用户名: 密码: 验证码:
典型生物反应器传质、混合的计算流体力学模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物反应器被广泛地应用于食品、医药、污水处理、石油开采等过程中,但是受到介质流变特性影响,设备内混和、传质等操作过程往往达不到设计要求。以流体的运动特征为基础来指导反应器设计和操作条件优化逐渐受到研究者的重视,因此考察设备内流体流动行为显得尤为重要。目前的趋势是前期采用基于计算流体力学的数值模拟解决流动问题,后期对数值结果进行有针对性地实验验证以确保结果的可信性。这种方法可以很好地达到减少劳动和经费投入并提高实验效率的目的。本工作即基于上述方法对典型生物反应器的传质进行研究,以期为相关研究和生产提供数据支持。
     论文的第一部分以250 mL摇瓶作为研究对象,采用FLUENT?(V6.2, Fluent Inc., USA)作为计算平台,考查了不同转速和装液量下摇瓶内液体的流动行为。结果表明:
     (1)摇瓶内液体的自由液面随着转速增加弯曲程度加剧。受到壁面粘附和惯性作用影响液相出现不同程度拖尾现象。气液界面面积不随转速增加而线性增加,在150 r/min左右有一最小值。并且可以推断转速大小与气液更新速度呈正相关关系。
     (2)摇瓶内液相的湍流参数受到转速和装液量的双重影响。通过非线性拟合得到了耗散率ε与转速N和装液量V之间的关系式:ε= 0.3899×N1.3853×V- 0.4075。
     论文的第二部分对不同浓度黄原胶溶液在配置了不同桨型(直叶圆盘涡轮、非对称抛物线圆盘涡轮和四斜叶桨)的搅拌反应器内的流动状态进行了研究。考察了黄原胶溶液在搅拌槽内的流动特征、桨叶搅拌效果和功率消耗。结果表明:
     (1)高粘度液体造成桨叶径向泵送流量显著下降。当溶液浓度达到2 wt %时,所有桨叶搅拌效果都明显下降,大量液体只是在缓慢运动。小桨径不适用于高粘度体系搅拌。
     (2)功率消耗受到桨叶两侧压差和液体粘度的双重影响。黄原胶浓度升高,四斜叶桨的功率消耗逐渐增加,而直叶涡轮功率消耗明显降低。
     根据上述研究结果,又对1.0 wt %的黄原胶溶液在通气搅拌反应器内的流动状态和气液两相流参数进行了数值模拟和实验测量。过程选择多重参考系方法处理桨叶区的运动,采用基于Euler-Euler方法的Mixture模型处理两相流问题,气泡聚并和破裂过程采用群落平衡方程(Population Balance Equations, PBE)。结果表明:
     (3)改变通气量会影响设备搅拌效果,但对泵送流量基本没有影响。通气量增加,介质的表观密度下降,搅拌功率消耗显著降低。通气量为1 vvm时,介质表观密度比不通气时降低了4.7 %,搅拌功率下降了12.6%。
     (4)设备内的气泡尺寸和气含率在不同区域差别明显。搅拌桨附近以及桨叶排出流与壁面接触的区域,气泡破碎占主导作用,气泡直径相对较小;空气分布器出口阶段以及循环回到搅拌桨附近的上下两股流体区域气泡的聚并作用较为明显,气泡直径较大。能量耗散高的区域和气泡较小的区域具有更大的kLa值。
     (5)由于流体参数分布的不均一性,在设备内特定点采集的数据往往不能很好地体现实际操作过程的参数。本工作中采用CFD方法对流体参数的预测值与测量值偏差均在10 %以内,能够较准确地再现设备内流体的运动状态。以CFD数值模拟为主结合实验测量验证的方法对搅拌反应器进行相关研究是可行的。
Bioreactors are widely used in inductries such as food, pharmatheutical, wastewater treatment, petroleum exploitation, and so on, but, mixing and mass transfer in these facilities can not always meet the design requirements because of rheological effects of the liquid. Bioreactor design and condition optimization based on the fluid flow characterastics are taken into account by researchers. It's very important to investigate the behavior of fluid flow in the bioreactors. Using Computational Fluid Dynamics (CFD) to simulate the flow problems numerically in earlier stage, and combining a series of pertinent validation for the numerical results at last shows a cost-effective and labor-saving way. The efficiency of a task involving fluid flow problems can be improved well in this way. For supporting the subsequent reseaches and production, the mass transfer in two typical bioreactors were investigated in the abovementiond way in this study.
     A 250 mL flask was selected as the research object in the first part of this paper. The behavior of fluid flow in the flask at different rotation speeds and liquid loading volumes were investigated using a commercial CFD software, FLUENT? (version 6.2, Fluent Inc., USA). The results showed that,
     (1) The free liquid surface was curved obviously when increasing rotation speed, but the area of liquid-gas interface didn’t increase linearly with rotation speed. A minimum value was found at 150 rpm. A tailing phenomena was observed in the liquid phase because of the wall adhesion and material inertia. Gas refreshing rate can be evaluated simply by rotation speed.
     (2) Both the rotation speed and loading volume can affect the turbulent parameters of liquid phase. A correlation of turbulent dissipation rate with rotation speed and loading volume was obtained by non-linear regression, which wasε= 0.3899×N1.3853×V- 0.4075.
     A stirred vessel equipped with 3 different type of impellers was elaborated in the second part of this paper. Flow characteristics of xanthan gum solution, stirring effects and power consumptions at different xanthan concentrations in the vessel were simulated numerically. The result showed that,
     (1) The pumping capacity and stirring effects of all impellers dropped significantly in highly viscous liquid especially at 2 wt % of xanthan solution. It is not suitable for dealing with a highly viscous system using impellers in small diameter.
     (2) Both pressure difference and liquid viscosity could affect the power consumption in the vessel. Power consumption with a pitched blade paddle increased with the solution concentration, while that with a Rushton turbine decreased obviously.
     According to the results abovementioned, Flow behavior and gas-liquid parameters of 1.0 wt % xanthan solution in a gassing stirred vessel were investigated numerically and experimentally. A multiple reference frame (MRF) method was taken to deal with the motion of impellers. The Mixture model based on the Euler-Euler technique was used to solve these problems of gas-liquid flow, and a series of population balance equations (PBE) were employed to describe the evolution of coalescence and break-up of the bubbles. The result showed that,
     (3) The stirring effects were related to the ventilation volume which had no influence on the pumping capacity. When increasing the ventilation volume, the apparent density decreased which was similar to the changing of power consumption. As the ventilation volume reached 1 vvm, the apparent density and power consumption dropped by 4.7 % and 12.6 %, respectively.
     (4) Local bubble size distribution and gas hold-up varied in the vessel. Bubble break-up played a dominant role in the impeller zone, while the regions above the air sparger and in the recirculation flow had a dominant effect of coalescence. The oxygen volume mass transfer coefficient (kLa) was greater in these areas that had high energy dissipation rate and small bubble size.
     (5) Owing to the heterogeneous distribution of flow parameters, it is not applicable to study on the bioprocess by measuring some special points in equipments. The relative variation of parameters between simulation and measurement were all within 10 % in this work, which showed an acceptable result to describe the flow characters in the vessel. A method which is combined CFD technique with measurement is effective in studying on bioreactors.
引文
1黄星,刘铭,龚博,等.定点突变的谷氨酰胺合成酶的表达条件和在酶法合成谷氨酰胺中的应用[J],化工学报, 2008, 59(6): 1479-1484
    2卫功元,王大慧,陈坚.不同溶氧控制方式下的谷胱甘肽分批发酵过程分析[J].化工学报, 2007, 58(9): 2329-2335
    3 Mousavi S M, Yaghmaei S, Salimi F, et al. Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans. Part I: Flask experiments. Fuel, 2006, 85(17-18): 2555-2560
    4 Weuster-Botz D. Experimental design for fermentation media development: Statistical design or global random search? Journal of Bioscience and Bioengineering, 2000, 90(5): 473-483
    5范代娣,俞俊堂,魏东芝.摇瓶的体积氧传递系数和氧通透率的测定[J].生物工程学报, 1994, 10(2): 114-117
    6朱文洲,俞俊棠,吴保东.摇瓶发酵过程中OUR,CER和RQ的在线检测[J].华东理工大学学报, 1997, 23(2): 196-199
    7范代娣,俞俊堂.以摇瓶所得摄氧率为基准进行发酵放大[J].生物工程学报, 1996, 12(3): 301-306
    8 Szalai E S, Arratia P, Johnson K, et al. Mixing analysis in a tank stirred with Ekato Intermig impellers[J]. Chem Eng Sci, 2004, 59: 3793-3805
    9 Knoch A. Influence of Non-Newtonian Flow Behavior on Mixing Process Characteristics[J]. Chem Eng Technol, 1999, 22(2): 112-118
    10 Mavros P. Flow visualization in stirred vessels a review of experimental techniques[J]. Trans IChemE Pt A, 2001, 79: 113-127
    11 Sommerfeld M, Decker S. State of the art and future trends in CFD simulation of stirred vessel hydrodynamics[J]. Chem Eng Technol, 2004, 27(3): 215-224
    12 Pakzad L, Ein-Mozaffari F, Chan P. Using computational fluid dynamics modeling to study the mixing of pseudoplastic fluids with a Scaba 6SRGT impeller[J]. Chem Eng Process, 2008, 47: 2218-2227
    13刘书志,卜欣立,李瑞珍,等.工业气升式生物反应器结构和设计[J].现代化工, 2007, 27增刊(2): 484-486
    14王存文,童海宝,陈大昌,等.内循环气升式反应器内各分区的流动特性[J].化工冶金, 1993, 14(4): 338-344
    15金家琪,王莉,卢春喜,等.强制液体外循环气升式内环流反应器的流体力学特性[J].化工学报, 2007, 58(7): 1677-1684
    16刘梦溪,谢建平,卢春喜,等.环隙气升式气固环流反应器内流体力学特性的理论分析[J].化工学报, 2008, 59(9): 2198-2205
    17董元吉.鼓泡流化床反应器的数学模型[J].化工冶金, 1986, 7(1): 1-12
    18胡金榜,李进龙,李艳平,等.循环流化床反应器理论研究进展[J].化工进展, 2004,23(2): 173-176
    19于光认,陈晓春,刘辉.有内构件工业湍动流化床反应器的模型化——反应器模型的开发[J].化工学报, 2003, 54(8): 1150-1154
    20刘明言,杨扬,薛娟萍,等.气液固三相流化床反应器测试技术[J].过程工程学报, 2005, 5(2): 217-222
    21时国栋,虞星炬,袁权.中空纤维膜反应器的操作模式[J].化工学报, 1993, 44(2): 151-157
    22张卫东,李爱民,任钟旗.中空纤维更新液膜传质性能的研究[J].高校化学工程学报, 2006, 20(5): 843-846
    23唐江伟,吴振强.新型生物反应器结构研究进展[J].中国生物工程杂志, 2007, 27(5): 146-152
    24 Mavros P. Flow visualization in stirred vessels: a review of experimental techniques[J]. Trans IChemE, 79(A): 113-127
    25 Hockey R M, Nouri J M. Turbulent flow in a baffled vessel sitrred by a 60°pitched blade impeller[J]. Chem Eng Sci, 1996, 51(19): 4405-4421
    26 Aubin J, Fletcher D F, Xuereb C. Modeling turbulent flow in stirred tanks with CFD: the influence of the modeling approach, turbulence model and numerical scheme[J] Exp Therm Fluid Sci, 2004, 28: 431-445
    27 Couerbe G, Fletcher D F, Xuereb C, et al. Impact of thixotropy on flow patterns induced in a stirred tank: numerical and experimental studies[J]. Chemical Engineering Research and Design, 2008, 86: 545-553
    28 Pakzad L, Ein-Mozaffari F, Chan P. Using electrical resistance tomography and computational fluid dynamics modeling to study the formation of cavern in the mixing of pseudoplastic fluids possessing yield stress[J]. Chemical Engineering Science, 2008, 63: 2508-2522
    29 Khopkar A R, Rammohan A R, Ranade V V, et al. Gas-liquid flow generated by a Rushton turbine in stirred vessel: CARPT/CT measurements and CFD simulations[J]. Chemical Engineering Science, 2005, 60: 2215-2229
    30 Yoon H S, Hill D F, Balachandar S, et al. Reynolds number scaling of flow in a Rushton turbine stirred tank. Part I - Mean flow, circular jet and tip vortex scaling[J]. Chemical Engineering Science, 2005, 60: 3169-3183
    31 Raju R, Balachandar S, Hill D F, et al. Reynolds number scaling of flow in a stirred tank with Rushton turbine. Part II - Eigen decomposition of fluctuation[J]. Chemical Engineering Science, 2005, 60: 3185-3198
    32 Ducci A, Yianneskis M. Turbulence kinetic energy transport processes in the impeller stream of stirred vessels[J]. Chemical Engineering Science, 2006, 61: 2780-2790
    33 Montante G, Paglianti A, Magelli F. Experimental analysis and computational modelling of gas-liquid stirred vessels[J]. Chemical Engineering Research and Design, 2007, 85(A5): 647-653
    34 Laakkonen M, Alopaeus V, Aittamaa J. Validation of bubble breakage, coalescence and mass transfer models for gas–liquid dispersion in agitated vessel[J]. Chemical EngineeringScience, 2006, 61: 218-228
    35 Bertrand J, Poux M, Aubin J. European federation of chemical engineering working party on mixing: Development, state of the art and future of the scientific field[J]. Chemical Engineering Research and Design, 2004, 82(A12): 1575-1579
    36 Norton T, Sun D-W. Computational fluid dynamics (CFD)– an effective and efficient design and analysis tool for the food industry: A review[J]. Trends in Food Science and Technology, 2006, 17: 600-620
    37王福军.计算流体动力学分析: CFD软件原理与应用[M]. Beijing: Tsinghua University Press, 2004, 1-22
    38 Harris C K, Roekaerts D, Rosendal F J J, et al. Computational fluid dynamics for chemical reactor engineering[J]. Chemical Engineering Science, 1996, 51(10): 1569-1594
    39 Zhang H, Williams-Dalson W, Keshavarz-Moore E, et al. Computational-fluid-dynamics (CFD) analysis of mixing and gas–liquid mass transfer in shake flasks[J]. Biotechnology and Applied Biochemistry, 2005, 41: 1-8
    40 Gerber H L, Bassi A, Khalid M H, et al. Analytical and experimental dosimetry of a cell culture in T-25 flask housed in a thermally controlled waveguide[J]. IEEE Transactions on Plasma Science, 2006, 34(4): 1449-1454
    41 Dhanasekharan K M, Sanyal J, Jain A, et al. A generalized approach to model oxygen transfer in bioreactors using population balances and computational fluid dynamics[J]. Chemical Engineering Science, 2005, 60: 213-218
    42 Díaz M E, Iranzo A, Cuadra D, et al. Numerical simulation of the gas–liquid flow in a laboratory scale bubble column: Influence of bubble size distribution and non-drag forces[J]. Chemical Engineering Journal, 2008, 139: 363-379
    43 Wang T, Wang J. Numerical simulations of gas–liquid mass transfer in bubble columns with a CFD–PBM coupled model[J]. Chemical Engineering Science, 2007, 62: 7107-7118
    44 Lane G L, Schwarz M P, Evans G M. Numerical modelling of gas–liquid flow in stirred tanks[J]. Chemical Engineering Science, 2005, 60: 2203-2214
    45 Moilanen P, Laakkonen M, Visuri O, et al. Modelling mass transfer in an aerated 0.2m3 vessel agitated by Rushton, Phasejet and Combijet impellers[J]. Chemical Engineering Science, 2008, 142: 95-108
    46 Shekhar S M, Jayanti S. CFD study of power and mixing time for paddle mixing in unbaffled vessels[J]. Trans IChemE, 2002, 80(A): 482-498
    47 Panneerselvam R, Savithri S, Surender G D. CFD modeling of gas-liquid-solid mechanically agitated cantactor[J]. Chemical Engineering Research and Design, 2008, 86: 1331-1344
    48 Brucato A, Ciofalo M, Grisafi F, et al. Complete numerical simulation of flow fields in baffled stirred vessels: The inner-outer approach[C]. Proceedings of 8th European Conference on Mixing, Cambridge: 1994, 155-162
    49 Fluent Inc. FLUENT 6.3 Tutorial Guide[CP/CD]. Fluent Inc. 2006
    50 Garcia-Ochoa F, Gomez E. Bioreactor scale-up and oxygen transfer rate in microbial processes: An overview[J]. Biotechnology Advances, 2009, 27(2): 153-176
    51 Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of freeboundaries. Journal of Computational Physics, 1981, 39: 201-225
    52 Murthy B N, Joshi J B. Assessment of standard k–ε, RSM and LES turbulence models in a baffled stirred vessel agitated by various impeller designs[J]. Chemical Engineering Science, 2008, 63: 5468-5495
    53 Alves S S, Maia C I, Vasconcelos J M T. Experimental and modelling study of gas dispersion in a double turbine stirred tank[J]. Chemical Engineering Science, 2002, 57: 487-496
    54 Oldshue J Y.流体混合技术[M].王英琛等译.北京:化学工业出版社, 1991. 193-219
    55 Delaplace G, Guerin R, Leuliet J-C, et al. An analytical model for the prediction of power consumption for shear-thinning fluids with helical ribbon and helical screw ribbon impellers[J]. Biotechnol Adv, 2000, 18: 549-579
    56 Diaz A, Acevedo F. Scale-up strategy for bioreactors with Newtonian and non-Newtonian broths[J]. Bioprocess Eng, 1999, 21: 21-23
    57 Chapple D, Kresta S M, Wall A, et al. The effect of impeller and tank geometry on power number for a pitched blade turbine[J]. Trans IChemE Part A, 2002, 80: 364-372
    58 Yapici K, Karasozen B, Sch?fer M. Numerical investigation of the effect of the Rushton type turbine design factors on agitated tank flow characteristic[J]. Chem Eng Process, 2008, 47: 1340-1349
    59 Yakhot V, Orszag S A. Renormalization group analysis of turbulenceⅠ: basic theory. Journal of Scientific Computing, 1996, 1(1): 3-11
    60 Amanullah A, Tuttiett B, Nienow A W. Agitator Speed and Dissolved Oxygen Effects in Xanthan Fermentations[J]. Biotechnol. Bioeng., 1998, 57(2): 198-210
    61 Garc??a-Ochoa F, Santos V E, Casas J A, et al. Xanthan Gum: Production, Recovery, and Properties[J]. Biotechnol. Adv., 2000, 18: 549-579.
    62张国娟.搅拌槽内混合过程的数值模拟[D]: [硕士学位论文].北京:北京化工大学, 2004.
    63 Khare A S, Niranjan K. An experimental investigation into the effect of impeller design on gas hold-up in a highly viscous Newtonian liquid[J]. Chemical Engineering Science, 1999, 54: 1093-1100
    64 Bang W, Nikov I, Delmas H, et al. Gas-liquid mass transfer in a new three-phase stirred airlift reactor[J]. Journal of Chemical Technology and Biotechnology, 1998, 72: 137-142
    65 Shin C S, Hong M S, Lee J. Oxygen transfer correlation in high cell density culture of recombinate E. coli[J]. Biotechnology Techniques, 1996, 10(9): 679-682
    66 Yagi H, Yoshida F. Gas Absorption by Newtonian and Nan-Newtonian Fluids in Sparged Agitated Vessels[J]. Industrial and Engineering Chemistry Process Design and Development, 1975, 14 (4): 488-493
    67 García-Ochoa F, Gómez E. Mass transfer coefficient in stirred tank reactors for xanthan gum solutions[J]. Biochemical Engineering Journal, 1998, 1: 1-10
    68 Luo H, Svendsen H F. Theoretical Model for Drop and Bubble Breakup in Turbulent Dispersions[J]. AIChE Journal, 1996, 42(5): 1225-1233
    69 Kumar S, Ramkrishna D. On the solution of population balance equations by discretization–Ⅰ. A fixed pivot technique[J]. Chemical Engineering Science, 1996, 51(8):1311-1332
    70 Kawase Y, Halard B, Moo-Young M. Liquid–Phase Mass Transfer Coefficients in Bioreactors[J]. Biotechnology and Bioengineering, 1992, 39: 1133-1140.
    71 Wasan D T, Lynch M A, Chad K J, et al. Mass transfer into dilute polymeric solutions[J]. AIChE Journal, 1972, 18(5): 928-934
    72 Kerdouss F, Bannari A, Proulx P, Bannari R, Skrga M, Labrecque Y. Two-phase mass transfer coefficient prediction in stirred vessel with a CFD model, Computers and Chemical Engineering, 2008, 32(8): 1943-1955
    73 Amanullah A, Hjorth S A, Nienow A W. A New Mathematical Model to Predict Cavern Diameters in Highly Shear Thinning, Power Law Liquids Using Axial Flow Impellers[J]. Chem. Eng. Sci., 1998, 53: 455-469
    74 Hibbeler R C.材料力学[M].汪越胜,等译.北京:电子工业出版社, 2006. 149-155
    75 Vlaev S D, Staykov P, Popov R. Pressure Distribution at Impeller Blades of Some Radial Flow Impellers in Sacchrose and Xanthan gum Solutions: A CFD Visualization Approach[J]. Food Bioprod. Process, 2004, 82(C1): 13-20.
    76 Nienow A W. Gas-liquid Mixing Studies: A Comparison of Rushton Turbines with Some Modern Impellers[J]. Chem. Eng. Res. Des., 1996, 74(A): 417-423.
    77 Martín M, Montes F J, Galán M A. Bubbling process in stirred tank reactorsⅠ: Agitator effect on bubble size, formation and rising[J]. Chemical Engineering Science, 2008, 63: 3212-3222
    78 Alves S S, Maia C I, Vasconcelos J M T, et al. Bubble size in aerated stirred tanks[J]. Chemical Engineering Journal, 2002, 89: 109-117

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700