用户名: 密码: 验证码:
时域内低应变基桩缺陷定量分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在当前的实际工程中,进行基桩缺陷定量分析仍然存在一定难度。为了建立考虑桩土相互作用的低应变基桩缺陷定量分析方法,本文进行了以下几方面的工作:
     依据一维波动理论建立并求解了低应变基桩阻尼波动方程。为了分析不同参数对速度波沿桩身衰减过程的影响,利用得到的解析解进行了正交试验。试验结果表明,针对不同工程情况可以在速度波波幅比与桩土相互作用阻尼系数之间建立一致的函数关系。进一步针对特定试验情况,建立了速度波波幅比与阻尼系数的相关关系,据此提出了依据桩顶速度响应确定桩土相互作用阻尼系数的方法。结合速度波沿桩身传播过程中的衰减规律和波阻抗变化处的能量分配关系,分析速度波的传播过程,进而针对不同缺陷个数和不同桩侧土分层条件得到了基桩缺陷定量分析的关系式。
     针对6种桩侧土进行桩土相互作用模型试验,实际测定了试验土在不同状态时的桩土相互作用阻尼系数。进而对应模型试验进行剪切波速试验,依据试验结果建立了阻尼系数和剪切波速之间的相关关系。利用理论公式确定实测阻尼系数相应的理论阻尼系数,结果表明,理论阻尼系数应用于实际工程时需要进行修正,修正系数是剪切波速的函数。另外,高应变阻尼系数结果相对实测阻尼系数有一定误差。
     为了将依据剪切波速确定阻尼系数的方法推广到其他种类土,重新选择了两种砂土进行完整桩模型试验和剪切波速试验,结果表明,计算得到的阻尼系数与试验测得的结果基本一致。
     利用计算阻尼系数和基桩缺陷定量分析关系式对均质土中缺陷模型桩进行缺陷定量分析,结果表明,计算得到的缺陷程度与实际缺陷程度基本一致。
     利用小波分析方法处理基桩动测信号,发现单支重构得到的逼近信号中可以凸显桩深部微弱信号。
At present, it is still very difficult to determine the degree of pile defect quantitatively in engineering practice. In order to establish a new low-stain method to realize quantitative analysis of pile defects considering pile-soil interaction, researches have been done as following.
     The pile wave equation with damping is developed with one dimension wave theory considering pile-soil interaction. Using the analytic solution of the equation, orthogonal tests were conducted to analysis the effect of different parameters on the attenuation rule of velocity wave along pile shaft. The result showed that the coincident functional relationship between wave amplitude ratios and pile-soil interaction damping coefficient could be determined corresponding to different projects. Then, the relation between the damping coefficient and amplitude ratio of reflected velocity wave to incidenced velocity wave on pile top was established. Then a method to determine damping coefficient of pile-soil interaction was developed based on velocity response of pile top.
     The transmitting process of velocity wave was analysed based on the attenuation rule of velocity wave along pile shaft and the distribution relations of enegy where wave impedance changed. Corresponding to different numbers of defects and different beds of strata, the relationship for quantitative analysis of pile defects was determined.
     The pile-soil interaction model tests were proceeded to measure the pile-soil interaction damping coefficient of six different kinds of soils. Then, shear wave velocity experiments were proceeded corresponding to the conditions of pile-soil interaction model tests. With the result, the relationship between the damping coefficient and shear wave velocity was founded. Then, the theoretic damping coefficient were determined with the theoretic formular. Result showed that theoretic damping coefficients should be corrected in engineering practice, and the correction factor was a function of shear wave velocity. Moreover, corresponding to the result of measured damping coefficients, high-stain damping coefficients have a great error. Therefor, it is improper to apply high-stain damping coefficients in low-stain conditions.
     In order to spread the method of determing damping coefficient with shear wave velocity, model test of integrated pile and shear wave velocity experiments using two kinds of sand were conducted. Results showed that calculated damping coefficients were consistent with test results.
     The quantitative analysis of pile defects of defective model pile in the homogeneous soil had been done with calculated damping coefficient and the relationship of quantitative analysis of pile defects. The result showed that the calculated degree of pile defects was consistent with the actual result.
     The velocity signals on pile top were dealed with wavelet analysis method. The decomposing result showed that smallscreen of pile bottom appeared in the the approximation signal.
引文
[1]陈凡,徐天平,陈久照,关立军,基桩质量检测技术,北京:建筑工业出版社,2003。
    [2]KLINGMüLLER O,KIRSCH F,A quality and safety issue for cast-in-place piles 25 years of experience with low-strain integrity testing in Germany: From scientific peculiarity to day-to-day practice,DIMAGGIO J A,HUSSEIN M H,eds. Current Practices and Future Trends in Deep Foundations,Reston,ASCE,Geotechnical Special Publication No 125,2004:202–221。
    [3]雷林源,桩基动力学,北京:冶金工业出版社,2000。
    [4]刘兴录,桩基工程与动测技术200问,北京:中国建筑工业出版社,2000。
    [5]王雪峰,吴世明,基桩动测技术[M],北京:科学出版社,2001。
    [6]中华人民共和国建设部,建筑基桩检测技术规范JGJ106-2003,北京:中国建筑工业出版社,2003.
    [7]徐攸在,桩基检验手册,北京:中国水利水电出版社,1999。
    [8]刘屠梅,赵竹占,吴慧明,基桩检测技术与实例,中国建筑工业出版社,2006。
    [9]张宏,鲍树峰,马晔,大直径超长桩桩身缺陷的超声波透射法检测研究,公路,2007,(3):69~72。
    [10]韩亮,基桩声波透射法检测新技术及其应用,工程力学,2007,24(增刊I):141~145。
    [11]张宏,鲍树峰,马晔,基于声波透射法的大直径超长桩的完整性分析,路基工程,2007,(5):45~47。
    [12]Frank Rausche,Fred Moses,George G Goble,Soil Resistance Predictions from Pile Dynamics,Journal of the Soil Mechanics and Foundations Division,1972,98(9):917~937。
    [13]Robert F Stevens,The use of dynamic pile testing to interpret soil set-up,Practices and Trends in Deep Foundations 2004(GSP No. 125) , Jerry A. DiMaggio,Mohamad H. Hussein,Editors,Los Angeles,California,USA,2004:96~109。
    [14]吴世明,土动力学,北京:中国建筑工业出版社,2000。
    [15]邹龙庆,冷建成,祝娟,用机械阻抗法确定作业井架地锚桩的极限承载力,地震工程与工程振动,2005,25(2):165~168。
    [16]陈凡,罗文章,预应力管桩低应变反射波法检测时的尺寸效应研究,岩土工程学报,2004,26(3):353~356。
    [17]柯宅邦,刘东甲,低应变反射波法测桩的轴对称问题数值计算,岩土工程学报,2006,28(12):2111-2115。
    [18]李炎,应用低应变反射波法动力检测桩的完整性,施工技术,2005(增刊)117~118。
    [19]黄理兴,动测桩身完整性的新理念,岩石力学与工程学报,2002,21(3):454~456。
    [20]黄理兴,陶海平,桩身缺陷模型桩模拟试验与动测波形特征,岩石力学与工程学报,1999,18(3):346~349。
    [21] Rausche, F., Goble, G. G., Determination of pile damage by top measurement: Behavior of deep foundations, ASTM, STP 670 (ed. Lundgren, R.), ASTM, 1979, 500~506.
    [22]王靖涛,桩基应力波检测理论及工程应用,北京:地震出版社,1999。
    [23]王靖涛,桩基完整性动力检测的定量研究,施工技术,1994,(2):18~20。
    [24]Wang J T,Ding M Y,Quantitative analysis for pile integrity,Proc. of the fifth international conference on the application of stress-wave theory to pils,Orlando,FL,1996,936~944。
    [25]柴华友,桩土相互作用对基桩定量分析的影响,岩土力学,1996,17(4):41~47。
    [26]陈卫东,柴华友,桩土相互作用对基桩定量分析的影响,岩土工程界,2001,4(12):38~41。
    [27]Chow Y K,Phoon K K,Chow W F,et al,Low Strain Integrity Testing of Piles Three-Dimensional Effects , Journal of Geotechnical and Geoenviromental Engineering,2003,129(11):1057~1062。
    [28]罗伟新,郭林,丁志成,基桩反射波法检测的时域定量分析方法,工程质量,2002(8):29~32。
    [29]罗伟新,反射波法检测桩身完整性的一种数据处理方法,物化与勘探,1998,22(3):216~221。
    [30]张献民,时间域中基桩缺陷低应变动测的定量分析,土木工程学报,2004,37(6):64~69。
    [31]张献民,蔡靖,王建华,基桩缺陷量化低应变动测研究,岩土工程学报,2003,25(1):47~50。
    [32]柴华友,贺怀建,阻尼对应力波传播的影响,岩土力学,1994,15(1):41~49。
    [33]LEE S L,CHOW Y K,KARUNARATNE G P,et al,Rational wave equation model for pile-driving analysis,Journal of Geotechnical Engineering,1988,114(3):306~325。
    [34]刘东甲,纵向振动桩侧壁切应力频率域解及其应用,岩土工程学报,2001,23(5):544~546。
    [35]刘东甲,不均匀土中多缺陷桩的轴向动力响应,岩土工程学报,2000,22(4):391~395。
    [36]蔡靖,王建华,张献民,桩基完整性检测中桩身应力波衰减规律及其应用,水文地质工程地质,2005(5):73~76。
    [37]Goble G G,et al,Bearing Capacity of Piles from Dynamic Measure,Final Report, Report No. Ohio-DOT-05-77,Ohio Department of Transportation,Federal highway administration,Department of Civil engineering,Case Western Reserve University,1975。(Final report)
    [38]王奎华,谢康和,曾国熙,有限长桩受迫振动问题解析解及其应用,岩土工程学报,1997,19(6):27~35。
    [39]王腾,王奎华,谢康和,任意段变截面桩纵向振动的半解析解及应用,岩土工程学报,2000,22(6):654~658。
    [40]王腾,王奎华,谢康和,成层土中桩的纵向振动理论研究及应用,土木工程学报,2002,35(1):83~87。
    [41]胡昌斌,王奎华,谢康和,考虑桩土相互作用效应的桩顶纵向振动时域响应分析,计算理学学报,2004,21(4):392~398
    [42]柴华友,土阻尼对应力波在一维变阻抗杆中传播的影响,土木工程学报,1994,27(3):41~49。
    [43]Novak M,Nogami T,Aboul-Ella F,Dynamic Soil Reaction for Plain Strain Case,Journal of the Engineering Mechanics Division,1978,104(EM4):953~959。
    [44]Naggar M H EI,Novak M. Nonlinear Axial Interaction in Pile Dynamics,Journal of Geotechnical Engineering,1994,120(4):678–696。
    [45]Han Y C,Dynamic Vertical Response of Piles in Nonlinear Soil[J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(8):710~716。
    [46]Novak M,Han Y C,Impedance of Soil Layer with Boundary Zone,Journal of Geotechnical Engineering,1990,116(6):1008-1015。
    [47]柴华友,贺怀建,唐念慈,桩土相互作用及模型实验,岩土力学,1993,14(2),75~84。
    [48]蔡靖,岩土隐蔽结构缺陷量化分析及小波变换应用研究:[博士学位论文],天津;天津大学,2004。
    [49]王腾,王奎华,谢康和,变截面桩速度导纳的解析解,岩石力学与工程学报,2002,21(4):573–576。
    [50]曾绍标,熊洪允,毛云英,应用数学基础,天津:天津大学出版社,2004。
    [51]郭玉翠,数学物理方法,北京:清华大学出版社,2006。
    [52]车向凯,谢彦红,缪淑贤,数理方程,北京:高等教育出版社,2006。
    [53]凌复华,殷学纲,何治奇,常微分方程数值方法及其在力学中的应用,重庆:重庆大学出版社,1990。
    [54]刘洪友,李莉彭锋,Matlab6基础及应用,重庆:重庆大学出版社,2001。
    [55]苏晓生,掌握MATLAB 6.0及其工程应用,北京:科学出版社,2002。
    [56]王沫然,MATLAB5.x与科学计算,北京:清华大学出版社,2000。
    [57]刘则毅,科学计算技术与Matlab,北京:科学出版社,2001。
    [58]Chapman S J,MATLAB编程,北京:科学出版社,2001。
    [59]张旭辉,龚晓南,徐日庆,边坡稳定影响因素敏感性的正交法计算分析,中国公路学报,2003,16(1):36~39。
    [60]郑木莲,陈拴发,王秉纲,基于正交试验的多孔混凝土配合比设计方法,同济大学学报(自然科学版),2006,34(10),1319~1323
    [61]王颉,试验设计与SPSS应用,北京:化学工业出版社,2007。
    [62]陈魁,试验设计与分析,北京:清华大学出版社,2005。
    [63]廖振鹏,工程波动理论导论,北京:科学出版社,2002。
    [64]吴庆曾,基桩完整性检测,探矿工程,1999,(2):51~52。
    [65]黄龙生,黄勇,李昭芳,论基桩动力检测法,地震工程与工程振动,1998,18(2):124~133。
    [66]王奎华,基桩波动方程达朗贝尔解法精度研究,岩土工程学报,1999,21(5):617~620。
    [67]王运生,用对数分解法解释小应变测桩信号,工程勘察,1997,(5),65~67。
    [68]鞠庆海,反射波法低应变桩身完整性量化研究与应用,工程勘察,1996,(4),64~67。
    [69]王建华,智胜英,低应变条件下桩土相互作用的阻尼系数,岩石力学与工程学报,2007,26(9):1800~1808。
    [70]蔡靖,张献民,王建华,基桩完整性检测中桩土相互作用参数的试验研究,岩土工程学报,2006,28(5),617~621。
    [71]王建华,赵娜,相同剪切波速的原状土与重塑饱和松散粉土的抗液化程度,岩土工程学报,2007,29(1):39~43,
    [72]程国勇,饱和砂土剪切波速与抗液化强度相关性的研究:[博士学位论文]天津;天津大学,2004。
    [73]Hardin B O,Blandford G E,Elasticity of particulate materials,Jouranl of Geotechnical Engineering,1989,115(6):788~805。
    [74]Hardin B O,Discussion of Anisotropic Shear Modulus Due to Stress Anisotropy,Jouranl of Geotechnical Engineering,1980,106(8):956~958。
    [75]洪毓康,土质学与土力学,北京:人民交通出版社,1999。
    [76]华南理工大学、东南大学、浙江大学、湖南大学四校合编,地基及基础,中国建筑工业出版社,1998。
    [77]蔡棋瑛,林建华,基于小波分析和神经网络的桩身缺陷诊断,振动与冲击,2002,21(2):11~14。
    [78]王靖涛,桩基应力波检测的小波分析,中国科学(E辑)2003,33(1):91~96。
    [79]韩晓林,唐新鸣,基桩检测反射波的非线性小波降噪重建方法,土木工程学报,2001,34(6):105~107。
    [80]潘冬子,程升明,唐颖栋,小波神经网络在基桩缺陷诊断分析中的应用,振动、测试与诊断,2006,26(3):203~207。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700