用户名: 密码: 验证码:
电梯能馈系统及其电能质量控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国经济的高速发展,电梯在大型公用建筑和民用住宅楼房中的应用越来越广泛,由此带来的巨大用电量不容忽视,特别是能源日益紧张的今天。电梯节能技术的研究势在必行,研究电梯能量回馈技术逐步成为行业内一个新的技术亮点。
     本文针对我国广泛使用的变压变频(Variable Voltge Variable Freuency,VVVF)电梯进行改造,设计具有能量回馈和有源滤波双重功能的并联型电梯能馈系统,采用具有能量双向流动的三相电压型PWM整流器作为外挂的能量回馈器,对其中的电力电子技术及控制方法进行深入研究,并取得了一些创新性的成果。
     本论文的主要研究内容包括以下几点:
     (1)设计电梯能馈系统。外挂的PWM整流器并联于电梯入线电网侧,取代了电梯变频器的二极管整流电路构成能量回馈通路,将再生电能逆变回馈到交流电网。无再生能量回馈时,可作有源滤波器用来消除非线性负载产生的谐波,改善电梯能馈系统网侧的电能质量。
     (2)研究并联的三相PWM整流器的直接电流控制方法(Direct Current Control, DCC),建立数学模型并设计了电流内环、电压外环的双闭环控制结构,采用空间矢量脉宽调制(SVPWM)方法实现开关信号的调制。为了提高双闭环PI控制性能,设计了负载扰动前馈补偿器,显著提高PWM整流器抗负载扰动动态性能。另外,电流环PI控制器中加入并联的重复控制器,用于抑制周期性死区扰动,以提高电流稳态精度。在理论分析的基础上,采用Matlab/Simulink软件构建了电梯能馈系统的仿真模型,仿真结果验证了理论分析的可行性,指导实验样机的设计与实验。
     (3)本文基于网侧电流检测控制方式提出了一种直接功率模糊控制(Direct Power Fuzzy Control, DPFC)方法。该控制结构无需进行负载电流检测和谐波电流提取,简单有效,同时也解决了传统的直接功率控制方法中开关频率与滞环宽度之间的矛盾。该方法将瞬时有功功率和无功功率与参考值的差值分别作为模糊控制变量送入模糊规则库,由模糊规则选择电压开关矢量,产生开关状态信号,不使用传统的预置开关表,省去功率滞环比较器,控制更加灵活有效。仿真实验表明,采用直接功率模糊控制方法的电梯能馈系统具有良好的动、静态特性,能够实现网侧电流正弦化和功率因数单位化,电能质量进一步得到优化,其控制效果优于DCC控制方法和传统的直接功率控制(DirectPower Control, DPC)方法。
     (4)本文采用分数阶比例积分PIλ控制器进行直流侧电压的稳定控制。根据瞬时功率理论建立了功率控制系统数学模型,采用频域设计方法设计了相应的分数阶PIλ控制器参数。仿真和分析证明了分数阶PIλ控制具有良好的动态性能和更强的鲁棒性,在负载扰动和电压闪变的情况下直流侧电压仍然稳定,响应速度更快,控制结果更精确,有效稳定了直流侧电压,提高了系统的工作性能,优于传统PI控制方法。
     (5)本文从扇区划分和开关表出发,提出了基于18扇区的直接功率控制方法。该方法基于功率数学模型,分析扇区划分的理论基础,将电压矢量扇区平均划分为18个扇区,根据电压开关矢量对有功和无功功率在各个扇区的影响,设计了新的开关表。仿真结果表明,基于18扇区的DPC对无功功率的调节更加有效,无功变化进一步得到约束,网侧电流的正弦度更好。提出基于18扇区的直接功率模糊控制方法,设计了详细的模糊逻辑规则,仿真结果证明该方法提高了网侧电流的正弦度,省去功率滞环比较器,采用模糊规则实现开关矢量选择,仿真结果说明其控制效果较采用滞环比较器更优。
     (6)在实验室搭建了电梯能馈系统的硬件电路,开发实验样机。在主电路基础上,开发了以DSP为主控芯片的电梯能馈系统的控制电路,通过软硬件设计与实现得到实验波形,证明了该系统设计合理,可以有效实现能量回馈功能,有利于改善现有电梯的工作性能,不仅节约了电能而且绿化了电网。样机的节能测试结果也证明了课题研究对象的可行性。
Elevators are used more and more in large public buildings and residential buildings, with the development of national economic. The huge power consumption cannot be ignored because of the shortage of energy, nowadays. Elevator energy-feedback technology has been becoming a new technical innovation in elevator industry, and the research of the correlation technique of energy-saving is imperative.
     To modify the VVVF (Variable Voltage Variable Frequency) elevators, which are popular used in our country, a parallel-structure elevator feedback system which has the function of energy-feedback and active power filter is presented. A three-phase voltage PWM converter, which is connected in parallel, is designed as the parallel energy-feedback device. Some innovative achievements are gained with the deep research of the power electronics technology and the control methods. The main research contents are as follows:
     (1) A circuit of elevator system with energy feedback is designed after analyzing the working principle. The plug-in PWM converter is paralleled to the grid-side, to build an energy feedback pathway. The regenerated energy will be fedback to the grid timely. In the absence of regenerated energy to feedback, the plug-in PWM converter works as an active power filter to eliminate the harmonics brought by nonlinear load and improve the power quality of the grid-side of the elevator system.
     (2) Research the DCC (Direct Current Control) method of the parallel three-phase PWM converter, a double closed-loop control structure is designed, in which current loop is considered as inner-loop and voltage loop is considered as outer-loop. SVPWM (Space Vector Pulse Width Modulation) method is used to modulate the switching signal. In order to increase the dynamic control performance of resisting load disturbance of the PWM rectifier, the load disturbance feed forward compensator is brought in the double closed-loop PI control structure. In addition, PI controller and repetitive controller are mixed used in the current control loop. The repetitive controller is used to restrain the periodic dead disturbance, to improve the accuracy of the steady state of the current. On the basis of theoretical analysis, simulation model of the elevator energy feedback system is built by using Matlab/Simulink software. Simulation results validate the feasibility of the theoretical analysis, guiding us to design and make an experimental prototype.
     (3) DPFC (Direct Power Fuzzy Control) method is proposed based on grid current detection. Grid current detection does not need load current detection and harmonic current extraction, is more simple and effective to solve the contradiction between the switch frequency and the width of hysteresis comparator in the traditional DPC(Direct Power Control) method. The errors of instantaneous active power and reactive power with their reference values are sent into fuzzy rule base as fuzzy variables. The switch signals are generated by fuzzy rules. This control method is more flexible and effective, without predefined switch table and hysteresis comparator. The simulation results show that the designed elevator system has excellent steady and dynamic performance. Sinusoidal grid current and unit power factor can be achieved. And the power quality is also improved. The novel DPC based on fuzzy control is better than DCC method and traditional DPC.
     (4) This thesis proposed a fractional-order PIλ controller to realize stability control of DC-side voltage. The fractional-order PIλ controller is designed with the frequency-domain method with the mathematical model of the power control system based on instantaneous power theory. The simulation results show that fractional-order PIλ controller has good dynamic and robust performance, and the DC-side voltage is still stable when there has impulse-voltage and load-changing. The DC-side voltage stabilized at the given value quickly and accurately. The new control strategy is better than the traditional PI control strategy.
     (5) A novel DPC method based on18sectors partition is proposed, in which the space voltage vector is divided into18average sectors, based on the influence between the voltage vectors and the active and reactive power in each sector. And then, new switch table is designed. Simulation results of the novel DPC based on the18sectors is more effective on the regulation of reactive power, grid current is better sinusoidal. DPFC based on18sectors partition is proposed, detail fuzzy logic rule-base is designed, and the simulation proves that this method improves the sinusoidal of the grid current, the control effect is better than that of using hysteresis comparator.
     (6) The hardware circuit of the elevator energy feedback system is designed in laboratory, using DSP as main control chip, to develop an experimental prototype. Experiments are carried on the design and development of the hardware and software, to obtain the experimental waveforms. The experimental results show that the system design is reasonable and effective, can effectively achieve the energy feedback function, is good to improve the work performance of the existing elevators, not only savinng the electrical energy but also achieving green power grid. The energy-saving test results can prove the research is viability.
引文
[1]叶友谊.浅论电梯节能的现状及发展途径[J].黑龙江科技信息,2009(28):78-79
    [2]黄娟丽,万杰,李少纲.电梯节能技术综述[J].能源与环境,2010(1):30-31.
    [3]魏晓,刘基东.电梯节能[J].电梯工业,2009,(02):33-34.
    [4]许家群,于慎波,徐衍亮等.电梯曳引驱动系统的现状及发展前景[J].微特电机,2002(3):5-7.
    [5]戴玉英.永磁同步电动机在无齿轮曳引电梯中的应用前景[J].电机技术,2002(3):18-25.
    [6]马宝奇,刘辉.浅谈能量回馈型节能电梯在实践中的应用[J].科技信息,2010,(3):21-21.
    [7]李少纲,葛超明.浅谈电梯节能技术的推广[J].能源与节能,2011(6):41-42.
    [8]尹政.能量回馈器在电梯上的应用[J].中国科技信息,2007,18(16):85-90.
    [9]冷增祥.有源逆变器用于电梯节能[J].电源技术应用,2007,10(7):9-11.
    [10]吴俊杰,周云翔.浅谈矩阵变换技术在电梯应用中的难点[J].变频器世界,2006,(11):9-12.
    [11]叶友谊.浅论电梯节能的现状及发展途径[J].黑龙江科技信息,2009(28):78-79.
    [12]金焱,刘颖英,徐永海.电能质量综合评价的分析与研究[J].电气技术,2006(1):27-44.
    [13]张平化,李铁才,杨贵杰.三相电压型PWM整流器四象限运行的系统仿真分析[J].系统仿真学报,2011,23(6):1278-1283.
    [14]李杰.能源再生型电梯控制系统的研究与开发[D].天津:天津大学,2007.
    [15]吴隆安,赖寿宏,涂从欢.能量回馈系统的设计与实现[J].电力电子技术,1995(1):23-24.
    [16]申瑞.电梯能量回馈技术及应用[D].上海:上海师范大学,2010.
    [17]黄柏成.共用直流母线的电梯节能控制系统[J].建筑电气,2007,(7):8-10.
    [18]张慧妍,韦统振,齐智平.超级电容器储能装置研究[J].电网技术,2006,30(8):92-96.
    [19]李永东,王剑.PWM整流器的现状与展望[J].2006中国电工技术学会电力电子学会第十届学术年会2006(09).
    [20]王久和.电压型PWM整流器的非线性控制[M].北京:机械工业出版社,2008.
    [21]Dixon, J.W.; Boon-Teck Ooi. Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier. IEEE Transactions on Industrial Electronics, 1998,35(4):508-515.
    [22]王晓晨.三相PWM整流器间接电流控制动态性能的改进[J].电力电子技术,2007,41(10):110-112.
    [23]马祎炜,李杰,陈国呈,等.基于改进型幅相控制的单位功率因数电梯能量回馈器研究[J].电工电能新技术,2008,27(1):76-80.
    [24]梁骁,王辉,冯勇,等.三相PWM整流器滞环电流控制仿真[J].计算机仿真,2010,27(10):259-262.
    [25]张笑微,李永东,刘军.PWM整流器电流控制策略的研究[J].电工技术杂志,2003(12):57-59.
    [26]李正熙,王久和,李华德.电压型PWM整流器非线性控制策略综述[J].电气传动,2006,36(1):9-27.
    [27]Malinowsk, M.; Kazmierkowski, M.P. Direct power control of three-phase PWM rectifier using space vector modulation-Simulation study.2002. ISIE 2002. Proceedings of the 2002 IEEE International Symposium on Industrial Electronics, vol.4,1114-1118.
    [28]Jinhwan Jung, Sunkyoung Lim, Kwanghee Nam. A Feedback linearizing control scheme for a PWM converter-inverter having a very small DC-link capacitor. IEEE Transactions on Industrial Application,1999,35(5):1124-1131.
    [29]刁利军,刘志刚,孙大南等.基于Lyapunov理论的交流传动系统建模和稳定性分析[J].北京交通大学学报,2010,34(5):32-36.
    [30]夏培容,尹怡欣,王久和.基于变阻尼的电压型PWM整流器无源控制研究[J].北京信息科技大学学报:自然科学版,2009,24(4):30-34.
    [31]陈瑶,金新民,童亦斌.基于滑模控制的三相电压型PWM整流器系统仿真[J].系统仿真学报,2007,19(8):1849-1852.
    [32]郭源博,周鑫,张晓华等.三相电压型脉宽调制整流器的自抗扰控制[J].电力系统自动化,2011,35(16):87-93.
    [33]A. Allag, MY. Hammoudi, S.M.Minoune, M.Y.Ayad. Adaptive Backstepping Voltage Controller Design for an PWM AC-DC Converter. International Journal of Electrical and power Engineering,2007,1 (1):62-69.
    [34]Hsiung Cheng Lin. Intelligent Neural Network-Based Fast Power System Harmonic Detection[J]. IEEE Transactions on Industrial electronics,2007,54(1):43-52.
    [35]张崇巍,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003。
    [36]李谦,李永东.三相PWM整流器闭环控制研究[J].电气传动,2007,37(11):18-21.
    [37]Lin Lei, Zhong Heqing, Deng Yu, et al. A study of dual-loop control scheme and corresponding neutral-point voltage balances control method for three-level PWM rectifier[C]. APEC 2009,24th Annual IEEE,2009:1909-1914.
    [38]赵振波,李和明.单位功率因数PWM整流器双闭环PI调节器设计[J].电工技术杂志,2003(5):68-71.
    [39]涂春鸣,李慧,唐杰等.基于直接电流控制的D-STATCOM装置研制[J].高电压技术,2008,34(6):1173-1178.
    [40]卢西伟,刘志刚,张钢,等.基于电压型PWM整流器的新型轻轨牵引供电系统[J].电工技术学报,2007,22(8):68-72.
    [41]符强,林辉,贺博.四开关三相无刷直流电机的直接电流控制[J].中国电机工程学报,2006,26(4):149-15.
    [42]孔伟荣,朱武标,姜建国.双PWM控制能量回馈电梯传动系统的设计[J].电气传动,2007,37(8):8-11.
    [43]孙关林,沈晓宇.节能电梯及节能效果分析[J].浙江建筑,2007,24(4):51-52
    [44]申瑞,张自强,董燕,叶立,电梯节能能量回馈控制系统设计[J].河南科技大学学报(自然科学版).2010,31(1):27-30.
    [45]Abdelouahab Bouafia, Jean-Paul Gaubert, Fateh Krim, Predictive Direct Power Control of Three-Phase Pulsewidth Modulation (PWM) Rectifier Using Space-Vector Modulation (SVM)[J]. IEEE Transactions on Power electronics,2010,25(1):228-236.
    [46]汪万伟,尹华杰,管霖.三相电压型PWM整流器滑模变结构直接功率控制[J].华南理工大学学报(自然科学版),2009,37(11):83-106.
    [47]赵葵银.PWM整流器的模糊滑模变结构控制[J].电工技术学报,2006,21(7):49-53.
    [48]Ye Y,Kazerani M,Quintana V H.A novel modeling and control method for three-phase PWM converters.PESC.2001 IEEE 32th Annual.2001,1:102-107.
    [49]Sergio Vazquez, Juan Antonio Sanchez, Juan Manuel Carrasco.Jose Ignacio Leon. A Model-Based Direct Power Control for Three-Phase Power Converters[J]. IEEE Transactions on Industrial electronics,2008,55(4):1647-1657.
    [50]Dixon Juan W, Ool Boon Teck. Indirect current control of a unity power factor sinusoidal current boost type three-phase rectifier. IEEE Trans on Industrial Electronics,1998, 35(4):508-515
    [51]曾聪,刘涤尘.空间矢量脉宽调制技术的算法及其仿真研究[J].电力科学与工程,2009,25(8):5-9.
    [52]程启明,程尹曼,薛阳,等.三相电压源型PWM整流器控制方法的发展综述[J].电力系统保护与控制,2012,40(3):145-155.
    [53]梁骁,王辉,冯勇,等.三相PWM整流器滞环电流控制仿真[J].计算机仿真,2010,27(10):259-262.
    [54]汪显博,卜文绍,丁喆,等.基于固定开关频率控制策略的三相PWM整流器的建模与仿真[J].工矿自动化,2010,8(8):68-72.
    [55]赵振波,李和明.单位功率因数PWM整流器双闭环PI调节器设计[J].电工技术杂志,2003(5):68-71.
    [56]麦崇裔,苏开才.电力电子技术基础[M].广州:华南理工大学出版社,2003.
    [57]杨贵杰.空间矢量脉宽调制方法的研究[J].中国电机工程学报,2001,21(5):79-83.
    [58]王孝洪,胡源,吴捷.矩阵变换器空间矢量调制策略的FPGA实现[J].微计算机信息,2009,20(7-2):134-136.
    [59]李翠艳,张东纯,庄显义.重复控制综述[J].电机与控制学报,2005,9(1):37-44.
    [60]董晓鹏,王兆安.具有快速动态响应的单位功率因数PWM整流器[J].西安交通大学学报,1997,31(11):77-82.
    [61]黄守道,陈继华,张铁军.电压型PWM整流器负载电流前馈控制策略研究[J].电力电子技术,2005,39(4):53-55.
    [62]Jong-WooChoi, Seung-KiSul. Fast current controller in three-phase AC/DC boost converter using d-q axis crosscoupling[J]. IEEE Transactions on Power Electronics, 1998,13(1):179-185.
    [63]钟炎平,张勋,陈耀军.基于负载电流前馈的PWM整流器电压控制研究[J].电气传动,2009,39(9):41-44.
    [64]李时杰,李耀华.基于龙伯格观测器的前馈控制策略的研究[J].电力电子技术,2006,40(5):4-6.
    [65]张兴,季建强,张崇巍,等.基于内模控制的三相电压型PWM整流器不平衡控制策略研究[J].中国电机工程学报,2005,25(13):51-56.
    [66]唐欣,罗安.基于重复控制的有源滤波器的三态滞环控制方法[J],电工技术学报,2009,24(9):134-139.
    [67]郑颖楠,韩超.基于重复控制的三相四桥臂逆变器控制研究[J].电力电子技术,2009,43(11):68-70.
    [68]赵金,延烨华,徐金榜.逆变电源重复控制技术的研究[J].华中科技大学学报,2003,31(12):25-28.
    [69]朱晓亮,胡雪峰,龚春英,等.空间矢量直接电流控制三相并网逆变器的研究[J].电力电子技术,2010,44(1):23-25.
    [70]Habetler T G. A Space Vector-Based Rectifier Regulator for AC/DC/AC Converters [J]. IEEE Transactions on Power Electronic,1993,8(2):30-36.
    [71]M. Kale, E. Ozdemir, An adaptive hysteresis band current controller for shunt active power filter [J]. Elsevier, Electric Power Systems Research,2005,73 (2):113-119.
    [72]屈莉莉,杨振坤,杨兆华.三相电压型PWM整流器空间矢量脉宽调制研究[J].电工技术杂志,2002(7):7-9.
    [73]V. Soares, P. Verdelho, and G. D. Marques, An instantaneous active and reactive current component method for active filters [J]. IEEE Transactions Power Electronics,2000,15(4): 660-669.
    [74]李圣清,朱英浩,周有庆等.电网谐波检测方法的综述[J].高电压技术,2004,30(3):39-42.
    [75]叶忠明,董伯藩,钱照明.谐波电流的提取方法比较[J].电力系统自动化,1997,21(12):21-24.
    [76]薛蕙,杨仁刚.改进的瞬时无功和谐波电流检测理论[J].电力系统及其自动化学报,2002,14(2):8-11.
    [77]刘艳.并联型有源滤波器谐波电流补偿控制研究[D].广州:华南理工大学硕士论文.2010,5.
    [78]徐政.瞬时功率理论及其在电力调节中的应用[M].北京:机械工业出版社,2009.
    [79]洪乃刚等.电力电子和电力拖动控制系统的matlab仿真[M].机械工业出版社,2006.
    [80]BhimSingh, BrijNSingh, AmbrishChandra, Kamal Al-Haddad. et al, A Review of Single-Phase Improved Power Quality AC-DC Converters[J]. IEEE Transactions on Industry Applications,2003,50(5):962-981.
    [81]M.Jasinski. Direct Power and Torque Control of AC DC AC Converter Fed Induction Motor Drives[D]. Institute of Control and Industrial Eleetronies, Warsaw University of Technology,2005.
    [82]张俊峰,毛承雄,陆继明.双馈感应发电机的直接功率控制策略[J].电力自动化设备,2006,26(4):31-35.
    [83]Toshihiko Noguchi, Hiroaki Tomiki, Seiji Kondo, et al. Direct power control of PWM converter with power-source voltage sensors [J]. IEEE Transactions on Industry Applications,1998,34(3):473-479.
    [84]E.DWatanabe, R.M.StePhan,M.Aledes. New Concepts of Instantaneous Active and Reactive Powers in Electrical System with Generic Load [J]. IEEE Transactions on Power Delivery,1993,8(2):697-703.
    [85]Ohnishi T. Three phase PWM converter/inverter by means of instantaneous active and reactive power control[C].IEEE International Conference on Industrial Electronics, Japan, 1991.
    [86]Chaoui A, Gaubert J P, Krim F, et al. Direct power control of shunt active filter[C]. European Conference on Power Electronics and Applications, Denmark,2007.
    [87]Tongzhen Wei. A Novel Direet Power Control Method of Three-Phase Active Rectifiers in Industrial Drive System. Proeeedings of ICMA 2007:3712-3716.
    [88]M.Malinowski, M.P.KaZmerkowski, S.Hansen, F.Blaabjerg, GD.Marques., Virtual-Flux-Based Direct Power Control of Three-phase PWM Rectifiers [J]. IEEE Transactions on Industry Applications,2001,37(4):1019-1027.
    [89]Abdelmadjid Chaoui, Fateh Krim, Jean-Paul Gaubert, Laurent Rambault. DPC controlled three-phase active filter for power quality improvement[J]. Electrical Power and Energy Systems,2008 (30):476-485.
    [90]Akagi H, Kanazawa Y, Nabae A. Generalized theory of the instantaneous reactive power in three-phase circuits. In:IPEC'83-international power electronics conference, Tokyo, Japan, 1983:1375-1386.
    [91]Akagi H. New trends in active filters for power conditioning. IEEE Transactionss on Industry Applications 1996,32(6):1312-1322.
    [92]王栓庆,王久和,王立明.具有快速跟踪能力的电压型PWM整流器直接功率控制[J].电气传动,2007,237(5):27-30.
    [93]王久和,李华德.改善电压型PWM整流器DPC系统性能的策略[J].电气传动,2005,35(8):40-43.
    [94]Chaoui A, Gaubert JP, Krim F, Rambault L. IP controlled three-phase shunt active power filter for power quality improvement[C]. IEEE industrial electronics conference IECON 2006:2384-2389.
    [95]刘进军,刘波,王兆安.基于瞬时无功功率理论的串联混合型单相电力有源滤波器[J].中国电机工程学报,1997,17(1):37-41.
    [96]Bouafia,A., Gaubert,J-P,Krim,F,Chaoui, A.Unity Power Factor Operation of Three-Phase PWM Rectifier Based on Direct Power Control. Proeeedings of EUROCON'07,2007:1518-1523.
    [97]Bruce S. Chen, G'eza Jo'os. Direct Power Control of Active FiltersWith Averaged Switching Frequency Regulation [J]. IEEE Transactions on Power Electronics,2008, 23(6):2729-2737.
    [98]Ye,Y., Kazerani, M., Quintana, VH. A novel modeling and control method for three-Phase PWM converters. Proeeedings of PESC,2001:102-107.
    [99]Bruce S. Chen, G'eza Jo'os, Direct Power Control of Active FiltersWith Averaged Switching Frequency Regulation [J]. IEEE Transactions on Power Electronics,2008, 23(6):2729-2737.
    [100]王久和,李华德,王立明.电压型PWM整流器直接功率控制系统[J].中国电机工程学报,2006,26(18):54-60.
    [101]Mendes, V.M.F., Catalao, J.P.S.. Harmonic assessment of variable-speed wind turbines considering a converter control malfunction [J]. Renewable Power Generation, IET, 2010(3):139-152.
    [102]Melicio, R. Mendes, V.M.F.,Catalao, J.P.S. Wind energy systems with power electronic converters and fractional-order controllers. Power Electronics, Machines and Drives (PEMD 2010),5th IET International Conference on,2010(4):1-6.
    [103]Rasoanarivo, I.; Arab-Tehrani, K.; Sargos, F. Fractional Order PID and Modulated Hysteresis for high performance current control in multilevel inverters[C]. Industry Applications Society Annual Meeting (IAS),2011(10):1-7.
    [104]Martinez, R. Bolea, Y., Grau, A., Martinez, H. Fractional DC/DC converter in solar-powered electrical generation systems [C]. IEEE Conference on Emerging Technologies & Factory Automation,2009. ETFA 2009(9):1-6.
    [105]梁祖权,束洪春.新型UPQC直流电压的PIλDμ控制[J].电1技术学报,2010(2):147-157.
    [106]Oustaloup, A. La Commade Crone:Commande Robuste D'ordre Non Entier.Hermes. Paris.1991.
    [107]Ying Luo and YangQuan Chen, Fractional-order [proportional derivative] controller for robust motion control:Tuning procedure and validation, in Proc. of American Control Conference (accepted to appear), St. Louis, Missouri, June 10-12,2009:1412-1417.
    [108]R. Barbosa, J.A. Tenreiro, I.M. Ferreira. PID controller tuning using fractional calculus concepts. Fractional Calculus and Applied Analysis,2004,7(2):119-134.
    [109]D.Y. Xue, C.N. Zhao, Y.Q. Chen. Fractional order PID control of a DC-motor with an elastic shaft:a case study. Proceedings of American Control Conference. Minneapolis, Minnesota, USA,2006:3182-3187.
    [110]Delavari,H.,Faieghi,M.R.,Ranjbar,A.. Fractional-order sliding mode controller for inverted pendulum. Proceedings of the 4th IFAC Workshop on Fractional Differentiation and Its Applications(FDA'10)(2010)
    [111]Romero,M.,Tejado,I.,Vinagre,B.M.,de Madrid, A.P.:Fractional-order generalized predictive control of a servomotor plant. Proceedings of the 3th IFAC Workshop on Fractional Differentiation and Its Applications(FDA'08)(2008)
    [112]Romero,M.,Tejado,I.,Vinagre,B.M.,de Madrid,A.P.. Position and velocity control of a servo by using GPC of arbitrary real order. New Trends in Nanotechnology and Fractional Calculus Application.Spinger,Berlin.2009:369-36.
    [113]Barbosa,R.On linear fuzzy fractional PD and PD+I controllers. Proceedings of the 4th IFAC Workshop on Fractional Differentiation and Its Applications(FDA'10)(2010)
    [114]Delavari, H., Ghaderi, R., Ranjbar, A., HosseinNia, S.,Momani, S. Adaptive fractional PID controller for robot manipulator [C].Proceedings of the 4th IFAC Workshop on Fractional Differentiation and Its Applications(FDA'10)(2010).
    [115]Cervera, J.,Banos, A.Automatic loop shaping in QFT using CRONE structures [J]. J.Vib.Control,14(9-10),2008:1513-1529.
    [116]Kalla,R.,Nataraj,P.S. Synthesis of fractional-order QFT controller using interval constraint satisfaction technique [C]. Proceedings of the 4th IFAC Workshop on Fractional Differentiation and Its Applications(FDA'10)(2010).
    [117]Cervera, J.,Banos, A.,Monje, C.A.,Vinagre,B-M. Tuning of fractional PID controllers by using QFT [C]. Proceedings of the 32nd Annual Conference of the IEEE Industrial Electronic Society.2006.
    [118]Valerio,D.,da Costa,J.S. Tuning of fractional controllers minimizing H2 and H∞ norms [J]. Acta Pplytech.Hung.3(4),2006:55-70.
    [119]Petra,I.,Hypiusova, M. Design of fractional-order controller via H∞ norm minimization [J].Sel.Top.Model.Control.2002(3):50-54.
    [120]Sheng,H.,Sunn,H.,Coopmans,C.,Chen,Y.Q. Physical experimental study of variable-order fractional integrator and differentiator [C]. Proceedings of the 4th IFAC Workshop on Fractional Differentiation and Its Applications(FDA'10)(2010).
    [121]Valerio,D.,da Costa,J.S. Variable order fractional controller [C]. Proceedings of the 4th IF AC Workshop on Fractional Differentiation and Its Applications (FDA'10)(2010).
    [122]Tejado,I.,Vinagre,B.M.Chen Y.Q. Fractional gain and order scheduling controller for network control systems with variable delay.Application to a smart wheel [C]. Proceedings of the 4th IFAC Workshop on Fractional Differentiation and Its Applications (FDA'10)(2010).
    [123]Monje,C.A.Design methods of fractional order controller for industrial applications[D].PhD thesis,University of Extremadura.2006.
    [124]Oustaloup,A., Sabatier,J.,Lanusse,P.. From fractional robustness to CRONE control[J]. Fractional Calculus and Application Analysis,1999,2(1):1-30.
    [125]Yangquan Chen,Blas M. Vinagre. A new IIR-type digital fractional order differentiator [J]. Signal Processing.(Elsevier).2003(11):2359-2365.
    [126]Ying luo,Long Di,jinlu Han,Haiyang Chao,Yangquan Chen.Altitude Flight control using fractional order controllers [C]. Proceedings of the 4th IFAC Workshop on Fractional Differentiation and Its Applications (FDA'10)(2010).
    [127]Blas M. Vinagre, Yangquan Chen,Ivo Petras. Two direct Tustin discretization methods for fractional-order differentiator/integrator [J]. Journal of The Franklin Institute, 2003(8):349-362.
    [128]王久和,李华德,王立明.电压型PWM整流器直接功率控制系统[J].中国电机工程学报.2006,26(18):54-60.
    [129]梁祖权.统一电能质量调节器检测与控制技术研究[D]哈尔滨工业大学.2008,11:77-78.
    [130]HongSheng Li, Ying Luo, and YangQuan Chen. A Fractional Order Proportional and Derivative (FOPD) Motion Controller:Tuning Rule and Experiments [J]. IEEE Transactions on Control Systems Technology, Vol.18, NO.2, MARCH 2010:516-520.
    [131]Ying Luo, Chun Yang Wang, and YangQuan Chen. Tuning Fractional Order Proportional Integral Controllers for Fractional Order Systems[J]. Journal of Process Control,2010(20): 823-831.
    [132]王久和,李华德,李正熙.电压型PWM整流器直接功率控制研究[J].辽宁工程技术大学学报,2004(10):23(5):658-660.
    [133]储剑波,胡育文,黄文新等.永磁同步电机直接功率控制基本原理[J].电工技术学 报.2009,24(10):21-26.
    [134]王久和,李华德,王立明.电压型PWM整流器直接功率控制系统.中国电机工程学报.2006,26(18):54-60.
    [135]谢门喜,田铭兴,PWM整流器直接功率控制算法研究,电气传动自动化,2009,31(3):5-7.
    [136]陈伟,邹旭东,唐健,等.三相电压型PWM整流器直接功率控制调制机制[J].中国电机工程学报.2010,30(3):35-41.
    [137]王久和,李华德.一种新的电压型PWM整流器直接功率控制策略[J].中国电机工程学报,2005,25(16):47-52.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700