O_3中活性组分与载体间相互作用的不同并且对催化性能有较大的影响,其中负载量15%左右的Ni/(γ+ )-Al_2O_3与7.5%左右(κ+θ)-Al_2O_3催化性能较好。
     当负载量过高时,由于(γ+ )-Al_2O_3比表面积大,金属分散度高,活性位过多导致催化剂过度加氢,选择性下降,但由于金属载体间强相互作用抑制了表面碳化物沉积使其稳定性提高;而(κ+θ)-Al_2O_3负载的催化剂晶粒较大,活性组分聚集烧结,表面碳化物沉积,导致活性和稳定性下降。
     为保证催化剂加氢活性的同时,提高催化剂对单烯烃的选择性,对活性较高的7.5% (κ+θ+ )-Al_2O_3催化剂,进行了预硫化处理,并对硫化条件进行优化,使单烯选择性从0增加至93%。通过CS2催化剂中毒机理的考察,发现CS_2低温下极易使催化剂失活,除了CS2能与催化剂活性中心反应形成金属硫化物外,CS_2在催化剂表面的物理吸附也可能导致催化剂失活。
     通过共浸渍法加入金属助剂改性后发现,Ce的引入,催化剂的活性和稳定性提高,Cu的加入使催化剂的活性有所降低,但对催化剂对单烯烃的选择性却有明显的提高,而且与无助剂及Ce助剂相比,产物中单烯烃产物分布明显不同。通过对Ni-Ce/Al_2O_3、Ni-Cu/Al_2O_3和Ni-Ce-Cu/Al_2O_3催化剂进行H_2-TPR、BET、XRD,XPS等表征,分析了各种助剂对催化剂性能调变作用机理。对单助剂和双助剂催化剂的加氢作用机理的研究发现,金属Cu首先与载体间发生相互作用,明显提高了金属Ni的还原度,而Ce金属的添加则由Ni、Ce的协同作用促进了活性金属在表面的分散,容易使催化剂表面吸附的二烯烃被加氢,从而提高催化剂的稳定性。
     针对金属与载体间的相互作用对催化性能的影响,本文选用与(κ+θ+ )-Al_2O_3中较接近的最稳定氧化铝构型-Al_2O_3作为载体,采用密度泛函理论(DFT)的Dmol3模块,模拟了Ni_4团簇沉积吸附其(0001)面的Ni4/ -Al_2O_3(0001)构型。Ni团簇倾向于同表面不饱和配位的氧原子和铝原子成键。与载体作用后,与纯Ni_4团簇相比,减弱了镍原子之间的结合能,也削弱了气体分子在镍上的吸附,说明载体对活性金属具有分散作用。通过模拟H_2和异戊二烯分子在催化剂Ni_4/ -Al_2O_3(0001)表面上的吸附,为二烯烃加氢反应的机理提供理论数据,为更有效的催化剂体系的设计提供理论参考。
Olefins produced by steam cracking, catalytic cracking or thermal cracking processes are associated with few alkynes and dienes invariably. The presence of these compounds is undesirable and harmful to successive process, especially for olefin polymerization. It was a valid means to take selective hydrogenation of dienes to mono-olefins. It was a key method to develop a new hydrogenation catalyst with high activity and selectivity.In this paper, preparation rules and pretreatment conditions of Ni-based catalysts were studied and a Ni-based double promoter catalyst with high activity, mono-olefins selectivity and stabilization was designed and developed. This catalyst possesses good catalytic properties with high activity, selectivity and stability in diene hydrogenation reaction.
     At first, studies on preparation, characterization and properties of Ni catalysts were performed. Nickel-based catalysts prepared by impregnation were characterized by BET, XRD, H2-TPR and XPS methods to study the surface area, crystal structure, reduction temperature, the chemical valence of surface elements and the used catalyst property changes compared with fresh catalyst. Selective hydrogenation of isoprene was used as a probe reaction to study the effect of different treatment to support and preparation conditions on catalytic activity of Ni-based catalyst. Strong Metal-support interaction (SMSI) and the effect of this interaction on catalytic performance was studied. The results showed that (γ+ )-Al_2O_3 and (κ+θ)-Al_2O_3 supports obtained by calcination Al(OH)3 and the interaction between the different supports and NiO have great influence on catalytic properties. The catalysts with 15% nickel supported on (γ+ )-Al_2O_3 and 7.5% on (κ+θ)-Al_2O_3 have good catalytic properties.
     High nickel loading over (γ+ )-Al_2O_3 with large surface area, high metal dispersion and too many active sites lead to over-hydrogenation and selectivity decreased, however, carbide deposition on catalyst surface was suppressed to improve the stability by SMSI. Catalysts support on (κ+θ)-Al_2O_3 with weak interaction between metal and support have large sizes of Ni crystal with high Ni loading, which leads to the active component together sintering and surface carbon deposition, resulting in the decrease of activity and stability.
     To obtain high hydrogenation activity and selectivity of mono-olefins, 7.5% (κ+θ+ )-Al_2O_3 catalyst was studied by pre-curing treatment. In the optimal curing conditions, the selectivity of mono-olefins can be greatly improved(from 0 to 93%). By the discussion of poisoning mechanism with CS2,it was found that CS2 easily deactivate the catalyst at low temperature, besides metal sulfide formation, CS2 physical adsorption on the catalyst surface also leads to catalyst deactivation. The method of adding promoter to modify the single Ni catalyst by co-impregnation was applied with the function of the second metal Cu or Ce metal.
     The modified catalyst can be used to hold good stabilization to selective hydrogenation of isoprene. The introduction of Ce resulted in the higher activity and stability. With Cu modification, the catalytic activity decreased, however, the selectivity of mono-olefins catalyst increased significantly, and olefin products varied significantly compared with Ce and other promoters.
     Ni-Ce/Al_2O_3, Ni-Cu/Al_2O_3 and Ni-Ce-Cu/Al_2O_3 catalysts were characterized by H2-TPR, BET, XRD, XPS and other characterization methods to study the promoter modulation mechanism on catalytic performance. In the discussion of hydrogenation mechanism of promoters catalysts,it was found that the addition of Cu promoted the interaction between Cu and support and increased the reduction degree of Ni metal significantly, while the addition of Ce with the synergetic effect of two metals increased the degree of metal dispersion. As selective hydrogenation of diene on surface, the stability of catalyst, the stability of catalyst enhanced.
     To study the effect of interaction between metal and support on the catalytic properties, this paper used the most stable configuration -Al_2O_3 which is closer to (κ+θ+ )-Al_2O_3 as the support, to simulate the adsorption and deposition of Ni4 cluster on the -Al_2O_3(0001) surface with the Dmol3 module based on density functional theory (DFT). Nickel clusters tend to coordinate with the unsaturated surface oxygen atoms and aluminum atoms in bonding.
     The support weakened the binding energy between Ni atoms compared with pure Ni4 clusters, and reduced the H2 molecules adsorption energy on the nickel catalyst, indicating the dispersion effect of active metal by support. This work has calculated isoprene and H_2 molecules adsorption on catalyst Ni_4/ -Al_2O_3(0001) by DFT. The results would provide many theory data for the study of the reaction mechanics in selective hydrogenation and be helpful in understanding real heterogeneous catalytic process.
引文
[1]冯翠兰,徐贤伦等,催化裂化汽油降烯烃工艺研究进展, 2002, (02): 25-29.
    [2]王松汉,乙烯装置技术:中国石化出版社, 1994, p254.
    [3]马仁权,合成洗涤剂工业中双烯选择加氢的应用概况,日用化学工业, 1993, (03): 26-30.
    [4]郝代军,降低FCC汽油烯烃的措施,炼油设计, 2001, (01): 49-51.
    [5]林治田,选择加氢工艺,化工科技动态, 1993, 5: 16.
    [6]毛俊义,渠红亮,姜蕾等,烷基化原料选择性加氢的催化蒸馏技术,石油炼制与化工, 2003, (08): 12-15.
    [7]Peter A N H H, A N H H H, Schreyer P, Selective Hydrogenation of Crude High-Butadiene C4 Cuts, 1993, US 5227553.
    [8]李杰,长链双烯烃选择性加氢工艺的工业应用,精细石油化工进展, 2009, (06): 27-30.
    [9]殷树青,郑汉忠,清洁汽油生产技术进展,炼油技术与工程, 2003, (12): 1-6.
    [10]Nanterre J C, Process for Manufacturing a Catalyst, the Resulting Catalyst and its Use in a Process for Hydrogenating Hydrocarbons, 1973, US 3847835.
    [11]孙连霞,孙明永,张东平等, RDD-1选择性加氢催化剂的工业应用,石油炼制与化工, 1999, (05): 12-14.
    [12]夏道宏,朱根权,项玉芝等,重油催化裂化汽油MCSP脱臭工艺开发及应用,石油炼制与化工, 1999, (04): 3-6.
    [13]吴越,催化化学:科学出版社, 1995, p988.
    [14]Boitiaux J P, Cosyns J, Vasudevan S, Hydrogenation of Highly Unsaturated Hydrocarbons Over Highly Dispersed Pd Catalyst.: Part Ii: Ligand Effect of Piperidine, Appl. Catal., 1985, 15(2): 317-326.
    [15]Dror Y, Manassen J, Hydrogenation of Olefins with Rhodium-Phosphine Complexes, Having Substrate and Catalyst in Two Different Immiscible Phases. An Alternative Method for the Heterogenization of a Homogeneous Catalyst, J. Mol. Catal., 1977, 2(3): 219-222.
    [16]阎克平, C_(2~4)烯烃选择加氢精制催化剂进展,现代化工, 1999, (03): 13-15.
    [17]Guo X C, Madix R J, Selective Hydrogenation and H-D Exchange of Unsaturated Hydrocarbons On Pd(100)-P(11)-H(D), J. Catal., 1995, 155(2): 336-344.
    [18]Godbey D, Zaera F, Yeates R, et al., Hydrogenation of Chemisorbed Ethylene On Clean, Hydrogen, and Ethylidyne Covered Platinum (111) Crystal Surfaces, Surf. Sci., 1986, 167(1): 150-166.
    [19]葛世培,康秉鑫,李学宽等,一种重整生成油加氢精制工艺,1997, CN1210131.
    [20]张丽娟,陈玉琢,赵乐平等,一种重整生成油选择性加氢脱烯烃催化剂. 2002 CN1448474.
    [21]陈慕华,秦晓静,储伟等,载体对钯基选择加氢催化剂性能的影响,石油学报,石油加工, 2006, 22(2): 20-26.
    [22]Ryndin Y A, Stenin M V, Boronin A I, et al., Effect of Pd/C Dispersion On its Catalytic Properties in Acetylene and Vinylacetylene Hydrogenation, Appl. Catal., 1989, 54(1): 277-288.
    [23]Ryndin Y A, Nosova L V, Boronin A I, et al., Effect of Dispersion of Supported Palladium On its Electronic and Catalytic Properties in the Hydrogenation of Vinylacetylene, Appl. Catal., 1988, 42(1): 131-141.
    [24]Karpinski Z, Catalysis by Supported, Unsupported and Electron-Deficient Palladium, Adv. Catal., 1990, 37: 45-100.
    [25]Boitiaux J P, Cosyns J, Vasudevan S, Hydrogenation of Highly Unsaturated Hydrocarbons Over Highly Dispersed Palladium Catalyst: Part I: Behaviour of Small Metal Particles, Appl. Catal., 1983, 6(1): 41-51.
    [26]Tardy B, Noupa C, Leclercq C, et al., Catalytic Hydrogenation of 1,3-Butadiene On Pd Particles Evaporated On Carbonaceous Supports: Particle Size Effect, J. Catal., 1991, 129(1): 1-11.
    [27]Elemans P H M, Bos H L, Janssen J M H, et al., Transient Phenomena in Dispersive Mixing, Chem. Eng. Sci., 1993, 48(2): 267-276.
    [28]陈海鹰,严彬,部分中毒Pd/C催化剂上环戊二烯的加氢反应,燃料化学学报, 1993, 21(2): 135-141.
    [29]Boitiaux J P, Cosyns J, Robert E, Liquid Phase Hydrogenation of Unsaturated Hydrocarbons On Palladium, Platinum and Rhodium Catalysts. Part Ii: Kinetic Study of 1-Butene, 1,3-Butadiene and 1-Butyne Hydrogenation On Rhodium; Comparison with Platinum and Palladium, Appl. Catal., 1987, 32: 169-183.
    [30]Goetz J, Volpe M A, Gigola C E, et al., Low-Loaded Pd-Pb/ -Al2O3 Catalysts: Effect of Alloying in the Hydrogenation of Buta-1,3-Diene and Hydrogenation and Isomerization of Butenes, J. Catal., 2001, 199(2): 338-345.
    [31]黄小军,戴维林,铅修饰Pd/Al2O3催化剂上环戊二烯的选择加氢反应,催化学报, 1997, 18(5): 418-420.
    [32]顾虹,许波连,周静等,负载型Pd/TiO2和Pd-Ag/TiO2催化剂的乙炔选择性加氢催化性能,物理化学学报, 2006, 22(6): 712-715.
    [33]Mahata N, Raghavan K V, Vishwanathan V, Influence of Alkali Promotion On Phenol Hydrogenation Activity of Palladium/Alumina Catalysts, Appl. Catal. A: Gen., 1999, 182(1): 183-187.
    [34]Kazi A M, Chen B, Goodwin J G, et al., Li+ Promotion of Pd/SiO2: The Effect On Hydrogenation, Hydrogenolysis, and Methanol Synthesis, J. Catal., 1995, 157(1): 1-13.
    [35]宋硕,戴伟,朱警等, La改性Al2O3载体负载Pd碳二馏分选择加氢催化剂的表征,石油化工, 2004, 33(3): 197-201.
    [36]徐海升,李谦定, C4馏分选择加氢脱除丁二烯研究,石化技术与应用, 2004, 22(4): 249-251.
    [37]Zhang Q, Li J, Liu X, et al., Synergetic Effect of Pd and Ag Dispersed On Al2O3 in the Selective Hydrogenation of Acetylene, Appl. Catal. A: Gen., 2000, 197(2): 221-228.
    [38]孙连霞,孙明永,裂解汽油选择性加氢催化剂的研究,石油炼制与化工, 1998, 29(11): 6-9.
    [39]粱顺琴,吕龙刚,蒋彩兰,烷基化原料选择加氢催化剂LY-DBiso-03的性能与应用,石油化工, 2006, 30(9): 673-676.
    [40]李建卫,黄星亮,低温选择性加氢镍催化剂的研究,石油化工, 2001, 30(9): 673-676.
    [41]郭志军,丁国平,赵敏等, FCC轻汽油非贵金属二烯烃选择加氢催化剂,石化技术与应用, 2006, 24(3): 197-198.
    [42]合金,庞宏,南军,非贵金属裂解汽油一段加氢催化剂的制备,辽宁化工, 2000, (03): 125-126.
    [43]刘铁斌,金谊,魏民等, Ni-La/Al_2O_3催化剂上催化裂化轻汽油的选择性加氢,石油化工高等学校学报, 2003, 16(4): 24-26.
    [44]金谊,刘铁斌,魏民等,催化裂化轻汽油在Ni-K/Al_2O_3催化剂上选择加氢的研究,石油炼制与化工, 2004, 35(4): 9-13.
    [45]金谊,刘铁斌,赵尹等, Ni-Mg/Al_2O_3催化剂上催化裂化轻汽油的选择性加氢,化学与粘合, 2004, (5): 291-294.
    [46]戴丹,王海彦,魏民等,在Ni-Mo/Al_2O_3上催化裂化轻汽油的选择性加氢,辽宁石油化工大学学报, 2005, (02): 36-38.
    [47]郑彦彬,黄星亮,镍基催化剂催化模型化合物中异戊二烯加氢性能,石油化工, 2003, 32(12): 1024-1027.
    [48]宗保宁,闵恩泽,邓景发, Ni-P非晶态合金表面氢的吸附态,分子催化, 1990, (03): 248-251.
    [49]马爱增,陆婉珍,非晶态合金催化剂对乙烯中微量乙炔的选择加氢,石油学报:石油加工, 1996, 12(2): 29-37.
    [50]李兴存,赵天生,陈兴权等,环戊二烯在负载型非晶态NiB/SiO2催化剂上的选择加氢,宁夏大学学报(自然科学版), 2001, (02): 245-246.
    [51]马爱增,负载型Ni-B非晶态合金催化剂的表征及催化性能,催化学报, 1999, 20(6): 603-607.
    [52]马爱增, NiP非晶态合金的负载方法及催化剂的结构与催化性能,分子催化, 1999, 13(5): 345-350.
    [53]Wang W, Qiao M, Li H, et al., Study On the Deactivation of Amorphous NiB/SiO2 Catalyst During the Selective Hydrogenation of Cyclopentadiene to Cyclopentene, Appl. Catal. A: Gen., 1998, 168 (1): 151-157.
    [54]Wang W, Qiao M, Yang J, et al., Selective Hydrogenation of Cyclopentadiene to Cyclopentene Over an Amorphous NiB/SiO2 Catalyst, Appl. Catal. A: Gen., 1997, 163 (1-2): 101-109.
    [55]唐忠,张帆,陶庭树等, Ni-Cu-B非晶态合金催化剂对双烯选择性加氢性能的研究,石油化工, 2000, (10): 754-756.
    [56]刘卅,贾德民,贮氢合金催化共轭二烯烃类聚合物双键加氢的研究,弹性体, 2004, 14(05): 47-50.
    [57]刘卅,贾德民,郭建维, MlNi(5-x) (CoMnAl)x吸放氢性能及其催化聚合物双键加氢研究,材料科学与工艺, 2009, (04): 516-519.
    [58]肖天存,安立敦,马军,负载型钯催化剂硫中毒机理——模型催化剂的评价及表征,分子催化, 1990, (04): 263-270.
    [59]黄星亮,沈师孔,有机硫化物使Pd/树脂催化剂中毒的规律与机理,催化学报, 2003, 24(3): 233-237.
    [60]Bartholomew C H, Mechanisms of Catalyst Deactivation, Appl. Catal. A: Gen., 2001, 212(1-2): 17-60.
    [61]Kim S Y, Goodwin J G, Farcasiu D, The Effects of Reaction Conditions and Catalyst Deactivation On the Mechanism of N-Butane Isomerization On Sulfated Zirconia, Appl. Catal. A: Gen., 2001, 207(1-2): 281-286.
    [62]Seki H, Yoshimoto M, Deactivation of HDS Catalyst in Two-Stage RDS Process:Ⅱ. Effect of Crude Oil and Deactivation Mechanism, Fuel Proc. Technol., 2001, 69(3): 229-238.
    [63]Asplund S, Coke Formation and its Effect On Internal Mass Transfer and Selectivity in Pd-Catalysed Acetylene Hydrogenation, J. Catal., 1996, 158(1): 267-278.
    [64]南军,柴永明,李彦鹏等, Pd/Al2O3催化剂用于连续重整汽油全馏分加氢的失活分析,工业催化, 2007, (01): 8-13.
    [65]Tauster S J, Fung S C, Strong Metal-Support Interactions: Occurrence Among the Binary Oxides of GroupsⅡA-VB, J. Catal., 1978, 55(1): 29-35.
    [66]张敏,金振声,张治军等,金属-载体强相互作用及其对多相催化反应的影响,河南大学学报(自然科学版), 2005, (04): 21-26.
    [67]张敏,冯彩霞,金振声等,空气气氛中Pt和TiO2间强相互作用的STS和XPS研究,催化学报, 2005, (06): 508-512.
    [68]Baker R T K, Prestridge E B, Mcvicker G B, The Interaction of Palladium with Alumina and Titanium Oxide Supports, J. Catal., 1984, 89(2) : 422-432.
    [69]Chung Y, Xiong G, Kao C, Mechanism of Strong Metal-Support Interaction in Ni/TiO2, J. Catal., 1984, 85(1): 237-243.
    [70]Boitiaux J P, Cosyns J, Robert E, Additive Effects in the Selective Hydrogenation of Unsaturated Hydrocarbons On Platinum and Rhodium Catalysts: Ii. Influence of Various Compounds Containing Phosphorus, Oxygen, Sulphur and Chlorine On the Catalytic Performance of Platinum Catalyst, Appl. Catal., 1989, 49(2): 235-246.
    [71]Hub S, Touroude R, Mechanism of Catalytic Hydrogenation of but-1-yne On Palladium, J. Catal., 1988, 114(2): 411-421.
    [72]Van Broekhoven E H, Ponec V, On the Importance of Multiple Bonds in Hydrogenolysis by Metals: Exchange Reactions of Cyclopentane and Methane with Deuterium, J. Mol. Catal., 1984, 25(1-3): 109-118.
    [73]梁丽华,烯烃催化加氢反应的讨论,松辽学刊(自然科学版), 2000, (01): 56-59.
    [74]庄祖鲲,林文发,丁二烯选择性氮化反应触媒之研究明,石油(台湾), 1986, 4: 99-104.
    [75]Goetz J, Volpe M A, Touroude R, Low-Loaded Pd/ -Al_2O_3 Catalysts: Influence of Metal Particle Morphology On Hydrogenation of Buta-1,3-Diene and Hydrogenation and Isomerization of but-1-Ene, J. Catal., 1996, 164(2): 369-377.
    [76]Joice B J, Rooney J J, Wells P B, et al., Nature and Reactivity of Intermediates in Hydrogenation of Buta-1,3-Diene Catalyzed by Cobalt and Palladium-Gold Alloys, Discuss. Faraday Soc., 1966, 41: 223-236.
    [77]Bond G C, Product Selectivities in Isoprene Hydrogenation: Diagnosis ofπ-Allylic Intermediates, J. Mol. Catal. A: Chem., 1997, 118(3): 333-339.
    [78]Bond G C, Rawle A F, Catalytic Hydrogenation in the Liquid Phase. Part 1. Hydrogenation of Isoprene Catalysed by Palladium, Palladium-Gold and Palladium-Silver Catalysts, J. Mol. Catal. A: Chem., 1996, 109(3): 261-271.
    [79]Avdeev V I, Kovalchuk V I, Zhidomirov G M, et al., Ethylene Adsorption On the Pt-Cu Bimetallic Catalysts. Density Functional Theory Cluster Study, Surf. Sci., 2005, 583(1): 46-59.
    [80]Shen J, Hill J M, Watwe R M, et al., Microcalorimetric, Infrared Spectroscopic, and DFT Studies of Ethylene Adsorption On Pt/SiO2 and Pt?Sn/SiO2 Catalysts, J. Phys. Chem. B, 1999, 103(19) : 3923-3934.
    [81]Segura Y, Lpez N, Prez-Ramrez J, Origin of the Superior Hydrogenation Selectivity of Gold Nanoparticles in Alkyne + Alkene Mixtures: Triple-Versus Double-Bond Activation, J. Catal., 2007, 247(2): 383-386.
    [82]Wolter K, Seiferth O, Libuda J, et al., Infrared Study of Co Adsorption On Alumina Supported Palladium Particles, Surf. Sci., 1998, 402: 428-432.
    [83]Gomes J R B, Lodziana Z, Illas F, Adsorption of Small Palladium Clusters On the Relaxed -Al_2O_3(0001) Surface, J. Phys. Chem. B, 2003, 107(26) : 6411-6424.
    [84]Ma Q, Klier K, Cheng H, et al., Interaction Between Catalyst and Support. 2. Low Coverage of Co and Ni at the Alumina Surface, J. Phys. Chem. B, 2001, 105(11): 2212-2221.
    [85]Jung C, Ishimoto R, Tsuboi H, et al., Interfacial Properties of ZrO2 Supported Precious Metal Catalysts: A Density Functional Study, Appl. Catal. A: Gen., 2006, 305(1): 102-109.
    [86]Chafi Z, Keghouche N, Minot C, DFT Study of Ni-CeO2 Interaction: Adsorption and Insertion, Surf. Sci., 2007, 601(11): 2323-2329.
    [87]Chafi Z, Keghouche N, Minot C, Density Function Theoretical Study of Interaction of Hydrogen with Ceria, Phys. Proc., 2009, 2(3): 673-676.
    [88]Henry C R, Surface Studies of Supported Model Catalysts, Surf. Sci. Rep., 1998, 31(7-8): 231-325.
    [89]Ferreira M L, Nichio N N, Ferretti O A, A Semiempirical Theoretical Study of Ni/ -Al_2O_3 and NiSn/ -Al_2O_3 Catalysts for CH4 Reforming, J. Mol. Catal. A: Chem., 2003, 202(1-2): 197-213.
    [90]Valero M C, Raybaud P, Sautet P, Interplay Between Molecular Adsorption and Metal-Support Interaction for Small Supported Metal Clusters: Co and C2H4 Adsorption On Pd4/γ-Al_2O_3, J. Catal., 2007, 247(2): 339-355.
    [91]Pan Y, Liu C, Ge Q, Effect of Surface Hydroxyls On Selective CO2 Hydrogenation Over Ni4/γ-Al_2O_3: A Density Functional Theory Study, J. Catal., 2010, 272(2): 227-234.
    [92]张永波, Ni/ -Al_2O_3的结构及其在POM中催化性能的DFT研究,硕士,天津大学, 2008.
    [93]Valcrcel A, Clotet A, Ricart J M, et al., Comparative DFT Study of the Adsorption of 1,3-Butadiene, 1-Butene and 2-Cis/Trans-Butenes On the Pt(111) and Pd(111) Surfaces, Surf. Sci., 2004, 549(2): 121-133.
    [94]Valcarcel A, Morfin F, Piccolo L, Alkene Hydrogenation On Metal Surfaces: Why and When are Pd Overlayers More Efficient Catalysts than Bulk Pd?, J. Catal., 2009, 263(2): 315-320.
    [95]Mei D, Neurock M, Smith C M, Hydrogenation of Acetylene-Ethylene Mixtures Over Pd and Pd-Ag Alloys: First-Principles-Based Kinetic Monte Carlo Simulations, J. Catal., 2009, 268(2): 181-195.
    [96]Wang X, Wang D, Lu S, et al., Highly Enantioselective Ir-Catalyzed Hydrogenation of Exocyclic Enamines, Tetrahedron: Asymmetry, 2009, 20(9): 1040-1045.
    [97]Belelli P G, Ferullo R M, Castellani N J, Unsaturated Hydrocarbons Adsorbed On Low Coordinated Pd Surface: A Periodic DFT Study, Surf. Sci., 2010, 604(3-4): 386-395.
    [98]Zhao H, Welch L A, Koel B E, Site-Blocking Effects of Preadsorbed H On Pt(111) Probed by 1,3-Butadiene Adsorption and Reaction, Surf. Sci., 2009, 603(23): 3355-3360.
    [99]Kresse G, Hafner J, Ab Initio Hellmann-Feynman Molecular Dynamics for Liquid Metals, J. Non-Cryst Solids, 1993, 156-158(Part 2): 956-960.
    [100]Bridier B, Lpez N, Prez-Ramrez J, Partial Hydrogenation of Propyne Over Copper-Based Catalysts and Comparison with Nickel-Based Analogues, J. Catal., 2010, 269(1): 80-92.
    [101]丁迅雷,金团簇上小分子吸附的第一性原理研究,博士,中国科技大学, 2004.
    [102]Hohenberg P, Kohn W, Inhomogeneous Electron Gas, Phys. Rev., 1964, 136(3B): B864-B871.
    [103]刘娜,基于密度泛函理论的镧镍团簇结构和性质研究,硕士,河北师范大学, 2006.
    [104]Alonso J A, Electronic and Atomic Structure, and Magnetism of Transition-Metal Clusters, Chem Rev, 2000, 100(2): 637-678.
    [105]Hill F N, Selwood P W, Structure and Activity of Supported Nickel Catalysts, J Am Chem Soc, 1949, 71(7): 2522-2229.
    [106]胡雪娟,石秋杰,谌伟庆等, Ni/ZrO_2-Al_2O_3制备表征及催化性能的研究,化学研究与应用, 2008, (04): 378-381.
    [107]王松蕊,朱月香,谢有畅等,单层分散型Pd/Ni双金属催化剂的制备及其催化加氢性能,催化学报, 2007, (08): 676-680.
    [108]肖招金,黄星亮,童宗文,制备条件对二烯硫醚化催化剂Ni/Al_2O_3催化性能的影响,石油炼制与化工, 2006, (05): 24-28.
    [109]Ohtsuka Y, Arai T, Takasaki S, et al., Fischer-Tropsch Synthesis with Cobalt Catalysts Supported On Mesoporous Silica for Efficient Production of Diesel Fuel Fraction, Energy Fuel, 2003, 17(4): 804-809.
    [110]段洪敏,葛庆杰,徐东彦等, Co负载量对Co/SBA-15催化剂在Fischer-Trosch合成反应中性能的影响,石油化工, 2009, (07): 716-722.
    [111]Wu M, Hercules D M, Studies of Supported Nickel Catalysts by X-Ray Photoelectron and Ion Scattering Spectroscopies, The Journal of Physical Chemistry, 1979, 83(15): 2003-2008.
    [112]Zhang L, Lin J, Chen Y, Studies of Surface NiO Species in NiO/SiO_2 Catalysts Using Temperature-Programmed Reduction and X-Ray Diffraction, Faraday Trans., 1992, (14): 2075-2078.
    [113]任世彪,邱金恒,王春燕等,镍盐前体对Ni/γ-Al_2O_3催化剂催化加氢活性的影响,催化学报, 2007, (07): 651-656
    [114]Clause O, Goncalves Coelho M, Gazzano M, et al., Synthesis and Thermal Reactivity of Nickel-Containing Anionic Clays, Appl Clay Sci, 1993, 8(2-3): 169-186.
    [115]Chary K V R, Ramana Rao P V, Venkat Rao V, Catalytic Functionalities of Nickel Supported On Different Polymorphs of Alumina, Catal. Comm., 2008, 9(5): 886-893.
    [116]Poncelet G, Centeno M A, Molina R, Characterization of Reduced -Alumina-Supported Nickel Catalysts by Spectroscopic and Chemisorption Measurements, Appl. Catal. A: Gen., 2005, 288(1-2): 232-242.
    [117]Abell S, Verboekend D, Bridier B, et al., Activated Takovite Catalysts for Partial Hydrogenation of Ethyne, Propyne, and Propadiene, J. Catal., 2008, 259(1): 85-95.
    [118]Alzamora L E, Ross J R H, Kruissink E C, et al., Coprecipitated Nickel&Ndash; Alumina Catalysts for Methanation at High Temperature. Part 2.&Mdash;Variation of Total and Metallic Areas as a Function of Sample Composition and Method of Pretreatment, J. Chem. Soc., Faraday Trans. 1:, 1981, (3): 665-681.
    [119]Borello E, Cimino A, Ghiotti G, et al., Surface Configurations and Infra-Red Studies On Nickel Oxide Supported Onη- Andγ-Al_2O_3, Discuss. Faraday Soc., 1971, (DOI: 10.1039/DF9715200149).
    [120]Zielinski J, Reaction of Nitrous Oxide with a Nickel Surface, Appl. Catal., 1987, 35(1): 1-12.
    [121]Rynkowski J M, Paryjczak T, Lenik M, On the Nature of Oxidic Nickel Phases in NiO/γ-Al_2O_3 Catalysts, Appl. Catal. A: Gen., 1993, 106(1): 73-82.
    [122]Scheffer B, Molhoek P, Moulijn J A, Temperature-Programmed Reduction of NiOWO3/Al_2O_3 Hydrodesulphurization Catalysts, Appl. Catal., 1989, 46(1): 11-30.
    [123]Rodríguez J C, Viveros T, Monzón A, Deactivation by Sintering and Coking of Sol-Gel NiO-Al_2O_3-TiO2 Hydrogenation Catalysts, 1997, 111: 609-616.
    [124]Czekaj I, Loviat F, Raimondi F, et al., Characterization of Surface Processes at the Ni-Based Catalyst During the Methanation of Biomass-Derived Synthesis Gas: X-Ray Photoelectron Spectroscopy (XPS), Appl. Catal. A: Gen., 2007, 329: 68-78.
    [125]Chang J, Chou T, Selective Hydrogenation of Isoprene Over -Alumina-Supported Eggshell Pd Catalysts: Particle Size Effects, Appl. Catal. A: Gen., 1997, 156(2): 193-205.
    [126]Boitiaux J P, Cosyns J, Robert E, Additive Effects in the Selective Hydrogenation of Unsaturated Hydrocarbons On Platinum and Rhodium Catalysts: I: Influence of Nitrogen-Containing Compounds, Appl. Catal., 1989, 49(2): 219-234.
    [127]Chary K V R, Kishan G, Kumar C P, et al., Structure and Catalytic Properties of Vanadium Oxide Supported On Alumina, Appl. Catal. A: Gen., 2003, 246(2): 335-350.
    [128]温广明,王丹,赵野等,催化裂化汽油加氢脱硫技术进展,工业催化, 2008, (12): 1-6.
    [129]王丹,黄星亮,周清华,有机硫化物对Ni/Al_2O_3催化剂催化异戊二烯选择加氢的影响,石油化工, 2007, 36(9): 882-886.
    [130]罗来涛,李松军,邓庚凤等,助剂对Ni/海泡石催化剂加氢性能的影响,分子催化, 2000, (01): 46-50.
    [131]Praserthdam P, Phatanasri S, Meksikarin J, Activation of Acetylene Selective Hydrogenation Catalysts Using Oxygen Containing Compounds, Catal. Today, 2000, 63(2-4): 209-213.
    [132]南军,重整汽油选择性加氢Pd基催化剂的制备、表征与加氢性能,博士,中国石油大学, 2007.
    [133]谢福中,胡华荣,乔明华等,噻吩在猝冷骨架Ni上吸附脱硫的XPS研究,高等学校化学学报, 2006, (09): 1729-1732.
    [134]王蓉,黄晓茜,负载型Ni-B/SiO_2催化剂硫中毒显微结构及表面结构的研究,电子显微学报, 2000, 19(1): 419-420.
    [135]贾建业,谢先德,吴大清等,常见硫化物表面的XPS研究,高校地质学报, 2000, (02): 255-259.
    [136]Wongwaranon N, Mekasuwandumrong O, Praserthdam P, et al., Performance of Pd Catalysts Supported On Nanocrystalline -Al_2O_3 and Ni-Modified -Al_2O_3 in Selective Hydrogenation of Acetylene, Catal. Today, 2008, 131(1-4): 553-558.
    [137]赵彬侠,刘林学,张耀中等, CeO_2添加量对催化剂Cu-Ni-Ce/SiO_2性能的影响,分子催化, 2008, (06): 507-512.
    [138]章青,王会芳,孙果宋等, Ni-M(M=Cu,Zn,Ce)/C双金属催化剂上的乙醇气相羰化,无机化学学报, 2009, (08): 1384-1388.
    [139]何迈,方萍,谢冠群等, Cuo/CeO2-Al_2O_3催化剂中CuO物种的原位XRD、Raman和TPR表征,物理化学学报, 2005, (09): 997-1000
    [140]吴杰,潘曦竹,梁顺琴等,助剂对裂解汽油一段加氢镍基催化剂性能的影响,石化技术与应用, 2009, (01): 24-27.
    [141]秦玉香,胡明,钛碳化物改性碳纳米管的场发射性能,物理学报, 2008, (06): 3698-3702.
    [142]Gomes J R B, Moreira I D P R, Reinhardt P, et al., The Structural Relaxation of the -Al_2O_3(0001)- An Investigation of Potential Errors, Chem. Phys. Lett., 2001, 341(5-6): 412-418.
    [143]Chinayon S, Mekasuwandumrong O, Praserthdam P, et al., Selective Hydrogenation of Acetylene Over Pd Catalysts Supported On Nanocrystalline -Al_2O_3 and Zn-Modified -Al_2O_3, Catal. Comm., 2008, 9(14): 2297-2302.
    [144]Guénard P, Renaud G, Barbier A, et al., Determination of the -Al_2O_3(0001) Surface Relaxation and Termination by Measurements of Crystal Truncation Rods, Surf. Rev. Lett., 1998, 5(1): 321-324.
    [145]Batirev I G, Alavi A, Finnis M W, et al., First-Principles Calculations of the Ideal Cleavage Energy of Bulk Niobium(111)/ -Alumina(0001) Interfaces, Phys. Rev. Lett., 1999, 82(7): 1510-1513.
    [146]Ahn J, Rabalais J W, Composition and Structure of the Al_2O_3{0001}-(1×1) Surface, Surf. Sci., 1997, 388(1-3): 121-131.
    [147]Ruberto C, Yourdshahyan Y, Lundqvist B I, Surface Properties of Metastable Alumina: a Comparative Study ofκ- And -Al_2O_3, Phys. Rev. B, 2003, 67(19): 195412-195429.
    [148]Baxter R, Reinhardt P, Lpez N, et al., The Extent of Relaxation of the -Al_2O_3(0001) Surface and the Reliability of Empirical Potentials, Surf. Sci., 2000, 445(2-3): 448-460.
    [149]Marmier A, Lozovoi A, Finnis M W, The -Alumina(0001)Surface: Relaxations and Dynamics From Shell Model and Density Functional Theory, J. Eur. Ceram. Soc., 2003, 23(15): 2729-2735.
    [150]Baudin M, Hermansson K, Metal Oxide Surface Dynamics From Molecular Dynamics Simulations: The -Al_2O_3(0001) Surface, Surf. Sci., 2001, 474(1-3): 107-113.
    [151]杨春, ZnO/ -Al_2O_3(0001)薄膜生长初期的模拟研究,博士,电子科技大学, 2004.
    [152]姚淑娟,气体分子在过度金属催化剂上吸附行为的密度泛函理论研究,博士,中国地质大学, 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700