用户名: 密码: 验证码:
流感功能表位筛选与复合多表位核酸疫苗设计及免疫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流感是由流感病毒引起的急性呼吸道传染病。几十年来,人流感的流行一直以A型H3/H1亚型以及B型流感为主,禽流感的流行以A型H5/H7/H9亚型为主,其流行已造成了巨大的损失。近年来,禽流感病毒的多个亚型(H5/H7/H9/H10)开始不断突破种间屏障感染人类,并可能造成大流行。当前,传统的流感疫苗已无法有效应对这一趋势,各国学者纷纷进行新型流感疫苗的开发以应对流感跨种传播及多亚型并存的现状。
     本论文即拟对多亚型流感病毒复合多表位核酸疫苗进行研究。在搜集已发表流感功能表位的基础上,应用生物信息学理论对H1/H3/H5/H7/H9亚型的保护性抗原血凝素及神经氨酸酶进行了CTL、Th、B细胞表位的预测和筛选分析。设计组建了多表位功能基因盒,并进行了人工模拟优化,应用体外实验方式分析了预测的Th和B细胞功能表位抗原性。根据针对所属动物及预防目的的不同,我们构建了三种主导型H3/H1(针对人),H5/H3(针对人和猪),H5/H7(针对人和禽)的复合多表位核酸疫苗,通过RT-PCR及间接免疫荧光方法证实疫苗中各抗原组分可有效表达。最后,我们将所构建的复合多表位核酸疫苗进行了小鼠、猪、鸡的实验免疫研究,通过对ELISA及HI抗体水平、淋巴细胞刺激指数、IFNγ-ELISPOT和T淋巴细胞亚类数量、血清细胞因子含量等指标的综合分析,对不同复合多表位疫苗进行了免疫原性评价。结果显示,复合多表位疫苗组在针对主要抗原的抗体水平与不含表位组相当的情况下,表位相关抗原的抗体水平显示了一定的优势。表位相关抗原的淋巴细胞刺激指数显著升高,IFNγ-ELISPOT斑点数不同程度增加。复合多表位疫苗免疫组CD4~+T淋巴细胞数量和血清Th2类细胞因子含量显著增加。以上结果证实,复合多表位疫苗在诱导细胞及体液免疫方面均显示了优势,与各免疫对照组相比复合多表位DNA疫苗诱导的机体整体免疫水平最优。本研究对可同时预防多种亚型流感病毒,可对多种动物免疫保护,可提供机体长久免疫保护的跨种通用流感疫苗进行了有益尝试。
Influenza is an acute respiratory infectious disease caused by type A influenza virus. To date influenza virus infection continues to be a major public health threat to human society and animals.For years,H3 and H1 subtypes of influenza A virus and influenza B virus are the major prevalent pathogens for humans,and H5,H7,H9 subtypes of influenza A virus are dominant subtypes in avians.So far,influenza infections have caused huge losses of human resources and material resources.Moreover,multi-subtypes (H5/H7/H9/H10) of avian influenza have overcome the species barrier and infected humans,which may cause new pandemics.
     Due to lack of effective influenza drugs,vaccine is still an effective way to prevent influenza infection and transmission.At present,the prevention of human and avian influenza mainly depends on inactivated and live attenuated vaccines.For years,they had been proved safe and effective,and also played an important role in preventing influenza. However,inactivated and attenuated vaccines themselves have some deficiencies,which can not be avoided.The deficiencies of inactivated vaccines are as follows:weak in stimulating celluar immunity;can only provide protection to the strain of the virus matched to vaccine antigen;the use of adjuvant may induce stress response;high production costs;affect the immune monitoring.Live attenuated vaccines may take mutation into highly pathogenic influenza.Moreover,these two vaccines are unable to effectively cope with the rapid mutation of influenza virus,the coexistence of multiple subtypes of influenza,and the disappearing of species boundaries.
     DNA vaccine is a technology beginning in the 20th century 90's.Because of stimulating the humoral and cellular immunity simultaneously,DNA vaccine had been favored.DNA vaccine has advantages of easy to use,stability,security,fast to build, which make it more facilitate in response to the variation of influenza virus.The emergence of epitope provided a new idea for the development of influenza vaccine. Developing influenza epitope vaccine,can not only be effective in using protective antigens of influenza and enhancing the specific immune response,but also have the advantages of selecting cross-protective epitopes to achieve the prevention of a number of subtypes.Especially,by monitoring the epidemic,epitopes can be synthesized in time to response to the rapid spread of influenza.A large number of studies have confirmed that the epitope vaccine had a potential future in the development of influenza vaccine.In this study,combined with the advantages of DNA vaccine and epitope vaccine,combined multi-epitope vaccines were designed and constructed.The more informations as follows:
     Based on collecting published influenza epitopes,we predicted and analyzed CTL, Th,and B-cell epitopes of HA and NA of H1/H3/H5/H7/H9 subtype of influenza by bioinformatics methods.Screening of HA and NA,17 CTL epitopes and 12 Th/B epitopes were acquired.Based the above epitopes,CTL and ThB boxes were designed. Then the boxes were optimized by software simulation.Ultimately,two CTL and two ThB boxes were synthesized,which laid the foundation for the further study of epitope functional research and immunization experiments.
     The antigenicity of predicted ThB epitopes were assessed by positive serum binding analysis,which explained the ability of predicted epitopes to be functional ones.The result showed H1 HA_(188~205)、H1 HA_(125~139)、H1 HA_(73~87)、H5 HA_(302~316)、H9 HA_(73~90)、H9 HA_(37~54)、H9 HA_(123~140),were potential functional epitopes on BALB/c mice.The result also showed H5 HA_(206~223)、H5 HA_(141~155)、H5 HA_(302~316)、H9 HA_(73~90)、H9 HA_(37~54)、H9 HA_(123~140) were potential functional epitopes on SPF chickens.This study laid the foundation for revealing the further study of influenza infection and immune mechanisms, identifying of functional epitopes,and developing of influenza epitope vaccine.
     Then,we cloned H5HA,H1HA1,NP gene of influenza virus,and synthesize H7HA and H3HA gene.Primers were designed for PCR transformation,all the relative fragments were accessed with the restriction sites and linker sequences of the research needs.After molecular design and optimization,three series of combined multi-epitope vaccines were constructed for different purposes.One for human H1/H3 subtypes,was expected to prevent the major subtypes of human and also other subtypes(H5、H7、H9) at the same time.One for human and pig H5/H3 subtypes,was expected to prevent the potential pandemic of H3/H5 subtypes and also other subtypes(H1、H7、H9) at the same time.One for human and avian H5/H7 subtypes,was expected to prevent the HPAI of H5/H7 subtypes and also other subtypes(H1、H3、H9) at the same time.Combined multi-epitope vaccines were transfected into BHK cells and identified by RT-PCR and IFA.The result showed all the antigenic components were expressed effectively in eukaryotic cells.This study laid the foundation for the animal immunization experiments.
     As a mammalian model,mice were employed to evaluate the immunogenicity of the H3/H1 combined multi-epitope vaccine by humoral and cellular immune detection.The result showed the main antigen(H3/H1) related ELISA serum antibody level,which was stimulated by the H3/H1 combined multi-epitope vaccine,was equal to the single-antigen expressing group.And the H3/H1 combined multi-epitope vaccine also showed the advantages of enhancing H5 specific ELISA antibody level.Comprehensive analysis of indicators of cellular immunity,the combined multi-epitope vaccine group got the best cellular immunity response.The addition of epitopes and co-immunization with NP enhanced the cellular immunity level effectively,and more inclined to enhance the function of CD4~+ T lymphocytes.Analyzed from the influenza subtype specific cellular immunity level,the SI and IFN-γsecretion of main antigen(H3/H1) were mainly depended on HA alone or/and co-immunization with NP.The addition of epitopes enhanced specific cellular immunity response of the epitope-related subtypes(H5/H7/H9) and more inclined to induce the function of Th2 cells,especially seen from the T lymphocyte proliferation stimulated by H5 or H9 antigen.
     Mice were employed to evaluate the immunogenicity of the H5/H7 combined multi-epitope vaccine.The result showed the main antigen(H5/H7) related ELISA serum antibody level,which was stimulated by the H5/H7 combined multi-epitope vaccine group,was equal to the single-antigen expressing group.But there was no significant advantages on ELISA serum antibody level of epitope-related subtypes.Comprehensive analysis of indicators of cellular immunity,the combined multi-epitope vaccine group got the best cellular immunity response.The addition of epitopes and co-immunization with NP enhanced the cellular immunity level effectively,and more inclined to enhance the function of CD4~+ T lymphocytes.Analyzed from the influenza subtype specific cellular immunity level,the SI and IFN-γsecretion of main antigen(H5/H7) was mainly depended on HA or/and co-immunization with NP.The addition of epitopes enhanced H1/H9 specific SI of the epitope-related subtypes significantly.However,not always significantly with other groups,the indicators of the combined multi-epitope vaccine group were highest in most detections.Our study inferred that if we could enhance the expression efficiency of DNA vaccine in mice effectively,such as combined with the adjuvant or used a different immunization way,the combined multi-epitope vaccine would display more significant advantages.
     Pigs were employed to evaluate the immunogenicity of the H5/H3 combined multi-epitope vaccine.The result showed the main antigen(H5/H3) related ELISA serum antibody level,which was stimulated by the H5/H3 combined multi-epitope vaccine group,was equal to the single-antigen expressing group.But there was no significant advantages on ELISA serum antibody level of epitope-related subtypes(H1/H7/H9).The result of HI detection was similar as the result of ELISA detection.From the serum levels of cytokines induced by combined multi-epitope vaccine,comparing to the co-immunization double-subtype group,there were no significant differences in IFN-γ, but significant higher in IL-4.The result showed that when helped with the NP co-immunization,the vaccines effectively stimulated IFN-γ,secretion by the Th1 lymphocytes.The addition of epitopes enhanced the Th2 immune response,which would promote the humoral immune response.Comprehensive analysis of indicators of cellular immunity,the combined multi-epitope vaccine group got the best cellular immunity response.The addition of epitopes and co-immunization with NP enhanced the cellular immunity effectively,and more inclined to enhance the function of CD4~+ T lymphocytes. Analyzed from the influenza subtype specific cellular immunity,the SI and IFN-γ, secretion of main antigen(H3/H1) was mainly depended on HA or/and co-immunization with NP.The addition of epitopes enhanced H1/H7 specific SI of the epitope-related subtypes significantly,and more inclined to induce the function of Th2 cells.
     After the mice immunization,chickens were employed to evaluate the immunogenicity of the H5/H7 combined multi-epitope vaccine.The result showed the main antigen(H5/H7) related ELISA serum antibody level,which was stimulated by the H5/H7 combined multi-epitope vaccine group,was equal to the single-antigen expressing group.And the H5/H7 combined multi-epitope vaccine also showed the advantages of enhancing H9 specific ELISA antibody level.The result of HI detection was similar as the result of ELISA detection.From the serum levels of cytokines,there were no significant differences in the IFN-γ,but the IL-2 induced by combined multi-epitope vaccine was lower than that of the co-immunization double-subtype group.However, IL-4 and IL-6 levels were significantly higher than that of the co-immunization double-subtype group.The result suggested that combined multi-epitope vaccine was good at inducing a balanced Th1/Th2 response pattern,and this group acquired the best overall immunity response.Seen from SI,co-immunization with NP enhanced the cellular immunity effectively.Analyzed from the influenza subtype specific cellular immunity level by H5 or H7 antigen,there were no significant differences between the combined multi-epitope vaccine group and other immunization groups.The result was depended on the factors as follows:HA played a decisive role in the induction of subtype specific cellular immunity;chickens might have individual differences that influenced SI level;different components of combined multi-epitope vaccine might induce the immune synergy response.But when stimulated by epitope-related antigens(H1/H3/H9),H9 subtype specific SI increased significantly.
     The results of all the animal experiments confirmed that combined multi-epitope vaccine had significant advantages on induction of both humoral immunity and cellular immunity.Epitope-components can make their functions under the model of combined multi-epitope vaccine.The addition of epitopes enhanced immunity response of the epitope-related subtypes significantly,especially in celluar immunity response.However, we knew DNA vaccine has relatively weak immunogenicity,and this may weaken the function of epitopes.In our research,we assessed the vaccines on the view of subtype. Though we realized there were immune synergy between different antigen components, we did not conduct a detailed evaluation.In addition,the assessment of functional epitope did not meet the function of a single epitope level.And all these will be our next step of further research.Our study had made some benefical exploration in universal influenza vaccine,which was aim at providing protection for multiple subtypes of influenza A virus on many kinds of animals for years.
引文
[1]甘孟侯.禽流感(第二版)[M].北京:中国农业出版社,2002.
    [2]Kemble G;Greenberg H.Novel generations of influenza vaccines[J].Vaccine,2003,21(16):1789-1795.
    [3]Girard MP,Cherian T,Pervikov Y et al.A review of vaccine research and development:human acute respiratory infections[J].Vaccine,2005,23(50):5708-5724.
    [4]Bardiya N,Bae JH.Influenza vaccines:recent advances in production technologies [J].Appl Microbiol Biotechnol,2005,67(3):299-305.
    [5]Gambaryan AS,Robertson JS,Matrisivich MN.Effects of egg-adaptation on the receptor-binding properties of human influenza A and B viruses[J].Virology,1999,258(2):232-239.
    [6]de Jong JC,Beyer WE,Palache AM et al.Mismatch between the 1997/1998influenza vaccine=induced antibody response to this strain in the elderly[J].J Med Virol,2000,61(1):94-99.
    [7]Hoffman E,Krauss S,Perez D et al.Eight-plasmid system of rapid generation of influenza virus vaccines[J].Vaccine,2002,20(25-26):3165-3170.
    [8]Nicholson KG,Colegate AE,Podda Aet al.Safety and antigenicity of non-adjuvanted and MF59-adjuvanted influenza A/Duck/Singapore/97(H5N3) vaccine:arandomised trial of two potential vaccines against H5N1 influenza[J].Lancet,2001,357(9272):1937-1943.
    [9]Ansaldi F,Bacilieri S,Durando P et al.Cross-protection by MF59-adjuvanted influenza vaccine:Neutralizing and haemagglutination-inhibiting antibody activity against A(H3N2) drifted influenza viruses[J].Vaccine,2008,26(12):1525-1529.
    [10]Kistner O,Barrett N,Mundt W et al.Development of a novel influenza vaccine derived from a continuous cell line[J].ALTEX,2001,18(1):50-54.
    [11]Horimoto T,Kawaoka Y.Influenza:lessons from past pandemics,warnings from current incidents[J].Nat Rev Microbiol,2005,3(8):591-600.
    [12]Chen D,Erickson CA,Endres RL et al.Adjuvantation of epidermal powder immunization[J].Vaccine,2001,19(20-22):2908-2917.
    [13]Youil R,Su Q,Toner TJ et al.Comparative study of influenza virus replication in Vero and MDCK cell lines[J].Journal of Virological Methods,2004,120(1):23-31.
    [14]Genzel Y, Olmer RM, Schafer B et al. Wave microcarrier cultivation of MDCK cells for influenza virus production in serum containing and serum-free media [J]. Vaccine, 2006, 24(35-36): 6074-6087.
    [15]Waldman RH, Bond JO, Levitt LP et al. An evaluation of influenza immunization: influence of route of administration and vaccine strain [J]. Bull World Health Organ, 1969, 41(3): 543-548.
    [16]Romanova J, Katinger D, Ferko B et al. Live cold -adapted influenza A vaccine produced in vero cell line [J]. Virus Research, 2004, 103(1-2): 187-193.
    [17]Ault A. Shifting Tactics in the battle against influenza [J]. Science, 2004, 303(5662): 1280.
    [18]Wareing MD. Tannock GA. Live attenuated vaccines against influenza: an historical review [J]. Vaccine, 2001, 19(25-26): 3320-3330.
    [19]Jin H, Lu B, Zhou H et al. Multiple amino acid residues confer temperature sensitivity to human influenza virus vaccine strains (FluMist) derived from cold-adapted A/Ann Arbor/6/60 [J]. Virology, 2003, 306(1): 18-24.
    [20]Kendal AP. Cold-adapted live attenuated influenza vaccines developed in Russia: can they contribute to meeting the needs for influenza control in other countries [J]. Eur J Epidemiol, 1997, 13(5): 591-609.
    [21]Belshe RB, Edwards KM, Vesikari T et al. Live attenuated versus inactivated influenza vaccine in infants and young children [J]. N Engl J Med , 2007, 356(7): 685-696.
    [22]Talon J, Salvatore M, O'Neill RE et al. Influenza A and B viruses expressing altered NS1 proteins: A vaccine approach [J]. Proc Natl Acad Sci USA, 2000, 97(8): 4309-4314.
    [23]Vincent AL, Ma W, Lager KM et al. Efficacy of intranasal administration of a truncated NS1 modified live influenza virus vaccine in swine [J]. Vaccine, 2007, 25(47): 7999-8009.
    [24]Watanabe T, Watanabe S, Neumann G et al. Immunogenicity and protective efficacy of replication-incompetent influenza virus-like particles [J]. J Virol, 2002, 76(2):767-773.
    [25]Watanabe T, Watanabe S. Kida H et al. Influenza A virus with defective M2 ion channel activity as a live vaccine [J]. Virology. 2002, 299(2): 266-270.
    [26]Poon LL, Pritlove DC, Sharps J et al. The RNA polymerase of influenza virus, bound to the 5' end of virion RNA, acts in cis to polyadenylate mRNA [J]. J Virol, 1998, 72(10): 8214-8219.
    [27]Palese P, Zavala F, Muster T et al. Development of novel influenza virus vaccines and vectors [J]. J Infect Dis, 1997, 176 Suppl (1): S45-49.
    [28]Enami M, Enami K. Characterization of influenza virus NS1 protein by using a novel helper-virus-free reverse genetic system [J]. J Virol, 2000, 74(12): 5556-5561.
    [29]Neumann G, Kawaoka Y. Synthesis of influenza virus: new impetus from an old enzyme, RNA polymerasel [J]. Virus Res, 2002, 82(1-2): 153-158.
    [30]Hoffmann E, Neumann G, Hobom G et al. "Ambisense" approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template [J]. Virology, 2000, 267(2): 310-317.
    [31]Derk RR, DeWitt CM, Donnelly JJ et al. Characterization of humoral immune responses induced by an influenza hemagglutinin DNA vaccine [J]. Vaccine, 1997, 15(1): 71-78.
    [32]Kadowaki S, Chen Z, Asanuma H et al. Protection against influenza virus infection in mice immunized by administration of hemagglutinin-expressing DNAs with electroporation [J]. Vaccine, 2000, 18(25): 2779-2788.
    [33]Kodihalli S, Haynes JR, Robinson HL et al. Cross-protection among lethal H5N2 influenza viruses induced by DNA vaccine to the hemagglutinin [J]. J Virol, 1997, 71(5): 3391-3396.
    [34]Chen Z, Kadowaki S, Hagiwara Y et al. Cross-protection against a lethal influenza virus infection by DNA vaccine to neuraminidase [J]. Vaccine, 2000, 18(28): 3214-3222.
    [35]Neirynck S, Deroo T, Saelens X et al. A universal influenza A vaccine based on the extracellular domain of the M2 protein [J]. Nat Med, 1999, 5(10): 1157-1163.
    [36]Okuda K, Ihata A, Watabe S et al. Protective immunity against influenza A virus induced by immunization with DNA plasmid containing influenza M gene [J]. Vaccine, 2001, 19(27): 3681-3691.
    [37]Okuda K, Ihata A, Watabe S et al. Protective immunity against influenza A virus induced by immunization with DNA plasmid containing influenza M gene [J]. Vaccine. 2001,19(27):3681-3691.
    [38]Shu LL,Bean WJ,Webster RG.Analysis of the evolution and variation of the human influenza A virus nucleoprotein gene from 1933 to 1990[J].J Virol,1993,67(5):2723-2729.
    [39]Ulmer JB,Derk RR,DeWitt CM et al.Induction of immunity by DNA vaccination:application to influenza and tuberculosis[J].Behring Inst Mitt,1997,98:79-86.
    [40]Xie H,Liu T,Chen H et al.Evaluating the vaccine potential of an influenza A viral hemagglutinin and matrix double insertion DNA plasmid[J].Vaccine,2007,25(44):7649-7655.
    [41]Bui HH,Peters B,Assarsson E et al.Ab and T cell epitopes of influenza A virus,knowledge and oppommities[J].Proc Natl Acad Sci USA,2007,104(1):246-251.
    [42]Li H,Ding J,Chen YH.Recombinant protein comprising multi-neutralizing epitopes induced high titer of antibodies against influenza A virus[J].Immunobiol,2003,207(5):305-313.
    [43]Thomson SA,Sherritt MA,Medveczky J et al.Delivery of multiple CD8cytotoxic T cell epitopes by DNA vaccination[J].Immuno,1998,160:1717-1723.
    [44]陈洪.合成肽重组疫苗的抗病毒效力.《国外医学》预防、诊断、治疗用生物制品分册.2002,25(5):211-214.
    [45]贾雷立,金宁一,鲁会军等.流感复合多表位疫苗的设计及小鼠免疫研究[J].广西农业生物科学,2006,25(9):209-210.
    [46]Crowe SR,Miller SC,Woodland DL.Identification of protective and non-protective T cell epitopes in influenza[J].Vaccine,2006,24(4):452-456.
    [47]Kaiser J.A One-Size-Fits-All Flu Vaccine.'?[J].Science,2006,312(5772):380-382.
    [48]Wraith DC,Vessey AE,Askonas BA.Purified in fluenza virus nucleoprotein protects mice from lethal infection[J].J Gen Virol,1987,68(2):433-440.
    [49]Gary Van Nest.Induction of Broadly Protective Cellular Immune Responses Using a Nucleoprotein-ISS Conjugate Vaccine[DB].Second meeting on the development of influenza vaccines that induce broad-spectrum and long-lasting immune responses,6-7December 2005[C].
    [50]Alt stein AD , Gitelman AK, Smirnov YA et al. Immunization with influenza A NP-expressing vaccine virus recombinant protect s mice against experimental infection with human and avian influenza viruses [J]. Arch Virol, 2006, 151(5): 921-931.
    [51]Epstein SL, Kong WP, Misplon JA et al. Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein [J]. Vaccine, 2005, 23(46-47): 5401-5410.
    [52]Saha S, Yoshida S, Ohba K et al. A fused gene of nucleoprotein (NP) and herpes simplex virus genes (VP22) induces highly protective immunity against different subtypes of influenza virus [J]. Virology, 2006, 354(1): 48-57.
    [53]Jegerlehner A, Schmitz N, Storni T et al. Influenza Avaccine based on the ext racellular domain of M2: weak protection mediated via antibody-dependent NK cell activity [J]. J Immunol, 2004, 172(9): 5598-5605.
    [54]De Filette M, Min Jou W, Birkett A et al. Universal influenza A vaccine: optimization of M2-based constructs [J]. Virology, 2005, 337(1): 149-161.
    [55]Ernst WA, Kim HJ, Tumpey TM et al. Protection against H1, H5, H6 and H9 influenza A infection with liposomal matrix 2 epitope vaccines [J]. Vaccine, 2006, 24(24): 5158-5168.
    [56]Fedson DS. Pandemic influenza and the global vaccine supply [J]. Clin.Infect Dis. 2003,36: 1552-1561.
    [57]Nicholls H. Pandemic Influenza: The Inside Story [J]. PLoS Biol, 2006, 4(2):50.
    [58]Lipatov AS, Govorkova EA, Webby RJ et al. Influenza: Emergence and Control [J]. J Virol, 2004, 78(17): 8951-8959.
    [59]Holman DH, Wang D, Raja NU et al. Multi-antigen vaccines based on complex adenovirus vectors induce protective immune responses against H5N1 avian influenza viruses[J]. Vaccine, 2008, 26(21): 2627-2639.
    [60]de Bruijn IA, Nauta J, Gerez L et al. The virosomal influenza vaccine Invivac: immunogenicity and tolerability compared to an adjuvanted influenza vaccine (Fluad) in elderly subjects [J]. Vaccine, 2006, 24(44-46):6629-6631.
    [61]Treanor JJ, Schiff GM, Hayden FG et al. Safety and immunogenicity of a baculovirus-expressed hemagglutinin influenza vaccine: a randomized controlled trial [J]. JAMA, 2007. 297(14): 1577-1582.
    [62]Brugh M C,Am J.Vet Res,1979,40:165-169.
    [63]田国斌,于康震,唐秀英等.禽流感灭活疫苗的标准化研究[J].中国兽药杂志,2002,36(4):41-44.
    [64]谢快乐.台湾畜牧兽医学会会报,1992,59:45-55.
    [65]Kodihalli S,Sivanandan V,Nagaraja KV et al.A type-specific avian influenza virus subunit vaccine for turkeys:induction of protective immunity to challenge infection [J].Vaccine,1994,12(15):1467-1472.
    [66]Crawford J,Wilkinson B,Vosneseuskey A et al.Baculovieas derived hemagglutinin Vaccines protect against lethal influenza infections by avian H5 and H7subtypes[J].Vaccine,1999,17:2265-2274.
    [67]刘明.H5和H7亚型禽流感分子防制技术的研究[D].哈尔滨:中国农业科学院哈尔滨兽医研究所,2000.
    [68]Johansson BE.Immunization with influenza A virus hem agglutinin and neurminidase produced in recombinant baculovirus results in balanced and broadened response Sugerior to conventional[J].Vaccine,1999,17(15-16):2073-2080.
    [69]De BK,Shaw MW,Rota PAet al.Protection against virulent H5 avian influenza virus infection in chickens by an inactivated vaccine produced with recombinant vaccinia virus[J].Vaccine,1988,6(3):257-261.
    [70]Chambers TM,Kawaoka Y,Webster RG.Protection of chickens from lethal influenza infection by vaccinia-expressed hemagglutinin[J].Virology,1988,167(2):414-421.
    [71]Taylor J,Weinberg R,Languet Bet al.Recombinant fowlpox virus inducing protective immunity in non-avian species[J].Vaccine,1988,(6):497-503.
    [72]Chuan ling Qiao,Kang zhen Y,YI Ping Jing et al.Protection of chickens against highly lethal H5N1 and H7N1 avian influenza viruses with a recombinant fowlpox virus co-expressing H5 hemagglutinin and NI neuraminidase genes[J].Avian Pathology,2003,32(1):25-32.
    [73]Webster RG,Kawaoka Y,Taylor J et al.Efficacy of nucleoprotein and haemagglutinin antigens expressed in fowlpox virus as vaccine for influenza in chickens [J].Vaccine,1991,9:303-308.
    [74]Tripathy DN,Schnitzlein WM.Expression of avian influenza virus hemagglutinin by recombinant fowlpox virus[J].Avian Dis,1991,35:186-191.
    [75]Chambers TM,Kawaoka Y,Webster RG.Protection of chickens from lethal influenza infection by vaccinia-expressed hemagglutinin[J].Virology,1988,167(2):414-421.
    [76]贾立军,彭大新,张艳梅等.H5亚型禽流感重组鸡痘病毒活载体疫苗的构建及其遗传稳定性与免疫效力[J].微生物学报,2003,43(6):721-726.
    [77]贾立军,张艳梅,李军伟等.H5亚型禽流感重组鸡痘病毒活载体疫苗的免疫效力[J].扬州大学学报(农业与生命科学版),2003,24(2):11-13.
    [78]贾立军,刘秀梵,张艳梅等.表达H5亚型禽流感病毒HA基因的重组鸡痘病毒在水禽的免疫效力[J].中国兽医学报,2004,24(5):417-419.
    [79]陈素娟,孙蕾,刘武杰等.共表达H5亚型禽流感病毒HA和NA基因的重组鸡痘病毒及其免疫效力[J].微生物学报,46(1):111-114.
    [80]马文军,陈化兰,于康震等.H7亚型禽流感病毒血凝素基因重组鸡痘病毒活载体疫苗免疫原性评估[J].中国预防兽医学报,2004,26(1):7-9.
    [81]程坚,刘秀梵,彭大新等.表达H9亚型禽流感病毒血凝素基因的重组鸡痘病毒及其免疫效力[J].微生物学报,2002,42(4):42-44.
    [82]程坚,刘秀梵,彭大新等.共表达H9亚型禽流感行性感冒病毒血凝素基因和鸡Ⅱ型干扰素基因的重组鸡痘病毒及其免疫效力[J].病毒学报,2003,19(1):52-57.
    [83]乔传玲,姜永萍,于康振等.表达禽流感HA和NP双基因重组禽痘病毒的免疫保护性[J].畜牧兽医学报,2004,35(2):178-181.
    [84]陈素娟,石火英,孙蕾等.共表达H5和H9亚型禽流行性感冒病毒血凝素基因的重组禽痘病毒及其免疫效力fJ].病毒学报,2005,21(4):84-88.
    [85]王振国,金宁一,马明潇等.共表达H5N1、HTNl亚型AIV与鸡IL-18多价重组鸡痘病毒免疫保护性研究[J].中国病毒学,2005,20(6):607-612.
    [86]Swaye DE,Beck JR,Kinney N.Failure of a recombinant fowl pox virus vaccine containing an avian influenza hemagglutinin gene to provide consistent protection against influenza in chickens preimmunized with a fowl pox vaccine[J].Avian Dis,2000,44(1):132-137.
    [87]Toro H,Tang DC,Suarez DL et al.Protective avian influenza in ovo vaccination with non-replicating human adenovirus vector[J].Vaccine,2007,25(15):2886-2891.
    [88]Ge J.Deng G,Wen Z et al.Newcastle disease virus-based live attenuated vaccine completely Protects chiekens and mice from lethal challenge of homologous and heterologous H5N 1 avian influenza viruses[J].Journal of Virology,2007,81(1):150-158.
    [89]Brown DW,Kawaoka Y,Webster RG et al.Assessment of retrovirus-expressed nucleoprotein as a vaccine against lethal influenza of chicken[J].Avian Dis,1992,36(3):515-520.
    [90]Cohen J.Naked DNA points way to vaccines[J].Science,1993,259:1691-1692.
    [91]宋红芹,钱忠明.核酸疫苗在家禽上的应用研究[J].畜牧兽医师,2005,179:54-55.
    [92]Donnelly J J,Friedman A,Ulmer JB et al.Further protection against antigenic drift of influenza virus in a ferret model by DNA vaccination[J].Vaccine,1997,15(8):865-868.
    [93]Robinson HL,Hunt LA,Webster RG.Protection against a lethal influenza virus challenge by immunization with a haemagglutinin-expressing plasmid DNA[J].Vaccine,1993,11(9):957-960.
    [94]陈化兰,于康震,田国滨等.DNA免疫诱导鸡对禽流感病毒的免疫保护反应[J].中国农业科学,1998,31(5):63-68.
    [95]姜永萍,于康震,邓国华等.表达H5亚型禽流感病毒HA基因的DNA疫苗免疫保护效力研究[J].中国农业科学,2004,37(7):1071-1075.
    [96]彭金美,童光志,王云峰等.抗禽流感病毒多表位DNA疫苗的构建及其免役效力研究[J].生物工程学报,2003,19(5):623-627.
    [97]何宏轩,秦曦明,张强哲等.H9N2亚型禽流感病毒HA基因的克隆及其DNA疫苗的动物免疫试验[J].生物化学与生物物理进展,2004,31(2):163-166.
    [98]张芳芳,姜永萍,刘光亮等.表达禽流感病毒H5HA、H7HA基因DNA疫苗的免疫原性研究[J].中国预防兽医学报,2006,28(1):1-5.
    [99]Davis HL,Whalen RG,Demeneix BA.Direct gene transfer into skeletal muscle in vivo:factors affecting efficiency of transfer and stability of expression[J].Hum Gene Ther,1993,4(2):151-159.
    [100]赵晓民,张强哲,段明星等.H5N1亚型禽流感病毒HA基因DNA疫苗的构建和活体电击免疫试验初报[J].中国农学通报,2005,21(5):78-80.
    [101]焦凤超,焦新安,潘志明等.减毒鼠伤寒沙门氏菌介导的H5亚型禽流感病毒DNA疫苗的实验免疫效果研究[J].病毒学报,2006.22(1):6-10.
    [102]姜永萍,张洪波,李呈军等.密码子的鸡体偏嗜性优化增强H5亚型禽流感HA基因的表达水平和免疫原性[J].免疫学杂志,2005,21(5):377-381.
    [103]刘岩,由振强,许健等.ChIL-2对H5亚型AIV疫苗免疫增强作用研究[J].浙江大学学报(农业与生命科学版),2005,31(6):797-801.
    [104]周红蕾,李春玲,王贵平等.脂质体作为疫苗免疫佐剂的应用研究进展[J].动物医学进展,2006,27(2):34-38.
    [105]Suarez DL,Schultz-Cherry S.The effect of eukaryotic expression vectors and adjuvants on DNA vaccines in chickens using an avian influenza model[J].Avian Dis,2000,44(4):861-868.
    [106]陈吉祥,薛飞群,李广林等.禽流感病毒HA基因核酸疫苗脂质体制备方法的研究[J].中国兽医学报,1999,19(3):12-14.
    [107]李宝全,彭军,牛钟相等.抗H9亚型禽流感病毒独特型抗体的制备与应用[J].中国兽医学报,2006,26(6):603-605.
    [108]石火英,张小荣,孙学军等.反向遗传操作技术产生全禽源致弱的H5N1亚型禽流感病毒的免疫保护性试验[J].中国家禽,2005,27(17):11-13.
    [109]宋长征,Hugh SM.禽流感病毒血凝素疫苗在转基因马铃薯中的表达[J].生物技术,2001,11(5):122.
    [110]Sims LD,Domenech J,Benigno C et al.Originan devolution of highly pathogenic H5N1 avian in fluenzain Asia[J].Vet Rec,2005,15(6):159-164.
    [111]World Health Organization.H5N1 influenza timeline.http://www.who.int/csr/disease/avian_influenza/timeline.pdf(accessed Oct 2006).
    [112]黄艳新,鲍永利,李玉新等.抗原表位预测的免疫信息学方法研究进展[J].中国免疫学杂志,2008,24(9):758-762
    [113]贾雷立.禽流感病毒分离、复合多表位重组体构建及实验免疫研究[D].吉林省:吉林大学博士论文.2006.
    [114]陈义锋.多亚型多表位流感病毒核酸疫苗与重组鸡痘病毒构建及实验免疫研究[D].吉林省:吉林大学硕士论文.2007.
    [115]赵翠青.多价流感核酸疫苗的构建及实验免疫研究[D].吉林省:吉林大学硕士论文.2008.
    [116]高明,王海平,王全立.Ⅱ类抗原提呈的分子机制及分子伴侣Ii研究进展[J].微生物学免疫学进展,2004,32(4):70-72.
    [117]Abbas AK,Lichtman AH,Pober JS.Cellular and Molecular Immunology[J].WB Saunders Company,2000,4:56-61.
    [118]Parida R,Shaila MS,Mukherjee S et al.Computational analysis of proteome of H5N1 avian influenza virus to define T cell epitopes with vaccine potential[J].Vaccine,2007,25(43):7530-7539.
    [ll9]Parker KC,Bednarek MA,Coligan JE et al.Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains [M].J Immunol,1994,152(1):163-175.
    [120]Rammensee H,Bachmann J,Emmerich NP et al.SYFPEITHI:database for MHC ligands and peptide motifs[M].Immunogenetics,1999,50(3-4):213-219.
    [121]D'Amaro J,Houbiers JG,Drijfhout JW et al.A computer program for predicting possible cytotoxic T lymphocyte epitopes based on HLA class I peptide-binding motifs[M].Hum Immunol,1995,43(1):13-18.
    [122]Zhang GL,Khan AM,Srinivasan KN et al.MULTIPRED:a computational system for prediction of promiscuous HLA binding peptides[J].Nucleic Acids Res,2005,33(Web Server issue):W172-179.
    [123]Saha S,Raghava GPS.BcePred:Prediction of Continuous B-Cell Epitopes in Antigenic Sequences Using Physico-chemical Properties[J].ICARIS LNCS,2004,3239:197-204.
    [124]Bui HH,Peters B,Assarsson E et al.Ab and T cell epitopes of influenza A virus,knowledge and opportunities[J].Proc Natl Acad Sci USA,2007,104(1):246-251.
    [125]张伯伟,赵磊,郭如华等.DNA基因芯片在中华骨髓库HLA组织配型检测中的应用价值[J].中国卫生工程学,2006,5(4):231-232.
    [126]Theobald M,Ruppert T,Kuckelkorn U et al.The sequence alteration associated with a mutational hotspot in p53 protects cells from lysis by cytotoxic T lymphocytes specific for a flanking peptide epitope[J].Exp Med,1998,188:1017-1028.
    [127]Holzhutter HG,Frommel C,Kloetzel PM.A theoretical approach towards the identification of cleavage-determining amino acid motifs of the 20S proteasome[J].Mol.Biol,1999,286:1251-1265.
    [128]Beekman N,van Veelen PA,van Hall T et al.Abrogation of CTL epitope processing by single amino acid substitution flanking the C-terminal proteasome cleavage site [J]. Immunol 2000, 164: 1898-1905.
    [129]Livingston BD, Newman M, Crimi C et al. Optimization of epitope processing enhances immunogenicity of multiepitope DNA vaccines [J]. Vaccine, 2001, 19: 4652-4660.
    [130]Tian HJ, Xiao Y, Zhu M et al. HIV epitope-peptides in aluminum adjuvant induced high levels of epitope-specific antibodies [J]. Int Immunopharmacol, 2001, 1: 763-768.
    [131]Toes RE, Hoeben RC, van der Voort EI et al. Protective anti-tumor immunity induced by vaccination with recombinant adenoviruses encoding multiple tumor-associated cytotoxic T lymphocyte epitopes in a string-of-beads fashion [J]. Proc Natl Acad Sci USA, 1997,94: 14660-14665.
    [132]Velders MP, Weijzen S, Eiben GL et al. Defined flanking spacers and enhanced proteolysis is essential for eradication of established tumors by an epitope string DNA vaccine [J]. Immunol, 2001, 166:5366-5373.
    [133]Livingston B, Crimi C, Newman M et al. A rational strategy to design multiepitope immunogens based on multiple th lymphocyte epitopes [J]. Immunol, 2002, 168:5499-550.
    [134]Theisen DM, Bouche FB, EI Kasmi KC et al. Differential antigenicity of recombinant polyepitope-antigens based on loop-and helix-forming B and T cell epitopes[J]. J Immunol Methods, 2000, 242: 145-157.
    [135]Oishi Y, Onozuka A, Kato H et al. The effect of amino acid spacers on the antigenicity of dimeric peptide-inducing cross-reacting antibodies to a cell surface protein antigen of Streptococcus mutans.Oral Microbiol[J]. Immunol, 2001, 16: 40-44.
    [136]Yano A, Onozuka A, Asahi-Ozaki Y et al. An ingenious design for peptide vaccines [J]. Vaccine, 2005, 23: 2322-2326.
    [137]Livingston BD, Alexander J, Crimi C et al. Altered helper T lymphocyte function associated with chronic hepatitis B virus infection and its role in response to therapeutic vaccination in humans[J]. J Immunol. 1999, 162(5): 3088-3095.
    [138] Alexander J, Fikes J, Hoffman S et al. The optimization of helper T lymphocyte (HTL) function in vaccine development [J]. J Immunol Res, 1998, 18(2): 79-92.
    [139]Ishioka GY. Fikes J, Hermanson G et al. Utilization of MHC class I transgenic mice for development of minigene DNA vaccines encoding multiple HLA-restricted CTL epitopes[J].J Immunol,1999,162(7):3915-3925.
    [140]Tonegawa K,Nobusawa E,Nakajima K et al.Analysis of epitope recognition of antibodies induced by DNA immunization against hemagglutinin protein of infuenza A virus[J].Vaccine,2003,21(23):3118-3125.
    [141]Hirsch VM,Fuerst TR,Sutter Get al.Patterns of viral replication correlate with outcome in simian immunodeficiency virus(SIV)-infected macaques:effect of prior immunization with a trivalent SIV vaccine in modified vaccinia virus Ankara[J].J Virol,1996,70(6):3741-3752.
    [142]Sims LD,Domenech J,Benigno C et al.Origin and evolution of highly pathogenic H5N 1 avian influenza in Asia.[J].Vet Rec,2005,157(6):159-164.
    [143]World Health Organization.H5N1 influenza timeline[EB/OL].(2006-10)[2008-12-14].http://www.who.int/csr/disease/avian_influenza/timeline.
    [144]World Health Organization.Cumulative number of confirmed human cases of avian influenza A/(H5N1) reported to WHO[EB/OL].(2006-10-16)[2008-12-14].http://www.who.int/csr/disease/avian_influenza/country/cases_table_2006_10_16/erdindex .html.
    [145]J.萨姆不鲁克,D.W.拉赛尔著,分子克隆实验指南[M]:第三版 黄培堂等译,科学出版社 2002.
    [146]Pyle GF.The diffusion of influenza:patterns and paradigms[J].Totowa,NJ:Rowman & Littlefield,1986.
    [147]Beveridge WI.The chronicle of influenza epidemics[J].Hist Philos Life Sci 1991,13:223-234.
    [148]Subbarao K,Klimov A,Katz J et al.Characterization of an avian influenza A(H5N1) virus isolated from a child with a fatal respiratory illness[J].Science,1998,279:393-396.
    [149]Fouchier RA,Schneeberger PM,Rozendaal FW et al.Avian influenza A virus(H7N7) associated with human conjunctivitis and a fatal case of acute respiratory distress syndrome[J].Proc Natl Acad Sci USA,2004,101(5):1356-1361.
    [150]Francis T Jr,Salk JE,Quilligan JJ Jr.Experience with vaccination against influenza in the spring of 1947[J].Am J Public Health 1947,37:1013-1016.
    [151]De Filette M,Min Jou W,Birkett A et al.Universal influenza A vaccine:optimization of M2-based constructs[J].Virology,2005,337(1 ):149-161.
    [152]Saha S,Yoshida S,Ohba K et al.A fused gene of nucleoprotein(NP) and herpes simplex virus genes(VP22) induces highly protective immunity against different subtypes of influenza virus[J].Virology,2006,354(1):48-57.
    [153]Yang W,Jackson DC,Zeng Q et al.Multi-epitope schistosome vaccine candidate tested for protective immunogenicity in mice[J].Vaccine,2001,19(1):103-113.[154]Hanke T,Neumarm VC,Blanchard T K et al.Effective induction of HIV-
    specific CTL by multi-epitope using gene gun in a combined vaccination regime[J].Vaccine,1999,17(6):589-596.
    [155]吴玉章,刘茂昌,贾正才等.HBV新型免疫原的设计、合成及免疫原性研究[J].第三军医大学学报,2'000,22(10):919-923.
    [156]徐道华,夏永鹏,邱宗荫等.宫颈癌治疗性多肽疫苗的分子设计及免疫学功能研究[J].中国免疫学杂志,2006,22(5):944—947.
    [157]Putkonen P,Makitalo B,Bottiger D et al.Protection of human immunodeficiency virus type 2-exposed seronegative macaques from mucosal simian immunodeficiency virus transmission[J].J Virol,1997,71(7):4981-4984.
    [158]Benson J,Chougnet C,Robert-Guroff Met al.Recombinant vaccine-induced protection against the highly pathogenic simian immunodeficiency virus SIV(mac251):dependence on route of challenge exposure[J].J Virol,1998,72(5):4170-4182.
    [159]Altmuller A,Fitch WM,Scholtissek C.Biological and genetic evolution of the nucleoprotein gene of human influenza A viruses[J]J Gen Virol,1989,70(pt 8):2111-2119.
    [160]Shu LL,Bean WJ,Webster RG.Analysis of the evolution and variation of the human influenza A virus nucleoprotein gene from 1933 to 1990[J].J Virol,1993,67(5):2723-2729.
    [161]McMichael AJ,Michie CA,Gotch FM et al.Recognition of influenza A virus nucleoprotein by human cytotoxic T lymphocytes[J].J Gen Virol,1986,67(4):719-726.
    [162]Townsend AR,Rothbard J,Gotch FM et al.The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides[J].Cell,1986,44(6):959-968.
    [163] Jameson J, Cruz J, Ennis FA et al. Human cytotoxic T lymphocyte repertoire to influenza A viruses[J]. J Virol, 1998, 72(11): 8682-8689.
    [164]Chinnasamy D, Milsom MD, Shaffer J et al. Multicistronic lentiviral vectors containing the FMDV 2A cleavage factor demonstrate robust expression of encoded genes at limiting MOI [J]. J Virol, 2006, 3:14.
    [165]Furler S, Paterna JC, Weibel M et al. Recombinant AAV vectors containing the foot and mouth disease virus 2A sequence confer efficient bicistronic gene expression in cultured cells and rat substantia nigra neurons[J]. Gene Ther, 2001, 8(11): 864-873.
    [166]de Felipe P, Martin V, Cortes ML et al. Izquierdo M: Use of the 2A sequence from foot-and-mouth disease virus in the generation of retroviral vectors for gene therapy [J]. Gene Ther, 1999, 6: 198-208.
    [167]Klump H, Schiedlmeier B, Vogt B et al. Retroviral vector-mediated expression of HoxB4 in hematopoietic cells using a novel coexpression strategy [J]. Gene Ther, 2001, 8(10): 811-817.
    [168]Stripecke R, Cardoso AA, Pepper KA et al. Lentiviral vectors for efficient delivery of CD80 and granulocyte-macrophage- colony- stimulating factor in human acute lymphoblastic leukemia and acute myeloid leukemia cells to induce antileukemic immune responses [J]. Blood, 2000, 96(4): 1317-1326.
    [169]Robinson HL, Boyle CA, Feltguate et al. DNA immunization for influenza virus: studies using hemagglutinin and nucleoprotein expressing DNAs [J]. J Infect Dis, 1997, 176:S50-55.
    [170]Chen Z, Matsuo K, Asanuma H et al. Enhanced protection againsta lethal influenza virus challenge by immunization with both hemagglutinin and neuraminidase expressing DNAs [J]. Vaccine, 1999, 17(7-8): 653-659.
    [171]Ljungberg K, Kolmskog C, Wahren B et al. DNA vaccination of ferrets with chimeric influenza A virus hemagglutinin (H3) genes [J]. Vaccine, 2002, 20(16): 2045-2052.
    [172]Wang SX, Taaffe J, Parker C et al. Hemagglutinin (HA) Proteins from H1 and H3 Serotypes of Influenza A Viruses Require Different Antigen Designs for the Induction of Optimal Protective Antibody Responses as Studied by Codon-Optimized HA DNA Vaccines [J]. J Virol, 2006, 80(23): 11628-11637.
    [173]Donnelly JJ, Ulmer JB, Liu MA. Protective efficacy of intramuscular immunization with naked DNA [J]. Ann N Y Acad Sci, 1995, 772: 40-46.
    [174]Ulmer JB, Donnelly JJ, Parker SE et al. Heterologous protection against influenza by injection of DNA encoding a viral protein [J]. Science, 1993, 259(5102): 1745-1749.
    [175]Stohr K. Overview of the WHO Global Influenza Programme [J]. Dev Biol (Basel), 2003, 115:3-8.
    [176]Gross A, Hermogenes AW, Sacks HS et al. The efficacy of influenza vaccine in elderly persons: a meta-analysis and review of the literature [J]. Ann Intern Med, 1995, 123(7): 518-527.
    [177]Palache AM. Influenza vaccine: a reappraisal of their use [J]. Drugs, 1997, 54(6): 841-856.
    [178]Carrat F, Flahault A. Influenza vaccine: The challenge of antigenic drift[J]. Vaccine, 2007, 25(39-40): 6852-6862.
    [179]Gerdil C. The annual production cycle for influenza vaccine [J]. Vaccine, 2003, 21(16): 1776-1779.
    [180]Palese P. Making better influenza virus vaccines? [J]. Emerg Infect Dis, 2006, 12(1): 61-65.
    [181]Fedson DS. Preparing for pandemic vaccination: an international policy agenda for vaccine development [J]. J Public Health Policy, 2005, 26(1): 4-29.
    [182]Arnon R, Levi R. Synthetic recombinant vaccine induce anti-influenza long-term immunity and cross-strain protection [J]. New York: Plenum Press, 1996, 397: 23-29.
    [183]Levi R, Arnon R. Synthetic recombinant influenza vaccine induces efficient long-term immunity and cross-strain protection [J]. Vaccine, 1996, 14(1): 85-92.
    [184]Ben-Yedidia T, Marcus H, Reisner Y et al. Intranasal administration of peptide vaccine protects human/mouse radiation chimera from influenza infection [J]. Int Immunol, 1999, 11(7): 1043-1051.
    [185]Ernst WA, Kim HJ, Tumpey TM et al. Protection against H1, H5, H6 and H9 influenza A infection with liposomal matrix 2 epitope vaccines[J]. Vaccine, 2006, 24(24): 5158-5168.
    [186]张立树,金宁一,宋英今等.HIV-1复合多表位-p24嵌合基因重组鸡痘病毒苗的构建及小鼠免疫原性[J].中国科学C辑:生命科学,2007.37(1):65-72.
    [187]张立树,金宁一,宋英今等.恒河猴对人工设计的HIV-1 DNA疫苗的免疫反应[J].科学通报,2006,51(10):1169-1175.
    [188]汪晓华,童德妍,徐焕宾等.含多抗原表位的嵌合SARS-CoV基因疫苗的构建和免疫原性研究[J].复旦学报(医学版),2005,32(2):31.
    [189]Capua I,Alexander DJ.Avian influenza:recent developments[J].Avian Pathol,2004,33(4):393-404.
    [190]Subbarao K,Klimov A,Katz J et al.Characterization of an avian influenza A (H5N1) virus isolated from a child with a fatal respiratory illness[J].Science,1998,279(5349):393-396.
    [191]Scholtissek C,Rohde W,Von Hoyningen Vet al.On the origin of the human influenza virus subtypes H2N2 and H3N2[J].Virology,1978,87(1):13-20.
    [192]Reid AH,Taubenberger JK,Fanning TG.Evidence of an absence:the genetic origins of the 1918 pandemic influenza virus[J].Nat Rev Microbiol,2004,2(11):909-914.
    [193]Taubenberger JK,Reid AH,Krafft AE et al.Initial genetic characterization of the 1918 "Spanish" influenza virus[J].Science,1997,275(5307):1793-1796.
    [194]Yen HL,Monto AS,Webster RG et al.Virulence may determine the necessary duration and dosage of oseltamivir treatment for highly pathogenic A/Vietnam/1203/04(H5N1) influenza virus in mice[J].J Infect Dis 2005,192(4):665-672.
    [195]Webster RG.Potential advantages of DNA immunization for influenza epidemic and pandemic planning[J].Clin Infect Dis,1999,28(2):225-229.
    [196]Jiang YP,Yu KZ,Zhang HB et al.Enhanced protective efficacy of H5 subtype avian influenza DNA vaccine with codon optimized HA gene in a pCAGGS plasmid vector [J].Antiviral Research,2007,75(3):234-241.
    [197]Wang SX,Zhang CH,Zhang Let al.The relative immunogenicity of DNA vaccines delivered by the intramuscular needle injection,electroporation and gene gun methods[J].Vaccine,2008,26(17):2100-2110.
    [198]Sharpe M,Lynch D,Topham Set al.Protection of mice from H5N1 influenza challenge by prophylactic DNA vaccination using particle mediated epidermal delivery[J].Vaccine,2007,25(34):6392-6398.
    [199]Operschall E, Schuh T, Heinzerling L et al. Enhanced protection against viral infection by co-administration of plasmid DNA coding for viral antigen and cytokines in mice[J]. J Clin Virol, 1999, 13(1-2): 17-27.
    [200]Connor RJ, Kawaoka Y, Webster RG et al. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates [J]. Virology, 1994, 205(1): 17-23.
    [201]Gambaryan AS, Tuzikov AB, Piskarev VE et al. Specification of receptor-binding phenotypes of influenza virus isolates from different hosts using synthetic sialylglycopolymers: non-egg-adapted human H1 and H3 influenza A and influenza B viruses share a common high binding affinity for 6- sialyl (N-acetyllactosamine) [J]. Virology, 1997,232(2): 345-350.
    [202]Matrosovich MN, Gambaryan AS, Teneberg S et al. Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site[J]. Virology, 1997, 233(1): 224-234.
    [203]Matrosovich MN, Matrosovich TY, Gray T et al. Human and avian influenza viruses target different cell types in cultures of human airway epithelium [J]. Proc Natl Acad Sci USA, 2004, 101(13): 4620-4624.
    [204]Rogers GN, D'Souza BL. Receptor binding properties of human and animal H1 influenza virus isolates [J]. Virology, 1989, 173(1): 317-322.
    [205]Rogers GN, Paulson JC. Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin[J]. Virology, 1983, 127(2): 361-373.
    [206]Couceiro JN, Paulson JC, Baum LG. Influenza virus strains selectively recognize sialyloligosaccharides on human respiratory epithelium; the role of the host cell in selection of hemagglutinin receptor specificity Receptor determinants of human and animal influenza virus isolates: differences in receptor specificity of the H3 hemagglutinin based on species of origin[J]. Virus Res, 1993, 29(2): 155-165.
    [207]Ito T, Couceiro JN. Kelm S et al. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential[J]. J Virol, 1998, 72(9): 7367-7373.
    [208]Andrewes CH, Worthington G. Some new or little-known respiratory viruses[J]. Bull World Health Organ, 1959, 20(2-3): 435-443.
    [209]Horirnoto T. Kawaoka K. Pandemic threat posed by avian influenza A viruses[J]. Clin Microbiol Revi.2001,14(1):129-149.
    [210]Gregory V,Lim W,Cameron K et al.Infection of a child in HongKong by an influenza A H3N2 virus closely related to viruses circulating in Europeanpigs[J].J Gen Virol,2001,82(6):1397-1406.
    [211]MacLaughlin FC,Mumper RJ,Wang JJ et al.Chitosan and deploy merized chitosan oligomers as condensing carrier for in vivo plasmid delivery[J].J Controlled Release,1998,56(1-3):259-272.
    [212]Aspden TJ,Mason JD,Jones NS et al.Chitosan as a nasal delivery system:the effect of chitosan solutions on in vitro and in vivo mucocilary transport rates in human turbinates and volunteers[J].J Pharm Sci,1997,86(4):509-513.
    [213]Velinova M,Read N,Kirby C et al.Morphological observations on the fate of liposomes in the regional lymphs nodes after footpad injection into rats[J].Biochim Biophys Acta,1996,1299(2):207-215.
    [214]Bacon A,Makin J,Sizer PJ et al.Carbohydrate biopolymers enhance antibody responses to mucosally delivered vaccine antigens[J].Infection and Immunity,2000,68(10):5764-5770.
    [215]Seferian PG,Martinez ML.Immune stimulating activity of two new chitosan containing adjuvant formulations[J].Vaccine,2000,19(6):661-668.
    [216]常海艳.流感病毒灭活疫苗新型佐剂-壳聚糖增强免疫作用研究[J].中国生物制品学杂志,2004,17(6):383-395.
    [217]谢勇,龚燕锋.以壳聚糖为佐剂的幽门螺杆菌疫苗免疫小鼠的Th免疫应答[J].中国生化药物杂志,2005,26(5):267-269.
    [218]李晓英,王红宁,黄勇等.禽传染性支气管炎脂质体、壳聚糖/DNA疫苗免疫效果比较研究[J].畜牧兽医学报,2006,37(12):1319-1322.
    [219]Summerfield A,Rziha HJ,Saalmuller A.Functional Characterization of Porcine CD4+CD8+ Extrathymic T Lymphocytes[J].Cellular Immunology,1996,168(2):291-296.
    [220]Larsen DL,Karasin A,Olsen CW.Immunization of pigs against influenza virus infection by DNA vaccine priming followed by killed virus vaccine boosting[J].Vaccine,2001,19(20-22):2842-2853.
    [221]Scholtissek C,Rohde W.Von Hoyningen V et al.On the origin of the human influenza virus subtypes H2N2 and H3N2 [J]. Virology, 1978, 87(1): 13-20.
    [222]Capua I, Alexander DJ. Avian Influenza: recent developments [J] .Avian Pathol, 2004, 33(4):393-404.
    [223]Dennis J, Alexander. How dangerous are avian influenza viruses for humans? [J]. World poultry, 2000, Special: 11-12.
    [224]WiIliam N. Flu pandemic fears continue [J]. Curr Biol, 2005, 15(9): R313-R314.
    [225]William N. Alarm bells ring over bird flu threat [J]. Curr Biol, 2005, 15(4): R107-R108.
    [226]Svennerholm AM, Quiding-Jarbrink M. Priming and expression of immune responses in the gastric mucosal [J]. Microbes Infect, 2003, 5(8): 731-739.
    [227]Guy B, Hessler C, Fourage S et al. Systemic immunization with urease protects mice against Helicobacter pylori infection [J]. Vaccine, 1998, 16(8): 850-856.
    [228]Ernst PB, Pappo J. Preventive and therapeutic vaccines against Helicobacter pylori: current status and future challenges [J]. Curr Pharm Des, 2000, 6(15): 1557-1573.
    [229]Ernst PB, Pappo J. T-cell-mediated mucosal immunity in the absence of antibody: lessons from Helicobacter pylori infection [J]. Acta Odontol Scand, 2001, 59(4): 216-221.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700