用户名: 密码: 验证码:
基于小波和支持向量机的桩基缺陷检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
灌注桩基础(简称桩基)是建于地下的钢筋水泥混凝土构件,用于承载桥梁或楼房等土木建筑。由于主观或客观的因素,桩基建造完成之后会存在一定缺陷,桩基缺陷直接影响其承载性能,桩基的承载性能关系到建筑工程的质量、安全和使用寿命。缺陷严重的桩基难以承载额定的建筑负荷,很容易导致重大工程事故的发生,甚至造成人身和国家财产的重大损失。因此,桩基建成后必须对其是否存在缺陷和缺陷程度进行严格的检测,鉴定桩基的质量类别,对缺陷严重的桩基还须进行相应的处理。
     我国桩基缺陷检测标准中规定四种方法,分别是低应变应力波反射法(简称应力波反射法)、超声透射法、高应变检测法和钻芯法。其中,应力波反射法是最主要检测方法。虽然应力波反射法存在对桩基缺陷类型、缺陷程度和缺陷位置检测的准确性差的缺点,但是,应力波反射法检测成本低、检测快捷,因此成为目前我国使用最普遍的方法。本文应用小波分析、支持向量机、特征向量的视窗提取以及一维杆件波动等数学理论改进现有的应力波信号的分析方法,以提高桩基缺陷检测的准确性。
     依据小波理论和关联度理论,从典型的桩基缺陷波形中提取缺陷子波,构建了专用小波基函数;应用关联度理论和方法确保了专用小波基函数与缺陷子波具有较好的相似性;从而提高专用小波基函数对桩基缺陷分析的准确性和对不同地质环境的适应性。
     针对现有特征向量的提取方法存在对信号时间信息缺失和不能识别桩基多处缺陷的不足,本文提出了特征向量的视窗提取方法,阐述了视窗宽度及其平移步长参数的选择原则;针对特征向量的视窗提取方法,构建了特征向量矩阵模型;进行了基于视窗提取的桩基多缺陷检测实验和准确性分析。
     依据模式识别理论,利用支持向量机分类性能的优势和桩基缺陷的特点,改进了支持向量机多分类器结构,提出了多层一对一型支持向量机分类器及其模型;对多层支持向量机分类器和PB分类器进行了对比实验和性能分析。
     分析了现有桩基缺陷程度测量结果的不确定度因素,利用缺陷分类的功率谱等中间结果,提出了基于功率谱的桩基缺陷位置和缺陷程度的测量方法,为桩基缺陷程度的测量提供了简便有效的方式。
Cast-in-place pile foundation (hereinafter referred to pile foundation) is builtof reinforced concrete underground structures, used for carrying civil constructionsuch as bridges or buildings. Certain pile foundation defects will exist after thecompletion because of the subjective or the objective factors, which directly affectthe pile load-bearing properties related to the quality, safety and service life of theconstruction. The pile foundation with the serious defects can not carry rated loadof the building, it can easily lead to major engineering accidents, or even result insignificant loss of personal and state property. Therefore, after the pile foundation isbuilt, the presence and the extent of defects of pile foundation must be placed onrigorous detection to identify the quality type of the pile foundation. The pilefoundation with the serious defects has to be dealt with accordingly.
     There are four detection methods prescribed by the pile foundation defectdetection standard, the low strain stress wave reflected method (referred to as stresswave reflection method), the ultrasonic transmission method, the high straindetection method and the borehole method. The stress wave reflected method is themost important detection methods among them. This method has a disadvantage ofpoor accuracy of detecting the pile foundation type, degree and position. However itis widely used in our country because of its low cost and shortcut. Wavelet analysis,support vector machine, window extraction of feature vector, as well asone-dimensional component and other mathematical theories are applied to improvethe existing stress wave signal analysis methods, which to improve the accuracy ofdetecting result
     Based on wavelet theory and relation degree theory, this thesis extracts thedefect wavelet from a typical defect waveform, and constructs pile foundationwavelet function. The relation degree theory and method applied can ensure goodsimilarity between pile foundation wavelet function and defects wavelet, whichimprove the accuracy of detecting results and the adaptability of differentgeological environments by applying pile foundation wavelet function.
     The existing feature vector extraction method has the disadvantage of thesignal time information missing and lacking the ability of detecting multi-defect,this thesis proposed the window extraction method of feature vector, explained howto choose the parameters of window width and translational step. The matrix modelof feature vector was built for window extraction method. The experiment and theaccuracy analysis of pile defects detection based on window extraction method were made.
     The support vector machine classification performance advantages and thecharacteristics of various pile defects were adopted to improve support vectormachine multiple classifiers structure. The multi-layer one-to-one support vectormachine classifiers and its model based on pattern recognition theory wereproposed. The comparative test and performance analysis between multi-layersupport vector machine classifiers and PB classifiers were carried out.
     The Thesis analyzed uncertainty factors of the current pile defect degreemeasurement and proposed the power spectrum based measurement methods of thepile defect location and defect levels by applying the power spectrum of defectclassification and intermediate results, etc. It provide of a simple and effectivemeasurement of the degree of pile defect.
引文
1J.R.Illingworth. Construction Methods and Planning. New York Rutledge.2000,6(8):179~196
    2H.L. Simmons, H.Bennett. Construction: Principles, Materials, and Methods.New York John Wiley&Sons, Inc..2001,34(4):170~173
    3建筑桩基检测技术规范(JGJ106-2003).中国建筑工业出版社,2003:1~11
    4公路工程质量检验评定标准(JTJ071-98).人民交通出版社,1998:1~26
    5建筑桩基技术规范(JGJ94-94).中国建筑工业出版社,1995:1~18
    6公路桥涵地基与基础设计规范(JTJ024-85).人民交通出版社,1995:7~12
    7基桩低应变动力检测规程(JGJ/T93-95).中国建筑工业出版社,1995:1~21
    8周宇,邓新明.低应变检测技术在桩基检测中的应用.广西水利水电.2007,(1):27~30
    9翟军伟,刘晓萌.应力波反射法基桩检测原理及应用.西部探矿工程.2007,(8):38~42
    10伍鹏,徐云.工程桩基不同检测方法的检测结果比较.山西建筑.2006,32(11):70~71
    11L.M.Zhang, Li Dian Qing, Tang W.H.. Impact of routine quality assurance onreliability of bored piles. Journal of Geotechnical and GeoenvironmentalEngineering.2006,132(5):622~630
    12K. M. Hassan, O’Neill. Design Method for Drilled Shafts in Soft ArgillaceousRock.Journal of Geotechnical and Geoenvironmental Engineering.2007,123(3):272~280
    13Pile Dynamics Inc. PD Ausersmanual&CAPWA Pusersmanual. PileDynamics Inc,1996:33~47
    14张宏.灌注桩检测与处理.人民交通出版社,2001:1~38
    15周汉荣.土力学地基与基础.武汉工业大学出版社,1996:15~19
    16桩基工程手册.中国建筑工业出版社,1997:30~42
    17史永强,赵俭斌,徐晓霞,孟庆文,刘刚.潜水钻孔灌注桩的质量分析.水利与建筑工程学报.2007,5(1):99~101
    18Rausche Fetal. Pile integrity testing and analysis. Proc of the FourthInternational Conference on the Application of Stress Wave Theory to Piles,1992:27~32
    19Hu Xiaomin, Li Zhida. Hole forming mechanics analysis of the bored fillingpile on the bridges in alluviation overburden area. Journal of WuhanUniversity of Technology (Transportation Science and Engineering).2007,31(4):734~737
    20杨从娟,朱英磊,向敏.钻孔灌注桩缺陷桩处理实践.探矿工程.2006,(10):20~21
    21A.G. Davis. The nondestructive impulse response test in North America:1985-2001. NDT and E International.2003,36(4):185~193
    22M. R. Svinkin. High-strain dynamic pile testing-problems and pitfalls. Journalof Performance of Constructed Facilities.2010,24(2):99
    23王雪峰.基桩动测理论与实践研究.岩石力学与工程学报.2001,20(6):893~893
    24H.Y. Loo, M.S. Chin, C.T. Tam, et al. A carbonation prediction model foraccelerated carbonation testing of concrete. Mag. Concr. Res.1994,46(168):191~200
    25胡帅.桩基施工与常用的检测手段.西部探矿工程.2004,(11):28~31
    26A. Dvorak. Dynamic tests on piles and the verification of result by staticloading tests. Acta Technica Scientiarum Hungaricae Tomus.1969,5(64):1~3
    27王辉鹏.应力波反射法在基桩完整性检测中的应用.工业建筑.2006,36:817~818
    28Ni Sheng-Huoo, Lo Kuo-Feng. Time-frequency analyses of pile-integritytesting using wavelet transform. Computers and Geotechnics.2008,35(4):600~607
    29J. Lysmer, F. E.Richart. Dynamic response of footing to vertical loading.J.Engrg. Mech. Div. ASCE,1966:65~91
    30D. Demarchi, E.V. Pereirs and J.A. Lopes. Non-Destructive Evaluation Toolfor Monitoring and Detection of Structural Damage by Using Neural Network.Society for Optical Engineering.2000,4062:1584~1589
    31T. Marwala. Damage Identification Using Committee of Networks. J. Enger.Mechanics.2000,126(1):43~50
    32J.C.Chen, B.K.Wada. Matrix Pertubation for Structural Dynamic Analysis.JIAA,J.1977,15(8):33~37
    33高春显.超声波透射法在质量检测中的应用.中国计量.2004:27~41
    34H. H. Titi, F. Abu andY. Murad, et al. Implementation of cone penetration testtechnology in design and analysis of driven piles. Transportation ResearchRecord.2002,(2):168~179
    35M. Abdalla, K.M. Girgoriadis and D.C.. Zimmerman Experimental Validationof the LMI Methods for Structural Damage Detection. Modal AnalysisConf.IMAC.1999,(10)2: l373~1379
    36J.M.Ricles, J.B.Kosmatka. Damage Detection in Elastic Structures UsingVibratory Residual Forces and Weighted Sensitivity. AIAA,J.1992,30(9):301~306
    37Carroll L. Load Testing of Deep Foundations. John Wiley and Sons, New York,1988:54~67
    38J.H. Chou, J. Ghaboussi. Genetic Algorithm in Structural Damage Detection.Computers and Structures.2001,79(14),1335~1353
    39Worden. Confidence Bounds for Frequency Response Functions from TimeSeries Models. Mechanical Systems and Signal Processing,1998:559~569
    40史永东,赵海军,张凯,范吉朝.反射波法桩基础完整性测试技术.无损检测.2004,(3):35~37
    41曾心传,龚平,王岚.关于利用一维波动理论计算土层地震反映传递函数的讨论.地壳形变与地震.1996.16(1):64~71
    42P. B. Schnabel, et al. Shake aeomputer program for earthquake responseanalysis of horizontally layered sites. EERC.1972,(72):13~17
    43Long Qiao. Structural Damage Detection Using Signal-Based PatternRecognition. Kansas State University Doctor of Philosophy.2009:21~25,27~31
    44E.West Sussex. Statistical Pattern Recognition. John Wiley&Sons, Ltd..2002:144~158
    45K.S.Pal, A.Pal. Pattern Recognition: From Classical to Modern Approaches. N.J. World Scientific Publishing Co..2001:67~107
    46崔红梅,麻硕士,裴喜春.基于瞬态机械阻抗法的桩基检测仪的研究与开发.传感器与微系统.2007,26(12):66~68
    47A.Baretto, R.Passalacqua and S.Padesta. On the Integrity Assessment of Pilesby Sonic Echo Tests in Situ and On Scale Models. Industria Italiana delCemento.2006,76(824):844~859
    48孙宽和.基桩缺陷动力检测的定量分析.中国海洋大学硕士学位论文.2004:31~43
    49D.M.Lilley. Integrity Testing of Pile Foundations Using Axial Vibration.Proceedings of the Institution of Civil Engineers: Geotechnical Engineering.2000,143(4):225~234
    50Y.K.Chow, K.K.Phoon and K.Y.Wong. Low Strain Integrity Testing ofPiles:Three-Dimensional Effects. Journal of Geotechnical andGeoenvironmental Engineering.2003,129(11):1057~1062
    51J. James, Lynch, Jr. Experimental Verification of Flexural Guided Waves inConcrete Cylindrical Piles. Northwestern University Doctor of Philosophy.2007:47~51
    52裴正林.桩基质量检测数据的多分辨分析.勘察科学技术.1998.6:54~56
    53S.H.Ni, L.Lehmann, and K.F.Lo. Low-strain integrity testing of drilled pileswith high slenderness ratio. Computers and Geotechnics.2006,33(6-7):283~293
    54Sheng-Huoo Ni, Kuo-Feng Lo, L. Lehman, Yan-Hong Huang. Time-FrequencyAnalyses of Pile-Integrity Testing Using Wavelet Transform. Computers andGeotechnics.2008,35(4):600-607
    55邢心魁,吴敏哲,谢异同.样条小波在基桩完整性检测中的应用.西安建筑科技大学学报.2006.36(1):25~28
    56蔡棋瑛,林建华.基于小波分析和神经网络的桩身缺陷.振动与冲击.2002,21(3):11~17
    57潘冬子.小波分析及其在基桩完整性检测中的应用研究.中国科学院武汉岩土力学研究所.2004:39~51
    58陈华兴,刘宏力.桩基完整性检测与BP神经网络诊断.西部探矿工程.2007,(6):1~4
    59Minqqui Liu, Xiaohong Yue, Yongbo Yang, Qi Li. Intelligent Identification ofPile Defect Based on Sym Wavelet and BP Neural Network. Yanshilixue YuGongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering.2007,26:3484~3488
    60Ming-Gui Liu, Jun-Wei Peng, Xiang-Hong Yue,Yong-Bo Yang. AutomaticIdentification of Detects of Pile Based on Improved Genetic Algorithm. YantuLixue/Rock and Soil Mechanics.2007,28(10):2188~2192
    61Yong-Le Zhang, De-Gao Tang. Application of Ultrasonic ComputerizedTomography to Diagnosis of Pile Construction Integrity. Yantu Lixue/Rockand Soil Mechanics.2009,30(11):3548~3552
    62M. G. Stewart, D. V. Rosowsky. Time-dependent reliability of deterioratingreinforced concrete bridge decks. Struct. Saf..1998,(20):91~109
    63B. H. Fellenius, D. E Harri and D. G. Anderson. Static loading test on a45mlong pipe pile in Sandpoint, Idaho. Canadian Geotechnical Journal.2004,41(4):613~628
    64虞子平,李东云,金铮,王文权.基于应力波反射法分析基桩缺陷.土工基础.2009.23(3):86~88
    65王爱民,霍志刚.基桩混凝土完整性检测中波速与强度关系的研究.铁道建筑.2006,(6):50~52
    66朱从超,闫长斌,黎超群.应力波反射法和频率初速度法基桩动测技术及其应用.湖南理工学院学报.2005,18(1):84~86
    67E. L. Hajduk, S. G. Paikowsky. Performance evaluation of an instrumented testpile cluster. Geotechnical Special Publication.2000,(94):124~147
    68M. Novak, T. Nogami and Aboul-Ella F. Dynamic soil reactions for planestrain case.J.E.M.D. ASCE.1978,104(4):953~959
    69Julia Martin, Michael S.A.Hardly, Asifs.Usmani, Michael C.Forde. Accuracyof NED in Bridge Assessment. Engi Structure.1998,19(1):25~29
    70Aoki Y, Byon O-II. Application of Localized Flexibility Method to DamageIdentification CFRP Laminated Plate. Key Engineering Materials.2000,18(3):1093~1098
    71陈逢时.子波变换理论及其在信号处理中的应用.国防工业出版社.1998:53~62
    72闻新,周露,王丹力,熊晓英. MATLAB神经网络应用设计.科学出版社,2000:32~41
    73Yuanyan Tang. Wavelet Theory and Its Application to Pattern Recognition. N.JWorld Scientific Publishing Co.,2000:83~126
    74P.Stepanic, Llija V. Latinovic, Z. Djurovic. A New Approach to Detection ofDefects in Rolling Element Bearings Based on Statistical Pattern Recognition.International Journal of Advanced Manufacturing Technology.2009,45(1-2):91~100
    75崔锦泰.小波分析导论.程正兴译.西安交通大学出版社,1995:20~36
    76M.E.Velasquez. Wavelets: Theory and Applications. Idaho State UniversityDoctor of Arts in Mathematics.2006:29~33,49~50
    77L. Z. Guo, S. A. Billinqs, D. Coca. Identification of Multiscale Spatio-Temporal Dynamical Systems Using a Wavelet Multiresolution Analysis.International Journal of Systems Science.2009,40(11):1115~1126
    78Chih-Chen Chang, Yuanfeng Shi. Identification of Time-Varying HystereticStructures Using Wavelet Multi-resolution Analysis. International Journal ofNon-Linear Mechanics.2010,45(1):21~34
    79G. Beylkin, R. Coifman, V. Rokhlin. Fast Wavelet Transforms and NumericalAlgorithms I. Comm Pure and ApplMath.1991,44(2):141~183
    80程正兴.小波分析算法与应用.西安交通大学出版社,1998:32~41
    81Ali.Akansu, R.A. Haddad. Multiresolution Signal Decomposition: Transforms,Subbands, and Wavelets. San Diego Elsevier.2001:400~417
    82Qiang Wang, V.Meqalooikonomou, C.Faloutsos. Time Series Analysis WithMultiple Resolutions. Information Systems.2010,35(1):56~74
    83胡守仁等.神经网络导论.国防科技大学出版社,1993:18~32
    84Yu Jianbo, Xi Lifeng. Intelligent monitoring and diagnosis of manufacturingprocess using an integrated approach of neural network ensemble and geneticalgorithm. International Journal of Computer Applications in Technology.2008,33(2-3):109~111
    85谭善文,秦树人等.小波基时频特性及其在分析突变信号中的应用.重庆大学学报.2001(2):12~17
    86肖新平.灰色系统模型方法的研究.华中科技大学博士论文.2002:12~16
    87吕锋,刘翔,刘泉.七种灰色系统关联度的比较研究.武汉工业大学学报.2000,22(2):41~43
    88邓聚龙.灰色系统基本方法.华中理工大学出版社,1987:21~28
    89王清印.灰色B型关联分析.华中理工大学学报.1987,17(6),77~82
    90王清印,赵秀恒. C型关联分析.华中理工大学学报.1999,27(3),75~77
    91唐五湘. T型关联度及其计算方法.数理统计与管理.1995,14(1)34~37
    92Liu Sifeng. Generalized Degree of Grey Incidence.Information and Systems,Dilian DMU Publishing House,1992,113~116
    93李学全.灰色关联度模型的进一步研究.系统工程.1995,13(6):58~61
    94赵艳林,韦树英,梅占馨.灰色欧几里德关联度.广西大学学报.1998,23(1):10~13
    95吕锋.灰色系统关联度之分辨系数的研究.系统工程理论与实践.1997,(6):49~54
    96D.L.Donoho, S.Mallat and R.von Sachs. Estimating Covariances of LocallyStationary Processes: Consistency of Best Basis Methods. Time-Frequencyand T imescale Analysis.1996:337~340
    97Huipin zhang, Aria Nosratinia and R.O.Wels. Image Denoising via Wavelet-Domain Spatially Adiptive FIR Wiener Filtering. Acoustic Speech and SignalProcessing2000, ICASSP’00, Proceeding2000IEEE:2179~2182
    98Fritzen.C.P, Botle.K. Application of Model-Based Damage Identification to aSeismially Loaded Structures. Smart Materials and Structures.2001,10(3):452~458
    99左宇军,朱万成.非均匀介质中应力波反射诱发层裂过程的数值模拟.中南大学学报.2006,(6):89~93
    100黄略.桩基无损检测理论特征波形探讨及实例.西部探矿工程.2004,(11):11~12
    101Daubechies I. The wavelet transform, time frequency localization and signalanalysis. IEEE Trans, on Infor. Theory.1990,36(5):961~1005
    102Antoine J P, et al. Directional wavelets revisited: Cauchy wavelets andsymmetry detection in patterns. Applied andc omputational harmonic analysis.1999,6(3):314~345
    103陈义保,宋中民,钟毅芳.基于灰色关联度的磁流变阻尼器结构参数的优化设计.烟台大学学报.2004,17(1):46~49
    104Scholkopf B, Sung K, Burges C, Girosi F, Niyogi P, Pogio T, Vapnik V.Comparing Support Vector Machines with Gaussian Kernels to Radial BasisFunction Classifiers.A.I.Memo1559,MIT.1996:30~36
    105陈国友,梁红,王小涛,梁俊.基于小波的地学纹理特征向量的提取与显示.地理空间信息.2008,6(6):23~25
    106周甄,任芳,张晓强,王中青.用局域波法提取特征向量识别煤岩界面.煤矿机电.2009,2:50~55
    107孙庆林,丁百湛.桩身缺陷位置不确定度的评定.计量与测试技术.2007,
    34(6):58~61
    108赵海生.基桩浅部缺陷位置及程度的振动理论分析方法.土木工程学报2005,38(6):83~88
    109花小民.应力波反射法检测基桩缺陷位置的测量不确定度评价.广东土木与建筑.2003,(12):55~56
    110张献民,李少波.应用低应变能量分析确定基桩缺陷程度.岩石力学与工程学报.2006,25(增1):3198~3205
    111徐金岭.基桩低应变检测缺陷程度的定量分析方法.西部探矿工程.2006,(11):22~26
    112A.K.Sravanthi. Edited-Bootstrapped Support Vector Machines for One-ClassDate Classification. Oklahoma State University Maste of science.2006:12~25
    113Vladimir N Vapnik著,张学工译.统计学习理论的本质.清华大学出版社,2000:63~125
    114V. Vapnik. The Nature of Statistical Larning Theory. New York: Springer.1995:77~86
    115Nello Cristianini, John Shawe-Taylor. An introduction to support vectormachines and other kernel-based learning methods. China Machine Press,2005:65~72
    116邓乃扬,田英杰.数据挖掘中的新方法.科学出版社,2004:45~71
    117Nello Cristianini等著.李国正等译.支持向量机导论.电子工业出版社,2004:127~129
    118V. N. Vapnik. Estiation of Dependeneies based on Empirieal Data. Berlin:springer.1982:37~45
    119Yan Ding, Weiqi Jin, Yuhong Yua. A target recognition algorithm based onsupport vector machine. Proceedings of SPIE-The International Society forOptical Engineering.2009:20~21
    120边肇棋等.模式识别.清华大学出版社,1988:34~36
    121V. N. Vapnik. An overview of statistical learning theory. IEEE Trans on NeuralNetworks.1999,10(5):988~999
    122C. Cortes, V. Vapnik. Support vector networks. Machine Learning.1995,20:273~297
    123谢宏,魏江平,刘鹤立.基于线性规划的回归支撑向量机.上海海事大学学报.2006,27(1):49~52
    124杨福刚,孙同景.基于SVM和小波的木材纹理分类算法.仪器仪表学报.2006,S3:26~27
    125Wang Fan, Deng Chao. Support vector machine based on data miningtechnology in traffic flow forecasting. Journal of Information andComputational Science.2009,6(3):1287~1294
    126Nello Cristianini, John Shawe-Taylor著,李国正,王猛,曾华军译.支持向量机导论.电子工业出版社,2004:38~40
    127吴换妮.基于支持向量机的多类模式识别模型.重庆大学硕士论文.2007:19~21
    128B.Scholkopf, A.J.Smola. Learning with Kernels: Support Vector Machines,Regularization, Optimization, and Beyond. MIT Press,2002:211~220
    129Ana C, lorena. Evolutionary Tuning of SVM Parameter Values in Multi-ClassProblems. Neurocomputing.2008,71(16-18):3326~3334
    130Minh H, Nquyen F, de la Torre. Optimal Feature Selection for Support VectorMachines. Pattern Recognition.2010,43(3):584~591
    131I.H.Written, E Frank. Data Mining: Practical Machine Learning Tools andTechniques. Elsevier.2005:83~98
    132R.Herbrich. Learning Kernel Classifiers: Theory and Algorithms. MIT Press,2002:49~60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700