用户名: 密码: 验证码:
计及励磁饱和环节的电力系统小扰动稳定性分析与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
励磁系统作为电力系统的重要组成部分,其饱和环节的存在不仅会影响系统的暂态稳定性,而且还可能产生增幅低频振荡,进而影响系统的静态稳定性。在稳定研究中,“域”方法能够提供传统的时域仿真法和频域法所无法获得的信息,已逐渐被人们所认识和接受。本文将从吸引域的角度,对含励磁系统饱和环节的电力系统稳定问题进行深入研究。
     研究了计及励磁饱和环节线性化单机系统的全局稳定性问题。针对AVR、AVR+PSS和线性最优励磁控制(LOEC)这3种典型励磁控制策略,建立了计及励磁系统饱和环节的系统数学模型,运用触发映射和二次曲面Lyapunov函数,对饱和系统的全局稳定性进行了判定。指出即使系统的特征根实部均为负,当计及励磁系统饱和环节后,系统也不能完全满足全局稳定条件,可能出现非全局稳定的情况。因此,研究饱和系统的局部稳定问题更加现实、可行。此外,还对饱和发生的时间(切换时间)进行了估计,并在LOEC控制系统中研究了阻尼系数对切换时间的影响,指出阻尼系数的减小会增加励磁系统保持励磁顶值的时间。
     对计及励磁饱和环节系统的吸引域进行了估计。对LOEC控制下的系统,将吸引域估计问题转化为凸优化问题,通过求解线性矩阵不等式计算饱和系统的椭球吸引域;对采用不同LOEC控制律的系统椭球吸引域进行了比较,提出用椭球吸引域的体积指标选取LOEC权矩阵和控制律的新方法;通过分析椭球吸引域体积与励磁顶值大小之间的关系,揭示出单机系统中椭球吸引域体积与励磁顶值的三次方成正比,两者呈非线性变化规律;在多机系统中,应用奇异值分解方法,提出了高维椭球吸引域的三维投影方法,解决了高维椭球吸引域的直观显示问题。
     提出了利用椭球吸引域确定小扰动稳定域(SSSR)边界的新方法。分析表明,当椭球吸引域很小时,该方法与利用Hopf分岔获得的SSSR差别不大;而当椭球吸引域较大时,该方法要比利用Hopf分岔获得的SSSR小,该方法可以将SSSR大小与扰动大小建立联系,从而扩展了SSSR的研究范畴。此外,还分析了权矩阵、阻尼系数、吸引域指标和负荷模型等因素对SSSR的影响,得出了一些重要结论。
     最后,基于域的方法,设计了多目标饱和励磁控制器。设计中考虑了吸引域与初始状态域的关系,将饱和控制器的双线性矩阵不等式转化为松弛的线性矩阵不等式问题,使得在吸引域内确保系统的二次稳定性,仿真验证了控制器的有效性。
Generator excitation system plays a fundamental role in power system. Saturation element of excitation system not only affects on transient stability but also leads to the low-frequency oscillations which result in static instability problems possibly. In studies of system stability, the so-called "region" approach has been proposed and is gradually being accepted by many scholars because the "region" can provide some important information which can't be got by using time-domain simulation approach and frequency-domain approach. This dissertation thoroughly studies on the stability problem with saturation element of excitation system from the point of view of the region of attraction.
     The global stability problem of single-machine infinite-bus is studied in this dissertation by using linearized model. The mathematic models are established with saturation element of excitation system under three typical control strategies:automatic voltage regulator (AVR), automatic voltage regulator plus power system stabilizer (AVR+PSS) and linear optimal excitation control (LOEC). Based on impact maps and quadratic surface Lyapunov functions, the global stability of three linearized systems under different damping factors and line impedance values is recognized. The conclusion shows that conditions of global stability can't be satisfied entirely for the linear system after considering saturation element even if the real components of all eigenvalues are negative. So, it is realistic and feasible to study on the local stability of saturation system. Furthermore, the switching time is estimated in the dissertation. After studying on the effect of damping factor on the switching time of saturation system, it is concluded that smaller damping factor is, longer switching time is.
     The region of attraction (RA) of power system is estimated with saturation element of excitation system. The linear matrix inequalities (LMIs) are applied to estimate RA of the system with saturation element of excitation system under linear optimal excitation control after transforming the problem of estimating RA of the system under saturated linear feedback control law into LMIs formulations. The developed method is applied to choice the preferable weighting matrix using the volume of n full-dimensional ellipsoids as the criteria, and the expectable result is shown in the simulation test. Based on the nonlinear relation between the excitation limit and the volume of ellipsoidal RA, it is recognized that the volume of ellipsoidal RA is proportional to the cube of the excitation limit. To visualize the high dimension ellipsoidal RA approximately, a novel projection approach based on singular value decomposition for high dimension ellipsoidal RA is proposed in multi-machine case.
     Based on RA of saturation system, a novel algorithm is proposed to calculate the boundary of the small signal stability region (SSSR), and used to study on effect of saturation element on SSSR. The case demonstrates that the gained SSSR based on the proposed algorithm is equal approximately to the one using Hopf bifurcation when the criteria of RA is very small, and the proposed algorithm gets smaller SSSR when the criteria of RA is enlarged. These results show that SSSR may consider of the disturbance, which enlarges the facet of studies on SSSR. Moreover, this dissertation analyzes effect of weighting matrix, damping factor, criteria of RA and load model on SSSR, and derives some important conclusions.
     Finally, the multi-objective saturation excitation controller for nonlinear system is designed in this dissertation. In order to guarantee the quadratic stability in the given RA, the relation between RA and initial state region is considered of in the procedure of designing the saturation controller. Numerical simulations are provided to validate the effectiveness of the proposed controller.
引文
[1]薛禹胜.综合防御由偶然故障演化为电力灾难——北美“8·14”大停电的警示.电力系统自动化,2003,27(18):1-6
    [2]李再华,白晓民,丁剑,等.西欧大停电事故分析.电力系统自动化,2007,31(7):1-4
    [3]王锡凡,方万良,杜正春.现代电力系统分析.北京:科学出版社,2003.365.368
    [4]Chin-Woo T, Varghese M, Varaiya P, et al. Bifurcation, chaos, and voltage collapse in power systems. Proceedings of the IEEE,1995,83(11):1484-1496
    [5]邓集祥,刘广生,边二曼.低频振荡中的Hopf分歧研究.中国电机工程学报,1997,17(6):391-394
    [6]石颉.基于广域测量系统的电力系统阻尼控制器设计:[博士学位论文].天津:天津大学电气与自动化工程学院,2006
    [7]Khalil H K.非线性系统(朱义胜,董辉,李作洲等译).北京:电子工业出版社,2005.13-16
    [8]Fuller A T. In the large stability of relay and saturating control systems with linear controllers. International Journal of control,1969,10(4):457-480
    [9]Itai H, Sasamoto T, Kiyama T, et al. Analysis of the region of attraction for saturating control systems-in consideration of the direct-feedthrough matrix from output to input of saturations. In:Proceedings of the 41st SICE Annual Conference. Osaka, Japan, August 5-7,2002.2603-2606
    [10]Watanabe T. Robust control subject to saturation nonlinearity in states. In: Proceedings of the 41st SICE Annual Conference. Osaka, Japan, August 5-7,2002. 207-212
    [11]Stoorvogel A A and Saberi A. Output regulation of linear plants with actuators subject to amplitude and rate constraints. International Journal of Robust and Nonlinear Control,1999,9(10):631-657
    [12]Jiang X, Venkatasubramanian V, Schattler H, et al. Basic structure of the dynamics with saturation limits on states. In:Proceedings of the 35th IEEE Conference on Decision and Control. Kobe, Japan, December 11-13,1996.1103-1112
    [13]Jiang X, Schattler H, Zaborszky J, et al. Hard limit induced oscillations. In:1995 IEEE International Symposium on Circuits and Systems. Seattle, USA, April 30-May 3,1995.146-150
    [14]Ooba T. On companion systems with state saturation nonlinearity. IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,
    2003,50(12):1580-1584
    [15]Ringrose R P. Self-stabilizing running:[PHD thesis]. Cambridge,MA:Department of Electrical Engineering and Computer Science, Masschusetts Institute of Technology,1997
    [16]王毅,曾鸣,苏宝库.具有多个饱和非线性的系统分析与设计.电机与控制学报,2002,6(2):146-149
    [17]Chen L-H and Chang H-C. Global effects of controller saturation on closed-loop dynamics. Chemical Engineering Science,1985,40(12):2191-2205
    [18]Alvarez-Ramirez J, Suarez R, and Alvarez J. Semiglobal stabilization of multi-input linear systems with saturated linear state feedback. Systems & Control Letters,1994,23(4):247-254
    [19]Lin Z and Saberi A. Semi-global exponential stabilization of linear systems subject to "input saturation" via linear feedbacks. Systems & Control Letters, 1993,21(3):225-239
    [20]魏爱荣.饱和控制系统稳定性及干扰抑制研究:[博士学位论文].济南:山东大学研究生院,2006
    [21]Koplon R, Sontag E D, and Hautus M L J. Observability of linear systems with saturated outputs. Linear Algebra and its Applications,1994,205(1):909-936
    [22]Lin Z and Hu T. Semi-global stabilization of linear systems subject to output saturation. In:Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, Australia, December 12-15,2000.638-643
    [23]Propoi A I. Use of linear programming methods for synthesizeing sampled-data automatic systems. Automatic and Remote Control,1963,24(7):837-844
    [24]李书臣,徐心和,李平.预测控制最新算法综述.系统仿真学报,2004,16(6):1314-1320
    [25]焦巍,刘光斌.非线性模型预测控制的智能算法综述.系统仿真学报,2008,20(24):6581-6586
    [26]Blanchini F. Set invariance in control. Automatica,1999,35(11):1747-1767
    [27]Hou L and Michel A N. Asymtotic stability of systems with saturation constraints. In:Proceedings of the 35th IEEE Conference on Decision and Control. Kobe, Japan, December 11-13,1996.2624-2629
    [28]Mantri R, Saberi A, and Venkatasubramanian V. Stability analysis of continuous time plannar systems with state saturation nonlinearity. In:IEEE ISCA96. Atlanta,GA, May 7-10,1996.60-63
    [29]Corradini M L, Cristofaro A, and Giannoni F. Sharp estimates on the region of attraction of planar linear systems with bounded controls. In:Proceedings of the 48th IEEE Conference on Decision and Control,2009 held jointly with the 2009 28th Chinese Control Conference. Shanghai, China, December 16-18,2009. 5345-5350
    [30]Prakash C S and Robert F S. Regions of stability with unequal saturation limits and non-zero set point. In:Proceedings of the 24th IEEE Conference on Decision and Control. Fort Lauderdale, USA, December 11-13,1985.304-305
    [31]Hu T, Pitsillides A N, and Lin Z. Null controllability and stabilization of linear systems subject to asymmetric actuator saturation. In:Proceedings of the 39th IEEE Conference on Decision and Control. Sydney, Australia, December 12-15, 2000.3254-3259
    [32]Sung Hyun K, Sung Wook Y, and Poo Gyeon P. Piecewise control for systems with input saturation and disturbances. In:2007 International Conference on Control, Automation and Systems. Seoul, Korea, October 17-20,2007.1545-1550
    [33]Coutinho D F and da Silva J M G. Estimating the Region of attraction of nonlinear control systems with saturating actuators. In:2007 American Control Conference. New York, USA, July 11-13,2007.4715-4720
    [34]Garcia G, Tarbouriech S, and da Silva J M G. Dynamic output controller design for linear systems with actuator and sensor saturation. In:2007 American Control Conference. New York, USA, July 11-13,2007.5834-5839
    [35]Pare T E, Hindi H, How J P, et al. Synthesizing stability regions for systems with saturating actuators. In:Proceedings of the 37th IEEE Conference on Decision and Control,1998.. Tampa,USA, December 16-18,1998.1981-1982
    [36]Gomes da Silva J M J, Tarbouriech S, and Reginatto R. Analysis of regions of stability for linear systems with saturating inputs through an anti-windup scheme. In:Proceedings of the 2002 International Conference on Control Applications. Glasgow, UK, September 18-20,2002.1106-1111
    [37]Mukherjee S, Patra S, and Sen S. Analysis of Linear Systems with Input Saturation and Model Uncertainty:An LMI Approach. In:2006 IEEE International Conference on Industrial Technology. Mumbai, India, December 15-17,2006.2262-2267
    [38]Henrion D and Tarbouriech S. LMI relaxations for robust stability of linear systems with saturating control. Automatica,1999,35(9):1599-1604
    [39]Henrion D, Peaucelle D, Arzelier D, et al. Ellipsoidal approximation of the stability domain of a polynomial. IEEE Transactions on Automatic Control,2003, 48(12):2255-2259
    [40]Lin Z and Hu T. On the tightness of a recent set invariance condition under actuator saturation. Systems and Control Letters,2003,49(5):389-399
    [41]Blanco T B and Moor B D. Polytopic invariant sets for continuous-time systems. In:2007 European Control Conference. Kos, Greece, July 2-5,2007.1-7
    [42]Kolmanovsky I and Gilbert E G. Theory and computation of disturbance invariant sets for discrete-time linear systems. Mathematical Problems in Engineering,1998, 4(4):317-367
    [43]Gilbert E G and Tan K T. Linear systems with state and control constraints:the theory and application of maximal output admissible sets. IEEE Transactions on Automatic Control,1991,36(9):1008-1020
    [44]Dorea C E T and Milani B E A. Design of L-Q regulators for state constrained continuous-time systems. IEEE Transactions on Automatic Control,1995,40(3): 544-548
    [45]Neto A T, Castelan E B, and Fischman A. Hoo control with state constraints. In: Proceedings of the 34th IEEE Conference on Decision and Control. New Orleans, USA, December 13-15,1995.2553-2554
    [46]Guan W and Yang G-H. Analysis and controller design of discrete-time linear systems with state saturation. In:2009 American Control Conference. St. Louis,USA, June 10-12,2009.1899-1904
    [47]Joshi S. Stability of multiloop LQ regulators with nonlinearities—Part Ⅰ:Regions of attraction. IEEE Transactions on Automatic Control,1986,31(4):364-367
    [48]Xiang J, Li Y, and Wei W. Stabilisation of a class of non-affine systems via modelling error compensation. Control Theory & Applications, IET,2008,2(2): 108-116
    [49]Pare T, Hindi H, How J, et al. Local control design for systems with saturating actuators using the Popov criteria. In:Proceedings of the 1999 American Control Conference. San Diego, USA, June 2-4,1999.3211-3215
    [50]Li Z, Sun D, and Li Y. A switch controller design for linear systems with input saturation based on nested invariant ellipsoids. In:Sixth International Conference on Intelligent Systems Design and Applications. Jinan, China, October 16-18, 2006.167-172
    [51]Favez J Y, Mulhaupt P, Srinivasan B, et al. Improving the region of attraction of ITER in the presence of actuator saturation. In:Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, Hawi'i, USA, December 9-12,2003. 4616-4621
    [52]Ting C-S and Liu C-S. An anti-windup design for T-S fuzzy time-delay systems with saturating inputs. In:Sixth International Conference on Fuzzy Systems and Knowledge Discovery. Tianjin, China, August 14-16,2009.82-86
    [53]Haddad W M, Fausz J L, and Chellaboina V-S. Nonlinear controllers for nonlinear systems with input nonlinearities. Journal of the Franklin Institute,1999,336(4):
    649-664
    [54]Lim C-W. Multi-input robust saturation controller for uncertain linear time-invariant systems. Journal of Sound and Vibration,2007,300(3-5): 1079-1087
    [55]Prieur C and Teel A R. Uniting a high performance, local controller with a global controller:the output feedback case for linear systems with input saturation. In: 2008 American Control Conference. Seattle, USA, June 11-13,2008.2903-2908
    [56]Hashimoto Y, Matsumoto K, Matsuo T, et al. Anti-saturation discrete-time nonlinear controllers and observers. Computers & Chemical Engineering,2000, 24(2-7):815-821
    [57]Turner M C and Tarbouriech S. Anti-windup compensation for systems with sensor saturation:a study of architecture and structure. International Journal of control,2009,82(7):1253-1266
    [58]Kreisselmeier G. Stabilization of linear systems in the presence of output measurement saturation. Systems & Control Letters,1996,29(1):27-30
    [59]Ohishi K and Mashimo T. Digital robust speed servo system with complete avoidance of output saturation effect. In:Proceedings of the Power Conversion Conference-Nagaoka 1997. Nagaoka,Japan, August 3-6,1997.501-506
    [60]Paiva H M and Galvao R K H. Simulation of dynamic systems with output saturation. IEEE Transactions on Education,2004,47(3):385-388
    [61]Tarbouriech S, Garcia G, and Langouet P. Controller design for linear unstable systems with position and rate actuator saturation. In:Proceedings of the 2002 International Conference on Control Applications. Glasgow,UK, September 18-20,2002.874-879
    [62]Oishi M. Towards switched control under input and state constraints. In:2007 Canadian Conference on Electrical and Computer Engineering. British Columbia, Canada, April 22-26,2007.1622-1625
    [63]Chisci L and Falugi P. Asymptotic tracking for constrained monotone systems. IEEE Transactions on Automatic Control,2006,51(5):873-879
    [64]Bachana R and Sensarma P S. Improvement of current dynamics during controller saturation in a STATCOM. In:2006 IEEE International Conference on Industrial Technology. Mumbai, India, December 15-17,2006.773-778
    [65]Kundur P, Paserba J, Ajjarapu V, et al. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Transactions on Power Systems,2004,19(3):1387-1401
    [66]Wu F, Tsai Y K, and Yu Y X. Probabilistic steady-state and dynamic security assessment. IEEE Transactions on Power Systems,1988, PWRS-3(1):1-9
    [67]余贻鑫,王成山.电力系统稳定性理论与方法.北京:科学出版社,1999.127-234
    [68]Galiana F D and Jarjis J. Feasibility constraints in power systems. In:IEEE PES Summer Meeting. Los Angeles,CA, July 16-21,1978.560-565
    [69]Galiana F D and Lee K. On the steady state stability of power system. In:Power Industry Computer Applications Conference. Toronto, Canada, May 24,1977. 201-210
    [70]Hiskens I A and Makarov Y V. Calculation of power system critical loading conditions. In:Electrical Engineering Conference. Sydney, Australia, November 24-30,1994.185-190
    [71]Lesieutre B C and Hiskens I A. Convexity of the set of feasible injections and revenue adequacy in FTR markets. IEEE Transactions on Power Systems,2005, 20(4):1790-1798
    [72]Makarov Y V, Zhao Yang D, and Hill D J. On convexity of power flow feasibility boundary. IEEE Transactions on Power Systems,2008,23(2):811-813
    [73]Wu F and Kumagai S. Steady-State Security Regions of Power Systems. IEEE Transactions on Circuits and Systems,1982,29(11):703-711
    [74]Hiskens I A and A. D. A technique for exploring the power flow solution space boundary. In:1995 Stockholm Power Technique International Symposium on Electric Power Engineering. Stockholm, Sweden, June 18-22,1995.478-483
    [75]Makarov Y V and Hiskens I A. A continuation method approach to finding the closest saddle node bifurcation point. In:NSF/ECC Workshop Bulk Power System Voltage Phenomena Ⅲ. Davos,Switzerland, August 3-10,1991.1-7
    [76]Yu Y, Li P, Jia H, et al. Computation of boundary of power flow feasible region with hybrid method. In:2004 IEEE PES.New York, USA. October 10-17,2004. 137-143
    [77]Krause O, Lehnhoff S, Handschin E, et al. On feasibility boundaries of electrical power grids in steady state. International Journal of Electrical Power & Energy Systems,2009,31(9):437-444
    [78]Yu Y. Security region of bulk power system. In:Proceedings of the 2002 International Conference on Power System Technology. Kunming,China, October 13-17,2002.13-17
    [79]Alvarado F, Dobson I, and Yi H. Computation of closest bifurcations in power systems. IEEE Transactions on Power Systems,1994,9(2):918-928
    [80]Dobson I and Lu L. Computing an optimum direction in control space to avoid stable node bifurcation and voltage collapse in electric power systems. IEEE Transactions on Automatic Control,1992,37(10):1616-1620
    [81]Hill D J and Zhao-Yang D. Nonlinear computation and control for small disturbance stability. In:IEEE Power Engineering Society Summer Meeting. Seattle, USA, July 16-20,2000.836-841
    [82]Gomes. S J, Martins N, and Portela C. Computing small-signal stability boundaries for large-scale power systems. IEEE Transactions on Power Systems,2003,18(2): 747-752
    [83]Venkatasubramanian V, Schattler H, and Zaborsky J. Local bifurcations and feasibility regions in differential-algebraic systems. IEEE Transactions on Automatic Control,1995,40(12):1992-2013
    [84]Xu G H, Chen C, and Sun Q. The influence of induction motor inertia constant on small-signal stability. Electric Power Systems Research,2005,74(2):197-202
    [85]王铁强,贺仁睦,王卫国.电力系统低频振荡机理的研究.中国电机工程学报,2002,22(2):21-25
    [86]余贻鑫,贾宏杰,王成山.电力系统中的混沌现象与小扰动稳定域.中国科学(E辑),2001,31(5):431-441
    [87]Jia H J, Yu X D, Yu Y X, et al. Power system small signal stability region with time delay. International Journal of Electrical Power & Energy Systems,2008, 30(1):16-22
    [88]Kaye R J and Wu F F. Dynamic security regions of power systems. IEEE Transactions on Circuits and Systems,1982, CAS-29(9):612-623
    [89]余贻鑫,栾文鹏.利用拟合技术决定动态安全域.中国电机工程学报,1990,10(增刊):22-28
    [90]孙强.电力系统小扰动稳定域及低频振荡:[博士学位论文].天津:天津大学电气与自动化工程学院,2007
    [91]曾沅,樊纪超,余贻鑫,等.电力大系统实用动态安全域.电力系统自动化,2001,16(8):6-10
    [92]余贻鑫,董存,Lee S T,等.复功率注入空间中电力系统的实用动态安全域.天津大学学报,2006,39(2):129-134
    [93]董存.电力系统大扰动下的电压稳定域和实用动态安全域:[博士学位论文].天津:天津大学电气与自动化工程学院,2005
    [94]姚光华,陈允平.用动态安全域法决定暂态稳定紧急控制措施初探.电网技术,2002,26(12):21-23
    [95]Chen Y, Liu Q, and Yao G. On-line dynamic security assessment and transient stability control using dynamic security regions method. In:Proceedings of 2002 International Conference on Power System Technology. Kunming, China, October 13-17,2002.656-660
    [96]Goncalves J M.Constructive global analysis of hybrid systems:[PHD thesis]. Cambridge:Department of Electrical Engineering and Computer Science, Massachuseetts Institute of Technology,2000
    [97]Isidori A.非线性控制系统(王奔,庄圣贤译).北京:电子工业出版社,2005.135-139
    [98]Nesterov Y and Nemirovsky A. Interior-point polynomial methods in convex. Vol. 13. Philadelphia:SIAM,1994.23-75
    [99]VanAntwerp J G and Braatz R D. A tutorial on linear and bilinear matrix inequalities. Journal of Process Control,2000,10(4):363-385
    [100]Ryoo H S and Sahinidis N V. Global optimization of nonconvex NLPs and MINLPs with applications in process design. Computer and Chemical Engineering,1995,19(5):551-566
    [101]刘证.关于n维球的体积.鞍山钢铁学院学报,2001,24(5):321-326
    [102]魏询楷,李应红.核规则化最小体积覆盖椭球认知模型.控制工程,2007,14(S1):113-115
    [103]Kurzhanskiy A A and Varaiya P. Ellipsoidal techniques for reachability analysis of discrete-time linear systems. IEEE Transactions on Automatic Control,2007, 52(1):26-38
    [104]马大强.电力系统机电暂态过程.北京:水利电力出版社,1988.14-55
    [105]Kundur P.电力系统稳定与控制(翻译组译).北京:中国电力出版社,2002.508-526
    [106]韩英铎,王仲鸿,陈淮金.电力系统最优分散协调控制.北京:清华大学出版社,1997.146-177
    [107]卢强,王仲鸿,韩英铎.输电系统最优控制.北京:科学出版社,1982.137-225
    [108]Liberzon D and Morse A S. Basic problems in stability and design of switched systems. IEEE Control Systems Magazine,1999,19(5):59-70
    [109]Decarlo R A, Branicky M S, Pettersson S, et al. Perspectives and results on the stability and stabilizability of hybrid systems. Proceedings of the IEEE,2000, 88(7):1069-1082
    [110]Michel A N. Recent trends in the stability analysis of hybrid dynamical systems. IEEE Transactions on Circuits and Systems Ⅰ:Fundamental Theory and Applications,1999,46(1):120-134
    [111]Hai L and Antsaklis P J. Stability and stabilizability of switched linear systems:a survey of recent results. IEEE Transactions on Automatic Control,2009,54(2): 308-322
    [112]Johansson M and Rantzer A. Computation of piecewise quadratic Lyapunov functions for hybrid systems. IEEE Transactions on Automatic Control,1998, 43(4):555-559
    [113]Feng G. Stability analysis of piecewise discrete-time linear systems. IEEE Transactions on Automatic Control,2002,47(7):1108-1112
    [114]Goncalves J M, Megretski A, and Dahleh M A. Global analysis of piecewise linear systems using impact maps and surface Lyapunov functions. IEEE Transactions on Automatic Control,2003,48(12):2089-2106
    [115]Hiskens I A. Systematic tuning of nonlinear power system controllers. In: Proceedings of the 2002 International Conference on Control Applications. Glasgow,UK, September 18-20,2002.19-24
    [116]辛焕海,吴荻,甘德强,等.一种估计奇异摄动饱和系统稳定域的方法.自动化学报,2008,34(12):1549-1555
    [117]Ramos R A. Stability analysis of power systems considering AVR and PSS output limiters. International Journal of Electrical Power & Energy Systems,2009,31(4): 153-159
    [118]Jiang X, Venkatasubramanian V, Schattler H, et al. Hardlimit related stability phenomena in the power system. In:Proceedings of the 4th IEEE Conference on Control Applications. Albany, USA, September 28-29,1995.63-72
    [119]Dandeno P L, Karas A N, McClymont K R, et al. Effect of high-speed rectifier excitation systems on generator stability limits. IEEE Transactions on Power Apparatus and Systems,1968, PAS-87(1):190-201
    [120]Quintana V H, Zohdy M A, and Anderson J H. On the design of output feedback excitation controllers of synchronous machines. IEEE Transactions on Power Apparatus and Systems,1976,95(3):954-961
    [121]Raina V M, Anderson J H, Wilson W J, et al. Optimal output feedback control of power systems with high-speed excitation systems. IEEE Transactions on Power Apparatus and Systems,1976,95(2):677-686
    [122]Report I C. Excitation System Models for Power System Stability Studies. IEEE Transactions on Power Apparatus and Systems,1981, PAS-100(2):494-509
    [123]Reddy P and Hiskens I A. Limit-induced stable limit cycles in power systems. In: 2007 St. Petersburg Power Tech. St. Petersburg, Russia, June 1-3,2007.1-5
    [124]Ji W and Venkatasubramanian V. Hard-limit induced chaos in a single-machine-infinite-bus power system. In:34th Conference on Decision & Control. New Orleans, LA, December 1995.3465-3470
    [125]Chia B H K, Morris S, and Dash P K. A feedback linearization based fuzzy-neoro controller for current source inverter-based STATCOM. In:2003 National Power and Energy Conference. Bangi, Malaysia, December 15-16,2003.172-179
    [126]刘兆燕,戚军,苗轶群,等.单时滞电力系统时滞稳定裕度的简便求解方法.电力系统自动化,2008,32(18):8-13
    [127]Kundur P. Correction to "Definition and Classification of Power System Stability". IEEE Transactions on Power Systems,2004,19(4):2124-2124
    [128]Amato F, Cosentino C, and Merola A. On the region of attraction of nonlinear quadratic systems. Automatica,2007,43(12):2119-2123
    [129]Ong C J, Keerthi S S, Gilbert E G, et al. Stability regions for constrained nonlinear systems and their functional characterization via support-vector-machine learning. Automatica,2004,40(11):1955-1964
    [130]辛焕海.参数不确定性和饱和非线性对电力系统稳定影响的研究:[博士学位论文].杭州:浙江大学电气工程学院,2007
    [131]Moore B C. Principal component analysis in linear system:controllability, observability and model reduction. IEEE Transactions on Automatic Control, 1981,AC-26(1):17-32
    [132]Glover K. All Optimal Hankel-norm approximations of linear multivariable systems and their L∞-error bounds. International Journal of control,1984,39(6): 1115-1193
    [133]Kokotovic P V, Malley R E, and Sannuti P. Singualr perturbations and order reduction in control theory-an overview. Automatica,1976(12):123-132
    [134]Grimme E J. Krylov Projection Methods for Model Reduction:[PHD thesis]. Urbana-Champaign:ECE Department, University of Illinois,1997
    [135]Grimme E J. Projection methods for balanced model reduction, Technical Report. 1999
    [136]Feldman P and Freund R W. Efficient linear circuit analysis by Pad'e approximation via the Lanczos process. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,1995,14(5):639-649
    [137]Jaimoukha I M and Kasenally E M. Implicitly restarted Krylov subspace methods for stable partial realizations. SIAM Journal Matrix Analysis Applications,1997, 18(3):633-652
    [138]Lall S and Beck C. Model reduction of complex systems in the linear-fractional framework. In:Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design. Hawai'i, USA, August 22-27,1999. 34-39
    [139]刘永强,严正,倪以信,等.双时间尺度电力系统动态模型降阶研究(一)——电力系统奇异摄动模型.电力系统自动化,2002,26(18):1-5
    [140]李惠,彭君义.结构模型与控制器降阶的主动控制试验研究.振动工程学报,2006,19(1):17-23
    [141]孟庆松.高阶系统的奇异摄动模型的平衡降阶.自动化技术与应用,2006,25(5):13-15
    [142]王锋,唐国金,李道奎.基于模态价值分析的结构动力学模型降阶.振动与冲击,2006,25(3):35-39
    [143]Sandberg H and Murray R M. Frequency-weighted model reduction with applications to structured models. In:Proceedings of the 2007 American Control Conference. New York, USA, July 11-13,2007.941-946
    [144]王佩,刘永强.无刷双馈风力发电机模型降阶——第1部分:无刷双馈风力发电机的多时间尺度模型.控制理论与应用,2008,25(1):135-138
    [145]Hindi H and Boyd S. Analysis of linear systems with saturation using convex optimization. In:Proceedings of the 37th IEEE Conference on Decision and Control. Tampa, USA, December 16-18,1998.903-908
    [146]Kiyama T and Iwasaki T. On the use of multi-loop circle criterion for saturating control synthesis.In:Proceedings of 2000 American Control Conference. Chicago, USA, June28-30,2000.1-5
    [147]Boyd S, Ghaoui L E, Feron E, et al. Linear matrix inequalities in system and control theory. Philadelphia, USA:Society for Industrial and Applied Mathematics (SIAM),1994.38-75
    [148]贾宏杰,余贻鑫,王成山.考虑励磁顶值与PSS的混沌和分岔现象.电力系统自动化,2001,25(1):11-14
    [149]Yadaiah N and Venkata Ramana N. Linearisation of multi-machine power system: Modeling and control-a survey. International Journal of Electrical Power & Energy Systems,2007,29(4):297-311
    [150]Anderson P M and Fouad A A.电力系统的控制与稳定(翻译组译).北京:水利电力出版社,1979.189-211
    [151]Wu S P, Vandenberghe L, and Boyd S. MAXDET:software for determinant maximization problems, User's Guide. Palo Alto, California:Stanford University, 1996
    [152]Lay D C. Linear algebra and its applications. Upper Saddle River, USA:Addison-Wesley,2003.38-42
    [153]张贤达.矩阵分析与应用.北京:清华大学出版社,2004.340-402
    [154]贾宏杰.电力系统小扰动稳定域的研究:[博士学位论文].天津:天津大学电气与自动化工程学院,2001
    [155]Alvarado F L. Bifurcations in nonlinear systems:computational issues. In: Proceedings of ISCAS Conference. New Orleans, USA, May 1-3,1990.922-925
    [156]IEEE Power Engineering Society. IEEE Standard 421.5-2005. IEEE recommended practice for excitation system models for power system stability studies. New York, USA:IEEE,2006-4-21
    [157]Schlemmer E. Damping of synchronous machines-analytical estimations versus finite element results. In:2009 International Conference on Clean Electrical Power. Capri, Italy, June 9-11,2009.751-754
    [158]Jain S, Khorrami F, and Fardanesh B. Adaptive nonlinear excitation control of power systems with unknown interconnections. IEEE Transactions on Control Systems Technology,1994,2(4):436-446
    [159]Cong L and Wang Y. Co-ordinated control of generator excitation and STATCOM for rotor angle stability and voltage regulation enhancement of power systems. IEE Proceedings-Generation, Transmission and Distribution,2002,149(6): 659-666
    [160]Lu Q, Sun Y, Xu Z, et al. Decentralized nonlinear optimal excitation control. IEEE Transactions on Power Systems,1996,11(4):1957-1962
    [161]Okou A F, Dessaint L-A, and Akhrif O. Globally stabilizing robust adaptive voltage and speed regulator for large-scale power systems. In:44th IEEE Conference on Decision and Control and 2005 European Control Conference. Seville, Spain, December 12-15,2005.6472-6479
    [162]Li Q, Zhao D, and Yu Y. A new pole-placement method for excitation control design to damp SSR of a nonidentical two-machine system. IEEE Power Engineering Review,1989,9(8):61-62
    [163]Wang Y, Hill D J, Middleton R H, et al. Transient stability enhancement and voltage regulation of power systems. IEEE Transactions on Power Systems,1993, 8(2):620-627
    [164]Dong S. Comments on active disturbance rejection control. IEEE Transactions on Industrial Electronics,2007,54(6):3428-3429
    [165]Da-Silva J M G and Tarbouriech S. Antiwindup design with guaranteed regions of stability:an LMI-based approach. IEEE Transactions on Automatic Control,2005, 50(1):106-111
    [166]Gomes da Silva J M J and Tarbouriech S. Local stabilization of discrete-time linear systems with saturating controls:an LMI-based approach. IEEE Transactions on Automatic Control,2001,46(1):119-125
    [167]Juhua L, Krogh B H, and Ilic M D. Saturation-induced frequency instability in electric power systems. In:2008 IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century. Pittsburgh, USA, July 20-24,2008.1-7
    [168]Goh K C, Safanov M G, and Papavassilopoulos G P. A global optimization approach for the BMI problem. In:Proceedings of the 33rd IEEE Conference on Decision and Control. Lake Buena Vista, USA, December 14-16,1994.2009-2014
    [169]Shimomura T and Fujii T. Multiobjective control design via successive over-bounding of quadratic terms. International Journal of Robust and Nonlinear Control,2005,15(8):363-381
    [170]Tuan H D, Apkarian P, and Nakashima Y. A new lagrangian dual global optimization algorithm for solving bilinear matrix inequalities. International Journal of Robust and Nonlinear Control,1999,10(7):561-578
    [171]Hassibi A, How J,and Boyd S. A path-following method for solving BMI problems in control. In:Proceedings of the 1999 American Control Conference. San Diego,USA, June 2-4,1999.1385-1389
    [172]康忠建,陈学允.非线性扩张状态观测器的一种设计方法.电机与控制学报,2001,5(3):199-203
    [173]Chilali M and Gahinet P.H∞ design with pole placement constraints:an LMI approach. IEEE Transactions on Automatic Control,1996,41(3):358-367

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700