用户名: 密码: 验证码:
串联混合有源电力滤波器新型控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电能质量的改善和提高是当前电气工程学科重要和热门的研究领域之一,具有重大的工程实际应用意义。随着电力需求的不断扩大,电网结构日益复杂,各种非线性负载产生的谐波日益增加,而电力用户对电力滤波装置的容量、性能的要求也越来越高。近几十年来电力电子和计算机等技术日臻成熟,使得有源电力滤波器补偿非线性负载产生的谐波、改善电网电能质量在实际工程得到广泛应用。电力电子器件可控能量水平和电力系统要求控制能量之间存在巨大差距使得混合型有源电力滤波器得到了广泛的研究和应用。本文着重研究串联混合型有源电力滤波器的控制技术,同时探讨了其电路拓扑、滤波特性以及在实际应用中存在的一些问题,为推动串联混合型有源电力滤波器的实用化奠定基础。
     针对不同负载类型及众多有源电力滤波器拓扑,本文从电路对偶原理出发,按照谐波抑制功能分成抑制电流源型非线性负载的有源电力滤波器拓扑和它们的对偶型电路-抑制电压型非线性负载的有源电力滤波器。分析了降低有源电力滤波器有源容量的多种基本对偶型电路拓扑,衍生出多种结构的串联混合型有源电力滤波器拓扑。
     快速,准确的谐波检测算法及其数字实现是有源电力滤波器高性能应用的关键技术之
     本文从同步旋转坐标谐波检测法时频域数学特征出发,建立三相统一的数学模型,揭示了同步旋转坐标谐波检测法在全频域内具有解耦特性和带通限波器特性。为解决同步旋转坐标谐波检测法在数字实现过程中存在采样延时和数字量化误差之间的矛盾,提出了一种多级指数平均值数字低通滤波器,使得同步旋转坐标谐波检测法能以高采样频率采样,具有量化误差小,算法简单,运算时间短,检测精度高,为参数优化设计提供保障。
     为提高串联混合有源电力滤波器的滤波性能,解决谐波阻抗增益与系统闭环控制稳定性之间的矛盾,本文首先基于同步旋转坐标谐波检测法的时频域数学模型,利用状态空间平均法并考虑数字控制器、逆变器、低通滤波器和二阶载波滤波器等影响的基础上,对串联混合型有源电力滤波器建立了数学控制模型。根据控制模型对串联混合型有源电力滤波器的稳定性进行定量分析。为提高系统滤波性能,减少数字控制延时对系统稳定性的影响,提出了相位超前补偿控制策略。为降低二阶输出滤波器的阻尼损耗加大系统的稳定裕度,提出了微分阻尼负反馈控制策略,同时也可以结合相位超前补偿控制策略得到更佳的滤波性能。
     本文还对串入式串联混合有源电力滤波器的电路拓扑和控制技术进行研究。在串入式串联混合有源电力滤波器拓扑电路的基础上提出改进型串入式串联混合有源电力滤波器,比较可知串入式串联混合有源电力滤波器及其改进型滤波性能基本一致且明显好于传统串联混合有源电力滤波器。对所建立的串入式串联混合有源电力滤波器,改进型串入式串联混合有源电力滤波器的数学控制模型进行分析研究,按有谐波检测和无谐波检测提出多种可能的控制策略。
     最后,对串联混合型有源电力滤波器在实际应用过程中存在的电流型负载在换相短路时对电网电流产生冲击,运用抗冲击电流电感法和串入式串联混合有源电力滤波器电路拓扑等方法来抑制电网电流冲击。而对于串联混合型有源电力滤波器实际应用中的重要参数系统阻抗,本文同样提出了利用电流型负载在换相动态过程中自然短路的思想来在线实时测量电网系统阻抗。
This dissertation is mainly in the field of the power quality control. The research of the power quality improvement is of the great significance and of the most important in the electrical engineering. With the increment of the electric power requirement, the electric power network composition bearings in the increasingly complex. The proliferation of electronic loads in commercial and industrial installations has created a serious concern in the field of electric power engineering due to harmonic distortion produced in the mains. The compensation for harmonic and reactive currents becomes increasingly important both for utilities and industries to feed their sensitive equipment with a quality power. Active power filters are presently the most versatile and effective equipments to confront the challenge of reducing disturbances in power system. They are applicable of compensating current-based distortions such as current harmonics, reactive and neutral current. They are also used for voltage-based distortions such as shunt, series, and hybrid and unified power quality conditioners that have been proposed by many researchers. The dilemma between the electricity requirement and the control energy level of the power electronic device encourages the application of the hybrid active power filters. The purpose of the research in this dissertation is the circuit topology, filter characteristic, the control system and the problem application of the hybrid series active power filter, and this will lay a foundation for promoting its practical use as soon as possible.
     Firstly, this dissertation summarizes and reveals the presented basic active power filters based on the preceding observation and circuitry duality. These two types of harmonic suppressing devices have completed distinctive based on the dual properties of the current source nonlinear loads and the voltage source nonlinear loads. Among them some novel filter configurations are also proposed. A comprehensive comparison of all configurations is made in terms of required ratings, costs, performance and control.
     Quick and Accurate harmonic detection and its digital realization are the key technology for the active power filter. A unified positive and negative sequence math model of the synchronous frame harmonic detection method is constructed in this dissertation. Its harmonic detection characteristic is analyzed and the parameter optimization of the low power filter is given. The contradiction between the sample settling time delay and the coefficient quantization error, when the synchronous frame harmonic detection method is realized in DSP, is discussed in detail. A multi-cascade exponential mean digital low pass filter based on high sampling-rate is proposed to solve the problem. It can attain the small coefficient quantization error, high precision with the high rate sampling frequency, and can provide the optimize parameter design of the synchronous frame harmonic detection method.
     The filter performance of the series hybrid active power filter is confine to its control stability. In order to coordinate their problem, a state-space averaging model of the series hybrid active power filter is constructed to analyze its stability mechanism and parameters design based on the unified positive and negative sequence math model of the synchronous frame harmonic detection method, the effect of the power system, the main circuit of the hybrid active power filter and its control circuit. Taking into account the effect of the time delay to the system stability, a phase-lead compensation control strategy is proposed to improve the stability and filter performance of the series hybrid active power filter. A novel damping control strategy of the output filter is proposed, which solves the loss of the damping resistor and favorably applies in the high voltage and high power grids.
     The circuit topology and control strategy of the series-in series hybrid active power filter is also study in this dissertation. The improved-type series-in series hybrid active power filter is proposed. They have the same excellent filter performance and are better than traditional series hybrid active power filter. Several control strategies either harmonic detection method or no harmonic detection methods are presented for the series-in series hybrid active power filter and its improved circuit topology.
     Finally, the current-source nonlinear load is normally composed of the thyristor or diode rectifier, but the process of the commutation will cause the line current rush for the series hybrid active filter. In order to solve this problem, a method of the rush current inductor that a large inductor is series in between passive filters and rectifier, and a series-in series hybrid active power filter are proposed to suppress the line rush current. For the rush current inductor, a larger inductor is added to increase the impedance under the condition of the short commutation, while the shortcoming of the method is that it increases the size and cost of the whole system. The series-in series hybrid active filter which a fundamental frequency series resonance circuit is series in the AC side of the inverter can suppress the rush line current, improve the filtering performance and reduce the rating of the inverter in spite of the increment of the size and cost of the passive components. For the important characteristic of the source system impedance applied in active power filter, a novel method of on-line measurement for the source system impedance is proposed, which utilized the dynamic process of spontaneous short-circuit of the rectifier current transition.
引文
[1]Chowdhury H B. Power Quality. IEEE Potentials,2001,20(2):5-11.
    [2]朱桂萍,王树民.电能质量控制技术综述.电力系统自动化,2002,26(19):28-31.
    [3]Read J C. The calculation of rectifier and converter performance characteristics. Journal IEE,1945, vol.92, pt. Ⅱ:495-590.
    [4]IEEE Working Group on Power System Harmonics. Power system harmonics: An overview. IEEE Transaction on Power Application System,1983, vol. PAS-102:2455-2460.
    [5]陈国柱.混合有源电力滤波器关键技术研究.浙江大学博士论文,2001.
    [6]陈仲.并联有源电力滤波器实用关键技术研究.浙江大学博士论文,2005.
    [7]王晓钰.有源电力滤波器控制方法与统一描述的研究.西安交通大学博士论文,2007.
    [8]王兆安,杨军,刘进军,等.谐波抑制和无功补偿.北京:机械工业出版社,2005.
    [9]IEEE-519, IEEE recommended practice and requirement for harmonic control in electric power system, 1992.
    [10]IEC-1000-3-2, Electromagnetic compatibility part 2:Limits section 2:Limits for harmonic current emissions (equipment input current< 16A per phase), March 1995.
    [11]IEC-1000-3-4, Electromagnetic compatibility part 4:Limits section 4:Limits for harmonic current emissions (equipment input current> 16A per phase), March 1995.
    [12]水利水电部.电力系统谐波管理暂行规定(SD126-84).北京:水利水电出版社,1984.
    [13]中国国家标准GB/T145-93.电能质量公用电网谐波.北京:中国标准出版社,1994.
    [14]姜齐荣,赵东元,陈建业.有源电力滤波器.北京:科学出版社,2005.
    [15]Bird B M, Marsh J C, Mclellan P R. Harmonic reduction in multiple converters by triple-frequency current injection. Proc. IEEE,1969,116(10):1730-1734.
    [16]Sasaki H, Machida T. A new method to eliminate AC harmonic currents by magnetic compensation consideration on basic design. IEEE Transaction on Power Application and System,1971,90(5): 2009-2019.
    [17]Gyugyi L, Strycula E C. Active AC power filter. Proc. IEEE IAS Annual Meeting,1976:529-535
    [18]Akagi H, Kanazawa Y, Nabae A. Generalized theory of the instantaneous reactive power in three-phase circuits. IEEE, IPEC,1983:1375-1386.
    [19]El-Habrouk M, Darwish M K, Mehta P. Active power filters:a review. IEE Proceedings Electric Power Applications,2000,147(5):403-413.
    [20]Singh B, Al-Haddad K, Chandra A. A review of active filters for power quality improvement. IEEE Transaction on Industrial Applicants.1999,46(5):960-971
    [21]Su C.Y, Wu H.Y. A new single phase active power filter with reduced energy storage capacity. IEE Proceedings Electric Power Applications,1996,143(1):25-30
    [22]Machmoum M., Bruysnt N, Siala S, et al. A practical approach to harmonic current compensation by single-phase active filter. Proceedings of European Power Electronics conference, EPE-95,1995: 505-510
    [23]Akagi H. New trends in active filters for power conditioning. IEEE Transaction on industrial applications, 1996:1311-1322.
    [24]Bhavaraju V. B, Enjeti P. A novel active line conditioner for a three-phase system. inConf. Rec. IEEE-IAS Annu. Meeting,1993:979-985.
    [25]Hsu C Y, Wu H Y. A new single-phase active power filter with reduced energy storage capacitor. IEEE PESC'95,1995:202-208.
    [26]Torrey D A, Al-Zamel A M. Single-phase active power filters for multiple nonlinear loads. IEEE Transaction on Power Electronic,1995,10:263-272.
    [27]Rim G H, Kang Y, Kim W H, et al. Performance improvement of a voltage source active filter. IEEE APEC'95,1995:613-619.
    [28]Hayashi Y, Sato N, Takahashi K. A novel control of current source active filter for AC power system harmonic compensation. IEEE IAS Annual Meeting,1988:837-842.
    [29]Fukuda S, Yamaji M. Design and characteristics of active power filter using current source converter. IEEE Industry Application Society Annual Meeting,1995:965-970.
    [30]Green T C, Marks J H. Ratings of active power filters. Electric Power Applications, IEE Proceedings, 2003,150(5):607-614.
    [31]Chang G W, Tai-Chang S. A novel reference compensation current strategy for shunt active power filters control. IEEE Transaction on Power Delivery,2004,19(4):1751-1758.
    [32]Kouzou A, Khaldi B S, Mahmoudi M O, et al. Shunt Active Power filter apparent power for design process. SPEEDAM 2008. International Symposium on,2008:1402-1407.
    [33]Akagi H, Fujita H. A new power conditioner for harmonic compensation in power system. IEEE Transaction on Power Delivery,1995,10(3):1570-1575.
    [34]钱照明,叶忠明,董伯藩.谐波抑制技术,电力系统自动化,1997,21(10):48-54
    [35]Peng F Z. Harmonic Sources and Filtering Approaches. IEEE Transaction on Industrial Applications, 2001,7(4):18-25.
    [36]VanSchoor G, Wyk J D V. A study of a system of current-fed converters as an active three-phase filter. IEEE PESC'87,1987:482-490.
    [37]Lin C E, Chen C L, Huang C H. Reactive, harmonic current compensation for unbalanced three-phase system. In Proc. Int. Conf. High Technology in the Power Industry,1991:317-321.
    [38]Quinn C A, Mohan N. Active filtering of harmonic currents in three-phase, four-wire systems with three-phase, single-phase nonlinear loads. IEEE APEC'92,1992:829-836.
    [39]Quinn C A, Mohan H, Mehta H. A four-wire, current controlled converter provides harmonic neutralization in three-phase, four-wire systems. IEEE APEC'93,1993:841-846.
    [40]Enjeti P, Shireen W, Packebush P, et al. Analysis, design of a new active power filter to cancel neutral current harmonics in three-phase four-wire electric distribution systems. IEEE IAS Annu. Meeting,1993: 939-946.
    [41]Lin C E, Chen C L, Huang C H. An active filter for unbalanced three-phase system using synchronous detection method. IEEE PESC'94,1994:1451-1455.
    [42]Moran L, Werlinger P, Dixon J, et al. A series active power filter which compensates current harmonics voltage unbalance simultaneously. IEEE PESC'95,1995:222-227.
    [43]Kamath G., Mohan N, Albertson D. Hardware implementation of a novel reduced rating active filter for 3-phase,4-wire loads. IEEE APEC'95,1995:984-989.
    [44]Aredes M, Watanabe E H. New control algorithms for series, shunt three-phase four-wire active power filter. IEEE Trans. Power Delivery,1995,10:1649-1656.
    [45]Peng F Z, Lai J S. Generalized instantaneous reactive power theory for three-phase power system. IEEE Trans. Instrument Measurement,1996,45:293-297
    [46]Singh B, Anuradha, Kothari D P, et al. Variable structure control of four pole voltage source inverter for active filtering of nonlinear loads in 3-phase 4-wire systems. Power Quality'98,1998:89-94.
    [47]Singh B, Saxena A, Kothari D P. A novel control of four pole voltage source inverter for active filtering of nonlinear loads in 3-phase 4-wire systems. Power Electronic Drives and Energy Systems for Industrial
    Growth,1998. Proceedings.1998 International Conference on,1998, 1(1):201-206.
    [48]Singh B N, Rastgoufard P. New topology of active filter to correct power-factor, compensate harmonics, reactive power and unbalance of three-phase four-wire loads. IEEE APEC'03,2003:141-147
    [49]Moran L, Werlinger P, Dixon J, et al. A series active power filter which compensates current harmonics and voltage unbalance simultaneously. IEEE PESC'95 1:222-227.
    [50]Qun Wang, Weizheng Yao, Jinjun Liu, et al. Voltage type harmonic source and series active power filter adopting new control approach. IEEE IECON'99,1999,2:843-848.
    [51]Singh B.; Verma V. A new control scheme of series active filter for varying rectifier loads. PEDS'03, 2003,1:554-559.
    [52]Chang G W, Chen S K, Chin Y C, et al. An a-b-c Reference Frame-Based Compensation Strategy for Series Active Power Filter Control. Industrial Electronics and Applications,2006 1ST IEEE Conference on,2006:1-4.
    [53]Peng F Z, Akagi H, Nabae A. A new approach to harmonic compensation in power systems-a combined system of shunt passive and series active filters. IEEE Trans. Industrial Application,1990,26(6): 983-990.
    [54]Bhattacharya S, Divan D M, Banerjce B B. Control, reduction of terminal voltage total harmonic distortion (THD) in a hybrid series active, parallel passive filter system. IEEE PESC'93,1993:779-786.
    [55]Akagi H.Trends in active power line conditioners. IEEE Transaction Power Electronics 1994,9: 263-268.
    [56]Bhattacharya S, Divan D. Design, implementation of a hybrid series active filter system. IEEE PESC'95, 1995:189-195.
    [57]Rastogi M, Mohan N, Edris A A. Filtering of harmonic currents, damping of resonances in power systems with a hybrid active filter. IEEE APEC'95,1995:607-612.
    [58]Bhattacharya S, Divan D. Synchronous frame based controller implementation for a hybrid series active filter system. IEEE IAS Annu. Meeting,1995:2531-2540.
    [59]Akagi H. New trends in active filters for improving power quality. IEEE PEDS'96,1996:417-425.
    [60]Cheng P T, Bhattacharya S, Divan D. Hybrid solutions for improving passive filter performance in high power applications. IEEE APEC'96,1996:911-917.
    [61]Zhaoan Wang, Qun Wang, Weizheng Yao, et al. A series active power filter adopting hybrid control approach. IEEE Transactions on Power Electronics,2001,16(3):301-310.
    [62]荣飞,罗安,唐杰.新型大功率串联谐振注入式混合有源电力滤波器电.电工技术学报,2003,22(3):121-127.
    [63]Rahmani S, Al-Haddad K, Kanaan H Y. Average Modeling and Hybrid Control of a Three-Phase Series Hybrid Power Filter. Industrial Electronics,2006 IEEE International Symposium on 2006,2:919-924.
    [64]Zhancheng Wang, Weimin Li, Yangsheng Xu. A novel power control strategy of series hybrid electric vehicle. Intelligent Robots and Systems,2007. IROS 2007. IEEE/RSJ International Conference on,2007: 96-102
    [65]Bingruo Xie, Qiaofu Chen, Jun Tian, et al. Analysis and improvements of the filtering characteristic of the series hybrid APF based on fundamental magnetic flux compensation. Electrical Machines and Systems,2007,2007:137-142.
    [66]Nasiri A, Emadi A. Different topologies for single-phase unified power quality conditioners. Industry Applications Conference, IAS annual meeting,2003 2(2):976-981.
    [67]Hongfa Ding, Qingchun Zhu, Xianzhong Duan A novel single-phase power quality conditioner and its control strategy. IEEE PESC'05,2005,32346-2353.
    [68]Moran S. A line voltage regulator/conditioner for harmonic sensitive load isolation. IEEE IAS'89,1989: 945-951.
    [69]Fujita H. Akagi H. The unified power quality conditioner: the integration of series and shunt-active filters, IEEE Transaction on Power Electronics,1998,13(2):315-322.
    [70]Khadkikar V, Chandra A, Barry A O, et al. Conceptual Study of Unified Power Quality Conditioner (UPQC). Industrial Electronics,2006 IEEE International Symposium on,2006,2:1088-1093.
    [71]Khadkikar V, Chandra A, Barry A O, et al. Analysis of Power Flow in UPQC during Voltage Sag and Swell Conditions for Selection of Device Ratings. Electrical and Computer Engineering,2006. CCECE '06. Canadian Conference on,2006:867-872.
    [72]Adly A, Grirgis W,Bin Chang et al. A digital recursive measurement scheme for on-line tracking of power system harmonics. IEEE Trans. Power Diliv,1991,6(3):1153-1160
    [73]Mariun N, Alam A, Mahmod S, et al. Review of Control Strategies for Power Quality Conditioners. PECon 2004,2004,15(6):109-115.
    [74]刘开培,陈艳慧,张俊敏.基于p-q-r法的电力系统谐波检测方法.中国电机工程学报,2005,25(14):25-29.
    [75]孙才华,宗伟,何磊,等.一种任意整数次谐波电压实时检测方法.中国电机工程学报,2005,25(18):70-73.
    [76]S. Bhattachary, D. Divan and B. Baneje. Synchronous frame harmonic isolator using active series filter. Proc.4th EPE, Florence,1991,3:1032-1038.
    [77]S. Bhattachary, D. Divan, Design and Implementation of a Hybrid Series Active Filter System, IEEE PESC'1995 1995,1:89-195.
    [78]薛蕙,杨仁刚.基于FFT的高精度谐波检测算法.中国电机工程学报,2002,22(12):106-110.
    [79]Ei-Habrouk M, M.K Darwish, P. Mehta, Active power filter:a review. IEE Proc-Electric Power Applications,2000,47(5):403-413.
    [80]赵成勇,何明锋.基于复小波变换相位信息的谐波检测算法.中国电机工程学报,2005,25(1):38-42.
    [81]李辉,吴正国,邹云屏,等.变步长自适应算法在有源滤波器谐波检测中的应用.中国电机工程学报,2006,26(9):99-103.
    [82]王文举,贺益康,石赟.同步基准信号自适应滤波及在复杂供用电系统谐波检测中的应用.中国电机工程学报,2001,21(6):5-8.
    [83]汤胜清,程小华.一种基于多层前向神经网络的谐波检测方法.中国电机工程学报,2006,26(18):90-94.
    [84]任永峰,李含善,贺纲,等.两种单相电路瞬时谐波及无功电流实时检测方法分析.电力系统及其自动化学报,2003,15(1):23-27.
    [85]杨军,王兆安,邱关源.单相电路谐波及无功电流的一种检测方法.电工技术学报,1996,11(3):42-46.
    [86]Yao Weizbeng; Wang Qun; Liu Jinjun; Wang Zhaoan An instantaneous detecting approach of harmonic voltage for the series active power filter. Power System Technology, Proceedings. POWERCON'98,1998,2(2):1533-1536.
    [87]耿云玲,王群.单相电路的一种谐波和无功电流实时检测法.国防科技大学学报,2000,22(4):111-115.
    [88]王群,姚为正,王兆安.一种简单的谐波和无功电流检测方法.工业仪表与自动化装置,2000,(3):37-40.
    [89]陶骏,刘正之.谐波及无功电流检测方法的研究.电力系统自动化,2001,31(1):31-33,44.
    [90]孙生鸿,李鹏.谐波及无功电流的直接检测方法.电力系统自动化,2002,26(19):52-55.
    [91]蒋斌,颜钢锋,赵光宙.一种单相谐波基电流检测法的研究.电工技术学报,2002,15(6):65-69.
    [92]李天博,孙雨华,廖志凌.一种单相电路无功电流实时检测新方法的研究.电测与仪表,2003,(7):8-11.
    [93]任永峰,李含善,贺纲,等.两种单相电路瞬时谐波及无功电流实时检测方法分析.电力系统及自动化学报,2003,15(1):95-98.
    [94]李芳华,胡建军.一种单相电流谐波及基波电流检测方法.电测与仪表,2005,(8):18-20.
    [95]郝江涛,刘念,幸晋渝,等.单相及三相电路谐波和无功电流的检测研究.高电压技术,2005,31(3):44-45,50.
    [96]陆秀令,张松华,曹才开,等.单相电路谐波及无功电流新型检测方法.高电压技术,2007,33(3):163-166.
    [97]余健明,同向前.瞬时谐波检测方法的动静态特性分析.电力电子技术,1999,(2):15-17.
    [98]Tepper J S, Dixon J W, Venegas G, et al. A simple frequency independent method for calculating the reactive and harmonic current in a nonlinear load. IEEE Transactions on Industrial Electronics,1996, 43(6):647-653.
    [99]Luo Shiguo, Hou Zhencheng. An adaptive detecting method for harmonic and reactive current. IEEE Trans on Industrial Electronics,1995,42(1):85-89.
    [100]戴朝波,林海雪,雷林绪.两种谐波电流检测方法的比较研究.中国电机工程学报,2002,22(1):80-84.
    [101]Hairong Chen, Zheng Xu, Fan Zhang. Adaptive Detecting Method for Fundamental Positive Sequence, Negative Sequence Components and Harmonic Component Based on Space Vector. PES TD 2006: 726-732.
    [102]Karimi H, Karimi-Ghartemani M, Reza Iravani M, et al. An adaptive filter for synchronous extraction of harmonics and distortions. IEEE Transactions on Power Delivery,2003,18(4):1350-1356.
    [103]Wang Qun, Wu Ning, Jiang Zejia. An adaptive detecting approach of harmonic currents for active power filter. Power System Technology,1998. Proceedings. POWERCON'98.1998,2:1528-1532.
    [104]Qun Wang, Ning Wu, Zhaoan Wang. A neuron adaptive detecting approach of harmonic current for APF and its realization of analog circuit. IEEE Transactions on Instrumentation and Measurement,2001,50(1): 77-84.
    [105]Geiger D, Gupta A, Costa L A, et al. Dynamic programming for detecting, tracking, and matching deformable contours. Pattern IEEE Transactions on Analysis and Machine Intelligence,1995,17(3): 294-302.
    [106]Peng F Z, Jih-sheng Lai. Generalized instantaneous reactive power theory for three-phase power systems. IEEE Transactions on Instrumentation Measurement,1996,45(1):293-297.
    [107]Peng F Z, Ott G W Jr, Adams D J. Harmonic and reactive power compensation based on the generalized instantaneous reactive power theory for three-phase four-wire systems. IEEE Transactions on Power Electronics,1998,13(6):1174-1181.
    [108]Herrera, R S, Salmeron P, Hyosung Kim. Instantaneous Reactive Power Theory Applied to Active Power Filter Compensation:Different Approaches, Assessment, and Experimental Results. IEEE Transactions on Industrial Electronics,2008,55(1):184-196.
    [109]Hyosung Kim, Akagi, H. The instantaneous power theory on the rotating p-q-r reference frames. IEEE PEDS'99,1999,1(1):422-427.
    [110]Rachmildha Tri D, Llor Ana, Fadel M,et al. Hybrid direct power control using p-q-r power theory applied on 3-phase 4-wire active power filter. IEEE PESC'08 2008:1183-1189.
    [111]Depenbrock M, Staudt V, Wrede H. Instantaneous power compensation in three-phase systems by using p-q-r theory. IEEE Transactions on Power Electronics,2004,19(4):1151-1152.
    [112]邱燕雷,顾炜.基于瞬时无功功率理论p-q-r谐波检测法初探.重庆工学院学报,2006,(08):95-97.
    [113]Hyosung K, Blaabjerg F, Bak-Jensen B, et al. Instantaneous power compensation in three-phase systems by using p-q-r theory. IEEE Transactions on Power Electronics,2002,17(5):701-710.
    [114]Fan Ng, Man-Chung Wong, Ying-Duo Han. Analysis and control of UPQC and its DC-link power by use of p-q-r instantaneous power theory. Power Electronics Systems and Applications,2004. Proceedings, 2004:43-53.
    [115]Hyosung Kim, Blaabjerg F, Bak-Jensen B. Spectral analysis of instantaneous powers in single-phase and three-phase systems with use of p-q-r theory. IEEE Transactions on Power Electronics,2002,17(5): 711-720.
    [116]Herrera R S, Salmeron P, Hyosung Kim. Instantaneous Reactive Power Theory Applied to Active Power Filter Compensation:Different Approaches, Assessment, and Experimental Results. IEEE Transactions on Industrial Electronics,2008,55(1):184-196.
    [117]王兆安,黄俊.电力电子技术.北京:机械工业出版社,2006.
    [118]李建林,张仲超.有源电力滤波器控制策略综述.电力建设,2003,(06):44-49.
    [119]童梅,项基等.一种混合型电力滤波器的变结构控制.电工技术学报,2002,17(1):59-63.
    [120]Dixon J, Tepper S, Moran L. Practical evaluation of different modulation techniques for current-controlled voltage source inverters. IEE Proc. on Electric Power Applications,1996,143(4): 301-306.
    [121]Buso S, Malesani L, Mattavelli P. Comparison of current control techniques for active filter applications. IEEE Trans., on Industrial Electronics,1998,45(5):722-729.
    [122]Tilli A.; Tonielli A. Sequential design of hysteresis current controller for three-phase inverter. IEEE Transactions on Industrial Electronics,1998,45(5):771-781.
    [123]Dixon J W, Ooi B T. Series and parallel operation of hysteresis current-controlled PWM rectifiers. IEEE Transactions on, Industry Applications,1989,25(4):644-651.
    [124]Malesani L, Mattavelli P, Tomasin P. High-performance hysteresis modulation technique for active filters. IEEE Transactions on Power Electronics,1997,12(5):876-884.
    [125]Malesani L, Mattavelli P, Tomasin P. Improved constant-frequency hysteresis current control of VSI inverters with simple feedforward bandwidth prediction. IEEE Transactions on Industry Applications, 1997,33(5):1194-1202.
    [126]Bowes S R, Yen-Shin Lai. The Relationship Between Space-Vector Modulation and Regular-Sampled PWM. IEEE Transactions on Industrial Electronics,1997,44(5):670-679.
    [127]Hava A M, Kerkman R J, Lipo T A. A high-performace generalized discontinuous PWM algorithm. IEEE Transactions on Industry Applications,1998,34(5):1059-1071.
    [128]Hava A.M, Kerkman R J, Lipo T A. Simple analytical and graphical methods for carrier-based PWM-VSI drives. IEEE Transactions on Power Electronics,1999,14(1):49-61.
    [129]Keliang Zhou, Danwei wang. Relationship between space-vector modulation and three-phase carrier-based PWM:a comprehensive analysis. IEEE Transactions on Industrial Electronics,2002,49(1): 186-196.
    [130]Kwon B H, Kim T W, Youm J H. A novel SVM-based hysteresis current controller. IEEE Trans on Power Electronics,1998,13(2):297-307.
    [131]曾江,刁勤华,倪以信,等.基于最优电压矢量的有源滤波器电流控制新方法.电力系统自动化,2000,24(6):25-31.
    [132]Zeng J, Ni Y, Diao Q, et al. Current controller for active power filter based on optimal voltage space vector. IEE Proceedings Generation, Transmission and Distribution,2001,148(2):111-116.
    [134]Marei M I, El-Saadany E F, Salama M M A. A new contribution into performance of active power filter utilizing SVM based HCC technique. Power Engineering Society Summer Meeting,2002,2(2): 1022-1026.
    [135]曾国宏,郝荣泰.有源滤波器滞环电流控制的矢量方法.电力系统自动化,2003,27(5):31-40.
    [136]姜俊峰,刘会金,陈允平,等.有源滤波器的电压空间矢量双滞环电流控制新方法.中国电机工程学,2004,24(10):82-86.
    [137]郭自勇,周有庆,刘宏超,等.一种基于电压空间矢量的有源滤波器滞环电流控制新方法.中国电机工程学报,2007,(01):112-117.
    [138]Vodyakho O, Hackstein D, Steimel A, et al. Novel Direct Current-Space-Vector Controlfor Shunt Active Power Filters Basedon the Three-Level Inverter. IEEE Transactions on Power Electronics,2008,23(4): 1668-1678.
    [139]李玉梅,马伟明.无差拍控制在串联电力有源滤波器中的应用.电力系统自动化,2001,25(8):28-30,61.
    [140]唐健,王翔,何英杰,等.三相四线制有源滤波器的新型无差拍控制.电力系统自动化,2007,(19):45-49.
    [141]Nishida K, Konishi Y, Nakaoka M. Current control implementation with deadbeat algorithm for three-phase current-source active power filter. IEE Proceedings Electric Power Applications,2002,149(4): 275-282.
    [142]Nishida K, Rukonuzzman M, Nakaoka. Advanced current control implementation with robust deadbeat algorithm for shunt single-phase voltage-source type active power filter. IEE Proceedings Electric Power Applications,2004,151(3):283-288.
    [143]Smedley Keyue M, Cuk Slobodan. One cycle control of switching converters. IEEE Transactions on Power Electronics,1995,10(6):625-633.
    [144]Buso S, Malesani L, Mattavelli P. Dead-beat current control for Active. Powe. inProc. IEEE IECON'98, 1998:1859-18645.
    [145]钱挺,吕征宇,胡进,等.基于单周控制的有源滤波器双环控制策略.中国电机工程学报,2003,(03):34-37
    [146]杜雄,周雒维,谢品芳,等.一种改进的单周控制直流侧有源电力滤波器及其稳态和动态研究.中国电机工程学报,2003,(07):197-202.
    [147]周林,沈小莉,周雒维,等.单周控制技术在有源电力滤波器中的应用.电力电子技术,2004,38(4):11-13.
    [148]Qiao Chong ming, Smedley Keyue M, Maddaleno Franco. A single phase active power filter with one cycle control under unipolar operation. IEEE Transactions on Circuits and System,2004,51(8): 1623-1630
    [149]Qiao Chong ming, Jin Taotao, Smedley Keyue M. One cycle control of three phase active power filter with vector operation. IEEE Transactions on Industrial Electronics,2004,51(2):455-463.
    [150]王玉斌,厉吉文,田召广,等.单周控制直流侧APF的综合分析和设计.电工电能新技术,2006,(04):34-38.
    [151]Massoud A M, Funney S J, Williams B W. Practical issues of three-phase, three-wire, voltage inverter-based shunt active power filters. Harmonic and Quality of Power,2004:436-441.
    [152]Sinha G, Lipo T A. A four-level inverter based on drive with a passive front end. IEEE Transactions on Power Electronics.2000,15(2):285-294.
    [153]张永昌,赵争鸣.基于快速空间矢量调制算法的多电平逆变器电容电压平衡问题研究.中国电机工程学报,2006,26(18):71-76.
    [154]Nho N V, Chang J M. Comprehensive study on space-vector-PWM and carrier-based-PWM collection in multilevel inverters. IEE Proc., Electric Power Applications,2006,153(1):149-158.
    [155]Dixon J W, Ooi B T. Series and parallel operation of hysteresis current control PWM rectifiers. IEEE Transactions on industrial applications,1998,25(4):644-651.
    [156]Chiang S J, Chang J M. parallel operation if shunt active power filter with capacitor limitation control. IEEE Transactions on Aerospace and Electronics Systems,2001,37(4):1312-1320.
    [157]卓放,胡军飞,王兆暗.采用多重化电路实现的大容量有源电力滤波器.电网技术,2000,24(8):45-47.
    [158]李红雨,吴隆辉,王兆安,等.多重化大容量有源电力滤波器的主电路结构研究.电网技术,2004,28(23):12-16.
    [159]杨振宇,赵剑锋,唐国庆.多台并联型APF联合补偿协调控制.电力系统及其自动化学报,2006,(06):32-37.
    [160]Takeda M, Ikeda K, Teramoto A, et al. Harmonic current and reactive power compensation with an active filter. IEEE PESC'88,1988,2:1174-1179.
    [161]Peng F Z, Akagi H, Nabae A. A new approach to harmonic compensation in power systems-a combined system of shunt passive and series active filters. IEEE Transactions on Industrial Applications,1990, 26(6):983-990.
    [162]吴卫民,童立青,钱照明,等.新型串联混合有源电力滤波器控制技术的研究.中国电机工程学报,2005,25(3):38-43.
    [163]Peng F. Z, Akagi H, Nabae A. Compensation characteristics of the combined system of shunt passive and series active filters. IEEE Trans. Ind. Applicat.,1993,29(1):144-152.
    [164]Escobar G., Stankovic A M, Cardenas V, et al. A controller based on resonant filters for a series active filter used to compensate current harmonics and voltage unbalance. Proceedings of Control Applications Conf.,2002,1:2002.
    [165]Srianthumrong S, Fujita H, Akagi H. Stability analysis of a series active filter integrated with a double-series diode rectifier. IEEE 31st Annual Power Electronics Specialists Conference,2000, 3:1305-13111.
    [166]汤赐,姚舜,帅智康,等.新型注入式混合有源滤波器的稳定性研究.电网技术,2006,30(20):56-60.
    [167]F. Z. Peng. Application issues of active power filters. IEEE PESC 1990:381-387.
    [168]陈国柱,吕征宇,钱照明.有源滤波器的一般原理及应用.中国电机工程学报.2000,20(9):pp17-21
    [169]陈国柱.混合有源电力滤波器关键技术的研究,浙江大学博士论文,2001
    [170]吴卫民,童立青,钱照明,等.一种高性能串联混合有源电力滤波器拓扑的研究.中国电机工程学报,2004,24(12):108-112.
    [171]Wu Weimin, Tong Liqing, F. Z. Peng, et al. A new control strategy for series type active power filters. IEEE PESC 2004,4:3054-3059.
    [172]Fujita H, Akagi H. A practical approach to harmonic compensation in power systems-series connection of passive and active filters. IEEE Transactions on Industrial Applications,1991,27(6):1020-1025.
    [173]钟洪浩,谌平平,吕征宇,等.串联混合有源电力滤波器的新型控制方法.电力系统自动化,2004,(18):63-66.
    [174]钟洪浩,谌平平,吕征宇,等.串联混合有源电力滤波器基于双dq变换的新型控制方法.中国电机
    工程学报,2005,(01):1-5.
    [175]王群,姚为正,刘进军,等.谐波源与有源电力滤波器的补偿特性.中国电机工程学报,2001,21(2):16-20.
    [176]范瑞祥,罗安,章兢,等.谐振注入式有源滤波器的输出滤波器[J].中国电机工程学报,2006,26(5):95-100.
    [177]Sangsun Kim. Harmonic reference current generation for unbalanced nonlinear loads. IEEE PESC,2: 773-778.
    [178]史伟伟,蒋全,胡敏,等.串联型电力有源滤波器中低通滤波器的设计和参数优化.中国电机工程学报,2001,22(11):74-78.
    [179]Buso S, Malesani P, Mattavelli R, et al. Design and fully digital control of parallel Active filters for thyristor rectifiers to comply with IEC-1000-3-2 standards. IEEE Transaction on Industrial Electronics, 1998,34(3):508-517.
    [180]Karmran L, Habetler T G.. An improved deadbeat rectifier regulator using a neutral net predictor. IEEE Transaction on Industrial Electronics,1995,10(4):504-510.
    [181]le Roux W, van Wyk J D. The effect of signal measurement and processing delay on the compensation of harmonics by PWM converters. IEEE Transaction on. Industrial Electronics,2000,47(2):297-304.
    [182]马莉,周景海,吕征宇,等.一种基于dq变换的改进型谐波检测方案的研究.中国电机工程学报,2000,10:56-59.
    [183]Chen Z, Xu D H. Delayless harmonic detection based on DSP with high accuracy for Active Power Filter. IEEE PESC 2005,3:1818-1823.
    [184]刘开培,陈艳慧,张俊敏.基于重采样理论和均值滤波的三相电路谐波检测方法.中国电机工程学报,2003,23(9):78-82.
    [185]刘开培,陈艳慧,张俊敏.基于重采样的三相谐波检测瞬时无功功率法.电力系统自动化,2003,24(15):25-29.
    [186]Yao W, Lu Z Y, Qian Z M, et al. Dual sample-rate scheme for d-q harmonic acquisition of active power filter. IEEE PESC 2002,3:1213-1216.
    [187]Kanaan HY, Assi A A, Sleiman J B, et al, Design of a new multiple-loops linear controller for a three-phase series active voltage harmonic compensator. IEEE Industrial Technology 2003 International Conference.2003,1:575-580
    [188]IEEE Std 141-1993, IEEE recommended practice for electric power distribution for industrial plants.
    [189]谢小荣,崔文进,唐义良,等.STATCOM控制器与常规PID励磁调节器的分散协调设计.电工技术学报,2001(6):24-28
    [190]袁清芳,李兴源.具有可控串联补偿的新型故障限流器的研究.电工技术学报,2004,19(1):40-43
    [191]王晶,陈学允.UPFC对动态电能质量影响的分析研究.电工技术学报,2004,19(1):44-48.
    [192]唐欣,罗安,涂春鸣.新型注入式混合有源滤波器的研究.电工技术学报,2004,19(11):50-55.
    [193]王晓钰,刘进军,何益宏,等.用于通用电能质量控制器的一种简单补偿策略和统一控制方法.电工技术学报,2004,19(12):47-52.
    [194]徐永海,肖湘宁.刘昊等.混合有源电力滤波器与并联电容器组联合补偿技术研究.电工技术学报,2005,20(1):112-118
    [195]赵刚,施围,林海雪.配电网短路阻抗测量方法研究.电工技术杂志,2003(3):29~34
    [196]Hart, P M. An experimental study of short-circuit currents on a low-voltage system. IEEE Transaction on Industry Applications,1988,24(5):940-946
    [197]索南加乐,张健康,刘辉,等.故障分量提取及故障选相的新方法.电力系统自动化,2003,16(27):58-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700