用户名: 密码: 验证码:
山地和岩溶地区大直径端承灌注桩质量与缺陷处理效果检测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩的检测包括桩身完整性和承载力。对大直径端承型桩而言,当桩身完整、沉渣厚度满足规范要求、桩端持力层的性质满足设计要求的前提下,桩的承载力可认为合格。本文围绕如何采用轻便、快速、有效的方法对大直径端承型桩这三个方面的检测进行研究,摸索总结出了一整套针对大直径端承型桩的检测方法组合,取得了以下创新性的研究成果:
     (1)针对大直径灌注桩反射波波速测不准的问题,通过现场实验与理论分析,建立了考虑时间滞后的完整桩纵波波速计算公式、缺陷位置计算公式以及有助于判断桩身下部缺陷段缺陷的严重程度的平均波速计算公式。
     (2)利用小波分析的时频分析特点,将其用于基桩的低应变检测,在识别桩身下部缺陷、桩底沉渣、桩端持力层性质中有明显的优越性,取得了很好的效果。
     (3)针对反射波法检测嵌岩桩时,在一定条件下桩身下部缺陷、沉渣、桩端持力层缺陷等存在检测盲区,对桩身下部存在缺陷、沉渣的情况进行了数值模拟,了解反射波曲线特征,得到的结果能指导实际检测资料的分析;提出了用低应变反射波法、频率-初速度法和钻芯法对端承桩质量进行组合检测的方法,当反射波波形曲线异常或动刚度明显偏低时,可认为桩底沉渣较厚或桩端持力层性状异常,再用钻芯法验证。
     (4)针对嵌岩桩加固后是否达到要求的问题,提出通过比对加固前后的反射波及其小波分解各频带的波形和动刚度的变化,并将它们与正常桩的波形和动刚度对比,必要时用静载荷试验或钻芯法验证的方法检测加固效果。结合工程实例,证实本方法的可行性,并能取得很好的效果。研究表明,加固后,原缺陷在反射波及其小波分解各频带的波形上无反映,动刚度值在正常范围时,可认为加固效果良好。
     (5)针对目前声波透射法检测桩身混凝土质量缺陷所采用分析方法的不足,提出了一种采用多参量信息反映桩身混凝土质量缺陷的新方法—多参量综合分析法。该方法假定混凝土的缺陷信息量是与缺陷有关的表征量的线性组合,将突出混凝土缺陷的问题,归结为计算表征量的相关矩阵的最大特征值和相应的特征向量;通过趋势分析,除去缺陷信息量背景值,得到缺陷信息量的异常值。结合工程实例,证实本方法的可行性,并能取得很好的效果。研究表明:采用不同参量间的权系数计算混凝土缺陷信息量,得到的异常曲线比单因素分析法和多因数概率分析法能更合理地反映桩身混凝土质量情况;避免单因素分析法引起的误判、漏判;缺陷信息量异常值越大,混凝土的缺陷越严重。
Pile testing includes integrity and bearing capability of pile. For large diameter end-bearing pile, it is agreed that good integrity and bottom sediment meeting standard specification and normal characters of pile bearing stratum are the key factors ensuring bearing capability of pile. The research of the three aspects of large diameter end-bearing pile testing is discussed, and the combination of multi-method is formed. The following creative achievements have been obtained through this research:
     1. In order to solve the uncertainty of P-wave velocity, three formulas for the velocity of perfect pile and for the site of defect and for the average velocity of defect in the lower section of the pile are deducd, with which the severity of the defect can be estimated.
     2. Wavelet analysis, as the typical represent of time-frequency analysis, has been applied to low-strain reflected wave, which has obvious advantages in recognition of the abnormalities of defect in the lower section of the pile and bottom sediment and characters of pile bearing stratum.
     3. With the help of numerical simulation of defect in the lower section of the pile and of bottom sediment, reflected wave curve characteristics and the size of non-detection zone are understood. In practical engineering testing, the combination of low-strain reflected wave method, frequency-initial velocity method and core drilling method should be used to do the end-bearing piles and reinforcement effect testing so that they can verify mutually and the reliability of the testing can be enhanced. The abnormalities of the reflected curve of pile bottom or of obvious low dynamic stiffness would be considered too thick bottom sediment or abnormal characters of pile bearing stratum, and then which would be validated with core drilling method.
     4. In order to study the reinforcement effect of the rock-socketed piles,through deeply investigating the changes of the reflected curve and its independent wavelet decomposition frequency bands and the dynamic stiffness before and after reinforcement and comparing the reflected curve and its independent frequency bands and the dynamic stiffness after reinforcement with those of the perfect piles under the same conditions, validating with static load testing or core drilling method if necessary, the analysis and qualitative evaluation on the reinforcement effect of rock-socketed piles are carried out. Based on the practical examples, the feasibility of this method was proved and very good results can be achieved. The results show that the reflection of the original defects in the reflected wave was disappeared with the dynamic stiffness in the normal range, can be considered a good reinforcement effect.
     5. In view of the disadvantages of the present analysis methods of cross-hole sonic logging to detect extent and location of pile defects, A new method called comprehensive analysis of multi-parameter was put forward to assess the concrete quality using several parameters associated with defects. Assume that the defect information is linear combination of the parameters, emphasizing defects boils down to calculating the largest eigenvalue and corresponding eigenvectors of the correlation matrix of the parameters. After the trend analysis, the background values were removed from the defect information to get abnormal values of the defect information. Based on the practical examples, the feasibility of this method was proved and very good results can be achieved. As a result, the abnormal curves of the information of concrete defects, which calculated with different weights of the parameters, can be more reasonable to assess the concrete quality than single factor analysis and numerous factor probability method,and avoid misjudgment caused by single factor analysis.In addition, the greater the abnormal value, the more serious the concrete defect is.
引文
[1]中华人民共和国行业标准编写组.JGJ 106-2003.建筑基桩检测技术规范[S].北京:中国建筑工业出版社,2003-03-21
    [2]Isaacs D. V.. Reinforced Concrete Pile Formulae[J]. Transactions of the Institute of Engineers,1931,370(7):312-323
    [3]Fox E. N. Stress Phenomena Occurring in Pile Driving[J]. Engineering,1932, 134(9):214-220
    [4]Kanschin A A, Plutalow A A. On the Computation of Piles, Based on the Theory of Axial Impact. In:Proceedings, First International Conference on Soil Mechanics and Foundation Engineering. Boston,1936
    [5]Hussein M. H, Goble G. G. A Brief History of the Application of Stress-Wave Theory to Piles. in:Current Practices and Future Trends in Deep Foundations, 2004.186-201
    [6]Davis, A.G. and C.S. Dunn. From Theory to Experience with the Nondestructive Vibration Testing of Piles[J]. Proceedings of the Institution of Civil Engineers. Part 2, Vol.57,1974,571-593
    [7]Davis, A.G. and C.S. Dunn. Discuss:From Theory to Experience with the Nondestructive Vibration Testing of Piles[J]. Proceedings of the Institution of Civil Engineers. Part 2, Vol.59,1975,867-875
    [8]Smith E. A. Pile Driving Analysis by the Wave Equation. Journal of the Soil Mechanics and Foundation Division[J]. Proceedings ASCE,1960,86(4): 141-145
    [9]Goble G.G. Dynamic Studies on the Bearing Capacity of Piles. Division of Soil Mechanics, Structure and Mechanical Design. Case Western Reserve University, 1970
    [10]Goble G.G., Garland Likins and Frank Rausche.Bearing Capacity of Piles From Dynamic Measure. Ohio Department of Transportation, Department of Soil Mechanics, Structure and Mechanical Design.Case Western Reserve University, 1975
    [11]Steinbach J, Vey E. Caisson Evaluation by Stress of the Geotechnical Engineering Division[J]. ASCE,Wave Propagation Method. Journal 1975,101(4): 310-315
    [12]Rausche, F., Likins, G. E., Hussein, M.H., May. Pile Integrity By Low And High Strain Impacts. Third International Conference on the Application of Stress-Wave Theory to Piles:Ottawa, Canada,1988.44-55
    [13]Beim.J., Gravare.C.J., Klingmuller.O., De-Qing, L.and Rausche. F. Standardization and Codification of Dynamic Pile Testing, a Worldwide Review.in:Deep Foundations Institute, USA,1998
    [14]Beim.G, Likins, G. E., September,2008. Worldwide Dynamic Foundation Testing Codes and Standards. Proceedings of the Eighth International Conference on the Application of Stress Wave Theory to Piles Lisbon, Portugal,2008:689-697
    [15]周光龙.桩基参数动测法.中国土木工程学会第二届土力学及基础工程学会会议论文选集[M].北京:中国建筑出版社,1981:210-218
    [15]朱之基,赵维汉,王平汉.用稳态扫频激振法(机械阻抗法)检验灌注桩质量的实验室研究和现场应用[J].湖南大学学报(自然科学版),1986.3:
    [16]蒋泽汉.机械阻抗法无损检验桩身质量.桩基工程学会会议论文集[M].北京:科学出版社,1981.60-65
    [17]李达祥,张用谦.检测桩质量的水电效应法[J].冶金建筑,1982,(2):140-145
    [18]陈凡.FEIPWAPC特征线桩基波动分析程序[J].岩土工程学报,1990,12(4):42-48
    [19]Bermingham, P. and Janes, M. An innovative approach to load testing of high capacity piles. Proc. of the Int. Conf. on Piling and Deep Foundations, London,1989.409-413
    [20]Japanese Geotechnical Society. Standards of Japanese Geotechnical Society for Vertical Load Tests of Piles. Japanese Geotechnical Society, Tokyo,2002
    [21]T. Matsumoto, Practice of rapid load testing in Japan Paul Holscher, Frits A. Van Tol, Rapid Load Testing on Piles,CRC.,2008
    [22]Amir. J.M. & Amir. E.I.Capabilities and Limitations of Cross Hole Ultrasonic Testing of Piles,Proc. Conf. Contemporary Topics in Deep Foundation, ASCE GSP185, Orlando,2009
    [23]Amir, J.M. & Amir E.I. "Critical comparison of ultrasonic pile testing standards." Proc. Intl. Conf on Application of Stress Wave Theory to Piling,Lisbon,2008. www.piletest.com/papers/SW2008.Critical Comparison of Ultrasonic Pile Testing Standards.PDF
    [24]Niederleithinger, E., Wiggenhauser, H., & Taffe, A. The NDT-CE test and validation center in Horstwalde. Proceedings of NDTCE'09, Nantes, France,2009. http://www.ndt.net/article/ndtce2009/papers/127.pdf
    [25]Niederleithinger, E., Schallert, M., Klingmuller, O., & Bobbe, A. Quality assurance of a secant pile wall using three different non-destructive test methods. Accepted for proceedings of ISSMGE "Geotechnical Challenges in Megacities", Moskau,2010
    [26]Ernst Niederleithinger, Markus Htibner. Crosshole Sonic Logging Of Secant Pile Walls A Feasibilty,23rd EEGS Symposium on the Application of Geophysics to Engineering and Environmental Problems,11 April 2010.Study www.earthdoc.org/detail.php?pubid=42704
    [27]Watson J.N.,Fairfield C.A.,and Wang C.L.,NDT of pile foundationds:Data processing with artificial neural network[J]. Journal of low frequency noise,vibration and active control.vol.20,No.3,2001
    [28]刘和元,吴晓丽,刘松玉.动力测桩的BP网络分析[J].岩土工程学报,1998,20(2):59-62
    [29]鄢泰宁,王生,李邵军.人工神经网络方法在桩基检测中的应用[J].地质科技情报,1999,18(增刊):37-39
    [30]王成华,张薇.人工神经网络在桩基工程中的应用综述[J].岩土力学,2002,23(02):173-178
    [31]潘冬子,程升明,唐颖栋.小波神经网络在基桩缺陷诊断分析中的应用[J].振动、测试与诊断,2006,26(3):203-207
    [32]刘明贵,岳向红,杨永波,等.基于Sym小波和BP神经网络的基桩缺陷智能化识别[J].岩石力学与工程学报,2007,26(Supp.1):3484-3487
    [33]DING XuanMing, LIU HanLong & ZHANG Bo.High-frequency interference in low strain integrity testing of large-diameter pipe piles[J]. SCIENCE CHINA.Technological Sciences.,2011,54(2):420-430
    [34]刘东甲.完整桩瞬态纵向振动的参数影响分析[J].合肥工业大学学报,2000,23(6):1014-1018.
    [35]陈凡,王仁军.尺寸效应对基桩低应变完整性检测的影响[J].岩土工程学报,1998,20(5):92-95
    [36]王雪峰.扭剪法基本原理及应用.李永盛,高广运.环境岩土工程理论与实践[M].上海:同济大学出版社,2001:602-606
    [37]王雪峰,陈培,黄贻海,等.沿桩顶径向的动测三维效应分析[J].岩石力学与 工程学报,2007,26(Supp.1):3209-3214
    [38]张阿舟,赵淳生.桩基故障诊断理论分析.振动测试与诊断[J],1991(2):1-8
    [39]王奎华,谢康和,曾国熙.有限长桩受迫振动问题解析解及其应用[J].岩土工程学报,1997,19(6):27-35
    [40]王奎华,谢康和,曾国熙.变截面阻抗桩受迫振动问题解析解及其应用[J].土木工程学报,1998,31(6):545-551
    [41]王奎华.桩材料阻尼对动测曲线的影响研究[J].岩土力学,1998,19(4):41-47
    [42]王奎华.考虑桩体粘性的变阻抗桩受迫振动问题解析解[J].振动工程学报,1999,12(4):513—520
    [43]王腾,王奎华,谢康和.任意段变截面桩纵向振动的半解析解及应用[J].岩土工程学报,2002(6):654-658
    [44]王宏志,陈云敏,陈仁朋.多层土中桩的振动半解析解[J].振动工程学报,2000,13(4):660-665
    [45]柴华友.土阻尼对应力波在一维变波阻抗杆中传播的影响[J].土木工程学报,1994,27(3):156-160
    [46]廖振鹏.工程波动理论导论[M].北京:科学出版社,2003.1-66
    [47]雷林源.桩基动力学[M].北京:冶金工业出版社,2000.29-41
    [48]刘屠梅,赵竹占,吴慧明.基桩检测技术与实例[M].北京:中国建筑工业出版社,2006.55-60
    [49]陈凡,徐天平,陈久照,等.基桩质量检测技术[M].北京:中国建筑工业出版社,2003.104-312
    [50]Liao, S. T., and Roesset, J. M. Dynamic response of intact piles to impulse loads. Int. J. Numer. Analyt. Meth. Geomech.,1997,21:255-275
    [51]Liao, S. T., and Roesset, J. M. Identification of defects in piles through dynamic testing. Int. J. Numer. Anal. Methods Geomech.,1997,21:277-291
    [52]Chow, Y. K., Phoon, K. K., Chow, W. F., and Wong, K. Y. Low strain integrity testing of piles:Three dimensional effects[J]. J. Geotech. Geoenviron. Eng.,2003,129(11):1057-1062
    [53]Seidel, J. P., and Tan, S. K. Elimination of the Rayleigh wave effect on low strain integrity test results_part 1:Experimental investigation. Proc.,7th Int. Conf. on the Application of Stress Wave Theory to Piles, Institution of Engineers Malaysia, Petaling Jeya, Malaysia,2004:179-185
    [54]Seidel, J. P., and Tan, S. K. Elimination of the Rayleigh wave effect on low strain integrity test results_part 2:Rayleigh wave elimination technique. Proc., 7th Int. Conf. on the Application of Stress Wave Theory to Piles, Institution of Engineers Malaysia, Petaling Jeya, Malaysia,2004:187-192
    [55]Hua-You Chai, Kok-Kwang Phoon, F.ASCE, and Dian-Ji Zhang, Effects of the source on wave propagation in pile integrity testing[J] Journal of Geotechnical and Geoenvironmental Engineering. ASCE,2010,136(9):1200-1208
    [56]陈斌,卓家寿,周力军.嵌岩桩垂直承载力的有限元分析(下)[J].水运工程,2001,333(10):25—27.
    [57]Poulos.H.G. Behaviour of pile groups with defect piles [C]//Proceedings of the 14th International Conference on Soil Mechanics and Foundation Engineering. Rotterdam:Balkema A A,1997:871-876.
    [58]Wong Y W. Behaviors of large diameter bored pile groups with defects[MPhil Thesis D]. Hong Kong:Department of Civil Engineering, The Hong KongUniversity of Science and Technology, China,2004.
    [59]蒋建平,汪明武,高广运.桩端岩土差异对超长桩影响的对比研究[J].岩石力学与工程学报,2004,23(18):3190—3195.
    [60]ISKANDER M, ROY D, KELLEY S, et al. Drilled shaft defects:detection, and effects on capacity in varved clay[J]. Journal of Geotechnical and Geoenvironmental Engineering,2003,129(12):1128-1137.
    [61]SARHAN H A, O'NEILL M W, HASSAN K M. Flexural performance of drilled shafts with minor flaws in stiff clay [J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(12):974-985.
    [62]O'NEILL M W, TABSH S W, SARHAN H A. Response of drilled shafts with minor flaws to axial and lateral loads [J]. Engineering Structures,2003,25(1):47-56.
    [63]肖建勇,刘运华.单桩竖向承载力与桩底沉渣土厚度的关系[J].长沙铁道学院学报,2001,19(2):45—47.
    [64]SARHAN H A, O'NEILL M W, TABSH S W. Structural capacity reduction for drilled shafts with minor flaws[J].ACI Structural Journal,2004,101(3):291-297.
    [65]李典庆,鄢丽丽.考虑桩底沉渣的灌注桩可靠度分析方法[J].岩土力学,2008,29(1):155-160
    [66]刘煜洲,刘东甲,王杰英.嵌岩桩与含沉渣桩低应变动力检测曲线理论计算方法与特征研究[J].物探化探计算技术,2003年,25(2):97-107
    [67]刘东甲.不均匀土中多缺陷桩的轴向动力响应[J].岩土工程学报,2000, 22(4):391-395.
    [68]刘东甲.纵向振动桩侧壁切应力频率域解及应用[J].岩土工程学报,2001,23(5):544-546.
    [69]刘伟强,刘永翔.低应变法检测嵌岩桩的几点认识[J].广东交通职业技术学院学报,2004(3),58-60
    [70]刘启林,基桩动测中沉渣反应的仿真研究,[硕士学位论文],武汉,华中科技大学,2008
    [71]工程地质手册编写委员会.工程地质手册(第三版)[M].北京:中国建筑工业出版社,1992:316
    [72]冉启文.小波变换与分数傅里叶变换理论及应用[M].哈尔滨:哈尔滨工业大学出版社,2001.
    [73]秦前清,杨宗凯.实用小波分析.西安:西安电子科技大学出版社,1994.
    [74]蔡棋瑛,林建华.基于小波分析和神经网络的桩身缺陷诊断[J].振动与冲击,2002,21(2):11-17
    [75]方祥.基于小波变换的桩基缺陷识别方法[J].昆明理工大学学报(理工版),2006,31(3):46-49
    [76]曹茂森,刘经强,任青文.基于最优基小波的基桩弱损伤应力波检测[J].振动与冲击,2006,25(3):155-158
    [77]韩晓林,彭岳星,唐新鸣.基桩检测反射波的非线性小波降噪重建方法[J].土木工程学报,2001,34(6):105-107
    [78]唐颖栋,冯元群.基桩动测信号的小波分析[J].振动与冲击,2010,29(2):131-135
    [79]白群立,王雪峰,周建文等.基桩完整性检测的小波分解及滤波研究[J].华中科技大学学报(城市科学版),22(Sup):43-47
    [80]刘晔,白群立.小波变换在基桩声波检测斜管修正中的应用[J].江苏建筑,2006年增刊(总第109期):57-64
    [81]蔡靖,王建华,张献民等.小波变换在确定桩裂缝、断桩及浅部缺陷中的应用[J].岩土力学,2007,28(3):565-569.
    [82]张良均,王靖涛,李国成.小波变换在桩基完整性检测中的应用[J].岩石力学与工程学报,2002,21(11):1735-1738.
    [83]刘世奇,潘冬子,陈静曦.小波分析在基桩浅部缺陷检测中的应用[J].无损检测,2005,27(4),195-201
    [84]吴宝杰,杨桦,邢保国.小波分析在旁孔透射波测桩法中的应用[J].工程地球物理学报,2009,6(1):73-77
    [85]骆英,柳祖亭,潘宠平,小波滤波在基桩完整性测试系统中的应用研究[J].实验力学,2000,15(4):460-465
    [86]邢心魁,吴敏哲,谢异同.土对桩中波传播特性影响及小波分析研究[J].岩石力学与工程学报,2005,24(14):2532-2536
    [87]中华人民共和国行业标准编写组.JGJ94-2008建筑桩基技术规范[S].北京:中国建筑工业出版社,2008-10-1.
    [88]陈秋南,张永兴.桥梁桩基础缺陷复合检测及其加固新方法[J].岩石力学与工程学报,2004,23(20):3518-3522.
    [89]张宏.灌注桩检测与处理[M].北京:人民交通出版社,2001:85-153
    [90]徐卫权.浅谈应力波反射法基桩检测方法的局限性[J].湖北地矿,2002,第16卷,第3期:60-64
    [91]王奎华,谢新宇.连续弹性体模型下桩的动刚度表达式与静刚度的关系[J].建筑结构学报,2001,22(2):89-91
    [92]栾茂田,孔德森.单桩竖向动力阻抗计算方法及其影响因素分析[J].振动工程学报,2004,17(4):500-505
    [93]张改慧胡时岳.单桩的动刚度测试和数据处理方法的研究[J],应用力学学报.2002,19(4):105-108
    [94]周淼,李飞鸥,王远祥.桩基动力特性参数测量方法的研究与应用[J],电力建设,2005,26(4):26-29
    [95]谭学民,吴裕锦,钟晓林,带承台单桩动刚度的试验研究[J],岩石力学与工程学报,2006,25(supp2):3463-3467
    [96]燕彬.桩基的振动及动力优化.[博士学位论文],西安,西安建筑科技大学,2004
    [97]胡春林.桩基非线性动力学特性研究.[博士学位论文],上海,上海大学,2006
    [98]宋春雨.复合地基动力特性及应用研究.[博士学位论文],上海,上海交通大学,2010
    [99]地矿部勘查技术司JGJ/T 93-95基桩低应变动力检测规程[S].1995:11-23
    [100]徐攸在,刘兴满.桩的动测新技术[M].北京:中国建筑工业出版社,1989:133-134
    [101]陕西建筑科学研究院,同济大学.CECS21:2000,超声波检测混凝土缺陷技术规程[S].北京,中国工程建设标准化协会,2000:21-23
    [102]Garland Likins, Frank Rausche, Karen Webster, and Anna Klesney, Defect Analysis for CSL Testing, Contemporary Issues in Deep Foundations (GSP 158) A.M.ASCE. ASCE,2007
    [103]单远铭,吴耀,吴慧敏.超声频谱畸变系数在混凝土缺陷区的变化[J].湖南大学学报(自然科学版),1999,26(1):88-91.
    [104]铁道部大桥工程局.TB10218-99铁路工程基桩无损检测规程[S].北京,中国铁道出版社,1999-6-1
    [105]何荣裕.基桩完整性PSD、V、A综合判断法[J].中外公路,2006,26(3):232-234.
    [106]袁群,李斌,耿晔,等.超声波检测桩基质量的模糊综合分析[J].郑州工业大学学报,1999,20(3):35-38
    [107]王自平,顾建祖,骆英,等.关于混凝土灌注桩质量评定的模糊评判[J].科学技术与工程,2006,23(6):4737-4740
    [108]吴波.超声波透射法检测灌注桩桩身质量研究.[硕士学位论文],上海,同济大学,2008
    [109]张宏,杭纲领.多元综合判据在基桩质量评价中的应用[J].中外公路,2010,30(5):204-207
    [110]Fleszynski, Janusz, Ranachowski, Przemyslaw. Non-destructive ultrasonic measurements of ceramic post insulators used in electricity distribution systems. Insight [A]. Non-Destructive Testing and Condition Monitoring. London: British Institute of Non-Destructive Testing,2003,45(7):493-497.
    [111]Torigoe Ippei, Mori Kauya, Spagnoli, Andrea. Signal processing procedure for non-destructive test of concrete structure integrity [A]. NDT and E International. Oxford:Elsevier Ltd,2005,38(7):575-581.
    [112]陈如桂,何继善.桩基质量检测分析方法[J].中南工业大学学报,1997,28(4):311-314.
    [113]《新编混凝土无损检测技术》编写组编,《新编混凝土无损检测技术》[M].北京:中国环境科学出版社,2002:159
    [114]张杰,沈霄云,刘明贵.智能化桩基超声波CT检测系统研究[J].岩土力学,2009,30(4):1197-1200
    [115]于师建,刘家琦.声波速度-频移衰减联合层析成像检测技术[J].岩石力学,2009,30(3):659-663
    [116]管钧,王维刚,陈卫红,等.声波透射法检测钻孔灌注桩基桩完整性检测技术探讨.第十届全国建设工程无损检测技术学术会议论文,2008::77-81
    [117]黄双杰,徐守彬.超声波检测混凝土构件缺陷类型试验研究[J].四川建筑科学研究,2010,36(5):160-163
    [118]D. Q. Li;L. M. Zhang;W. H. Tang. Closure to "Reliability Evaluation of Cross-Hole Sonic Logging for Bored Pile Integrity" by D. Q. Li, L. M. Zhang, and W. H. Tang[J]. Journal of Geotechnical and Geoenvironmental Engineering, ASCE,2007,133(3):343-344
    [119]阎光辉.钻孔灌注桩超声波法检测实践[J].岩土工程界,2001,4(11):54-62
    [120]Suaris W, Fernado. V.Ultrasonic pulse attenuation as a measure of damage growth cyclic loading of concrete[J]. ACI Material Journal,1987,84(3):185-193
    [121]唐修生,黄国泓,李克亮.混凝土损伤与声学参数关系试验研究[J].工业建筑,2005,35(z1):524-529
    [122]中国科学院地质研究所.数学地质引论[M].北京:地质出版社,1977:11-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700