用户名: 密码: 验证码:
植物蛋白挤压组织化过程中水分的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
食品挤压是温度、压力和机械剪切等因素共同作用的过程,水分对挤压过程的顺利实施和挤压产品的特性有着重要影响,物料水分含量是划分中低水分和高水分挤压技术的主要标志。与中低水分蛋白挤压产品相比,高水分挤压组织化产品因具有视觉外观和口感均类似鸡胸脯肉的纤维状结构,已引起人们普遍关注。为此,前人提出高水分挤压产品纤维化结构形成机理的“膜状气腔”理论假设,其中,明确指出挤压过程中水分的变化和作用对挤压产品纤维化结构形成的重要性。在前期相关方法研究和“膜状气腔”理论假设的启示下,本研究以物料水分为切入点,对水分在植物蛋白挤压过程中的作用进行系统分析,旨在探讨高、低水分挤压技术生产纤维状模拟肉蛋白产品的本质差异,进而提出植物蛋白高水分挤压产品纤维化结构形成机理的理论模型。
     本研究以大豆分离蛋白(SPI)为原料,以DSE-25型同向啮合双螺杆挤压机为加工设备,设计不同物料水分(28%~60%)和挤压温度(140~160℃),通过在线检测和理论模型推导,分析了水分对挤压过程中扭矩、压力降、在线黏度、停留时间分布(RTD)以及单位机械能耗(SME)等系统参数的影响;通过差示量热扫描(DSC)和低场脉冲核磁共振(LF-NMR)技术分析了水分在挤压产品中的形态和分布;通过感官、质构、蛋白质溶解性、电泳和红外光谱等技术,从宏观到微观层面,分析了水分对挤压产品的外观、质构、化学键交联、蛋白质亚基(7S/11S球蛋白比例)和蛋白质二级结构的影响;通过突然停机操作,得到挤压机机筒内不同区段的样品,分析了水分在机筒内对蛋白质特性的影响;最后对水分形态与挤压过程中系统参数、最终挤压产品特性之间进行典型相关分析,系统阐明挤压过程中不同形态水分的作用。主要结论如下:
     (1)SPI经挤压蒸煮后发生了聚合、交联等变性反应,形成了大分子量聚合物,溶解度降低;挤压组织化产品的结构是由疏水作用、氢键、二硫键以及彼此之间的协同作用共同维持,且非共价键作用大于二硫键作用,4种蛋白二级结构均存在,且β-折叠、β-转角>无规则卷曲>α-螺旋。
     (2)SPI原料中临界冻结水或自由水含量在35%~38%,这可能是高、低水分挤压组织化技术水分临界值划分的依据。当水分含量高于此临界值时,物料中添加的水主要转化为挤压组织化产品中的冻结水或自由水。挤压蒸煮过程中,主要是冻结水或自由水对挤压过程和组织化产品的特性起作用;水分具有增塑、降黏、导热、熟化、辅助成型以及作为反应溶剂等作用。
     (3)高水分挤压组织化过程中,存在大量自由水,通过降低SPI在挤压机机筒内的黏度和停留时间,减小物料在挤压机内受到机械作用的大小,从而降低蛋白质亚基聚合交联的程度,增加二硫键与氢键、二硫键与疏水作用之间的协同作用以及7S/11S球蛋白比例,最终使挤压蛋白产品的颜色变浅,产品的纤维化程度提高。这可能是高水分挤压技术较中低水分挤压技术在生产纤维状蛋白模拟肉时更具优势的本质原因。
Food extrusion is a multifactors process involving temperature, pressure, mechanical shear, etc. Water is the most important factor affecting successful extrusion operation and the structure and property formation of extrudate. Feed moisture content is the main basis for demarcating high-moisture extrusion and low-intermediate-moisture extrusion. Compared with the textured protein extruded at low-intermediate-moisture content, the meat analogue extruded at high-moisture content has been paid more attention due to its visual texture and fibrous structure resembling chicken breast. Therefor, the hypothesis of―membranous gas cavities‖was proposed to explain the formation mechanism for fibrous structure in high-moisture textured protein, in which the contribution of water change & role to forming the fibrous structure in final product has been emphasized. Inspired by previous related researches and the hypothesis of―membranous gas cavities‖, feed moisture content was separated from numerous extrusion process parameters to further analyze its effects during extrusion texturization for vegetable protein. The objectives of our research are to investigate the essential differences between high-moisture extrusion and low-moisture extrusion in producing protein meat analogue, and further to propose a mechanism model for explaining the forming process of fibrous structure for high-moisture textured vegetable protein.
     In this research, soybean protein isolate (SPI) was processed using a pilot-scale, co-rotating, intermeshing, twin-screw extruder typed DSE-25 (Brabender GmbH & Co., Germany) under 28-60% moisture content and 140-160℃cooking temperature. By means of on-line sensor detecting and theory model deduction, the effects of moisture content on system parameters such as motor torque, pressure drop, in-line viscosity, residence time distribution (RTD) and specific mechanical energy (SME) were analyzed. By using differential scanning calorimetry (DSC) and low field nuclear magnetic resonance (LF-NMR) techniques together, the change of water states and distribution in textured soybean protein (TSP) extruded under different conditions were investigated. By adopting multiplicate analysis methods and techniques such as sensory, texture, protein solubility, electrophoresis, infrared spectra etc., the effects of moisture content on the product properties (including appearance, texture, chemical cross-linking, protein subunits (7S/11S), protein secondary structure) were analyzed. After dead-stop operation, the samples from different zones of the extruder were obtained to explore the effects of moisture content on protein properties within the extruder barrel. Finally, the canonical correlation analysis between water with different states or mobility, system parameters, product texture and protein properties were investigated, and the specific roles of water with different sates or mobility during extrusion cooking were analyzed systematically. The main conclusions drawn from this research were listed as follows:
     (1) After extrusion process, soybean isolate protein (SPI) cross-linked and aggregated into macromolecule polymers, resulted in solubility decreasing. The structure of TSP was hold collectively by hydrophobic interactions, hydrogen bonds, disulfide bonds and their interactions, and the contribution of non-covalent bonds outweighed covalent bonds. The four kinds of protein secondary structure all existed in TSP, and the order of their relative percentage was:β-sheet,β-turn>unordered>α-helix.
     (2) The critical quantity of freezable or mobile water in SPI raw materials was 35%-38% (wet base), which may be the scientific basis of moisture boundary for demarcating low-intermediate moisture extrusion and high moisture extrusion. Above the critical quantity,the water added into the raw materials was mainly converted into the freezable or mobile water in final product. In the extrusion cooking pro- cess, it is the freezable or mobile water that affects the extrusion process and the properties of texturized product. Water performed several important functions such as plastification, reducing- viscosity, con- ducting-heat, cooking, shaping-assist and reaction reagent, etc.
     (3) There was plenty of freezable water in the texturization process for high moisture extrusion. Water could reduce the viscosity and residence time of SPI dough within extruder, decrease the effect of mechanical energy acting on melt dough, finally the color of extrudate was light. Increasing water content could reduce the degree of aggregation and cross-linking, increase the interactions between disulfide bonds and hydrogen bonds and between disulfide bonds and hydrophobic interactions, increase the ratio of 7S to 11S, consequently increase the degree of fiberization for TSP. These may be the essential reasons why high-moisture extrusion has unique advantage over low-intermediate-moisture extrusion to produce protein meat analogue with fibrous structure.
引文
1.曹栋,史苏佳,张永刚等.酰胺I带和酰胺III带测定花生磷脂酶D的α-螺旋和β-折叠含量.化学通报,2008,71(11):79~82.
    2.陈存社,朱复华,林炳鉴等.淀粉单螺杆挤出过程的可视化实验研究.农业机械学报,1998,29(2):68~72.
    3.陈贵堂,赵霖.植物蛋白的营养生理功能及开发利用.食品工业科技,2004,25(4):137~140.
    4.陈瑞战,王晓菊,张永宏,张守勤.应用双螺杆挤压机改性玉米蛋白质的研究.长春师范学院学报(自然科学版),2005,24(5):61~68.
    5.陈卫江,林向阳,阮榕生等.核磁共振技术无损快速评价食品水分的研究.食品研究与开发,2006,27(4):125~127.
    6.陈莹,俞俊棠,沈蓓英等.蛋白质的挤压组织化改性——大豆蛋白在挤压过程中的物理、化学变化.华东理工大学学报,1994,20(6):758~763.
    7.丁哈珀著.丁霄霖,顾尧臣,吴祖伦等译.食品挤压成型(内部资料),1986.
    8.杜双奎,魏益民,张波.挤压膨化过程中物料组分的变化分析.中国粮油学报,2005,20(3):39~43.
    9.范崇东,范明辉,盛剑俊. NMR对水分的研究及其在食品科学中的应用.食品工业科技,2003,12:98~100.
    10.高惠璇编.应用多元统计分析.北京:北京大学出版社,2005.
    11.管斌,林洪,王广策编著.食品蛋白质化学.北京:化学工业出版社,2005.
    12.郭奕崇,朱复华,刘颖等.双螺杆挤出理论研究中的几个问题.塑料工业,1998a,26(4):103~105.
    13.郭奕崇,朱复华,刘颖等.同向双螺杆挤出固体输送现象的描述与分析.北京化工大学学报,1998b,25(2):41~45.
    14.侯建设,梁歧,张鸣镝等.温度和水分对大豆组织蛋白挤压成型和褐变的影响.食品科学,2002,38(8):38~40.
    15.江波,陈埔,向明.化学交联PVA水凝胶中水的状态.高分子材料科学与工程,1994,1:130~132.
    16.金征宇主编.现代食品丛书——挤压食品.北京:中国轻工业出版社,2005.
    17.康立宁,魏益民,张波等.大豆蛋白高水分挤压组织化过程中工艺参数对系统压力和扭矩的影响.中国粮油学报,2007a,22(4):43~49.
    18.康立宁,魏益民,张波等.大豆蛋白高水分挤压组织化过程中操作参数对单位机械能耗的影响.中国粮油学报,2007b,22(3):38~42.
    19.康立宁.大豆蛋白高水分挤压组织化技术和机理研究[博士学位论文].杨凌:西北农林科技大学,2007c.
    20.柯仁楷,黄兴海.平衡相对湿度ERH原理在水分活度测量中的应用.中国食品添加剂,2005,6:119~122.
    21.李向红,刘展,李伟等.干燥方法对大豆分离蛋白热诱导聚集体的影响.农业工程学报,2008,24(10):258~261.
    22.李占元,任长青,易洪.卡尔费休法测定食品中的含水量.中国计量,2001,72(11):51~52.
    23.林向阳.核磁共振成像技术在面包制品加工与贮藏过程中的研究[博士学位论文].南昌:南昌大学,2006.
    24.刘克顺,周瑞宝,田少君等.纤维状仿肉制品的高湿挤压生产技术.中国油脂,2006,31(3):49~51.
    25.刘文生,张永林.双螺杆挤压机物料传输的模拟研究.食品科技,2004,12:57~59.
    26.刘志同.中国植物油料蛋白生产现状与发展趋势.中国油脂,2004,29(10):5~10.
    27.卢雁,张玮玮,王公柯. FTIR用于变性蛋白质二级结构的研究进展.光谱学与光谱分析,2008,28(1):88~93.
    28.马海乐.大豆面团黏度模型的研究.江苏理工大学学报(自然科学版),2001,22(2):34~37.
    29.莫小曼.高湿挤压技术生产纤维性仿肉制品.中国食品,2000,22:21.
    30.彭树美,林向阳,阮榕生等.核磁共振及成像技术在食品工业中的应用.食品科学,2008,29(11):712~716.
    31.石戴维,王永昌.挤压膨化与超临界技术.饲料工业,2008,29(3):1~5.
    32.帅益武,张波,魏益民.大豆组织化蛋白产品质量因子分析.食品研究与开发,2007,8:5~8
    33.司林旭,郑安呐,朱中南.双螺杆反应挤出模型的研究.高分子材料科学与工程,2002,18(1):26~29.
    34.孙照勇,陈锋亮,张波等.植物蛋白高水分挤压组织化技术研究进展.农业工程学报,2009,25(3):308~312.
    35.谭帼馨,崔英德,易国斌等.水在凝胶中的存在状态及其对凝胶力学特性的影响.化工学报,2005,56(10):2019~2023.
    36.唐传核,马正勇.采用FTIR技术研究高压处理对冻干大豆分离蛋白构象的影响.光谱学与光谱分析,2009,29(5):1237~1240.
    37.王飞镝,周智鹏,崔英德等. DSC研究SPI凝胶中水的状态.功能材料,2006a,6(37):933~935.
    38.王飞镝,崔英德,周智鹏等. SPI凝胶中水的状态的研究.食品科学,2006b,27(9):33-36.
    39.王洪武.大豆蛋白挤压加工的实验与数值模拟研究[博士学位论文].北京:北京化工大学,2004.
    40.王洪武.大豆蛋白质双螺杆挤压加工工艺参数对系统参数的影响.中国油脂,2005a,30(9):28~30.
    41.王洪武,林炳鉴.大豆蛋白质单螺杆挤压熔体输送段的数值模拟.农业机械学报,2005b,36(9):75~78.
    42.王洪武,周建国,林丙鉴等.双螺杆挤压机工艺参数对组织蛋白的影响.中国粮油学报,2001,16(2):54~58.
    43.汪家政,范明主编.蛋白质技术手册.北京:科学出版社,2000.
    44.王苏闽,姚妙爱.植物蛋白质及其营养价值.西部粮油科技,2001,26(4):23~26.
    45.王玉德,盛春志,刘景斌.双螺杆挤压系统的模拟研究.包装与食品机械,2004,22(3):4~7.
    46.王璋,许时婴,江波等译.食品化学(第三版).北京:中国轻工业出版社,2003.
    47.王劼,杨晓泉,张水华.植物蛋白中的抗营养因子.食品科学,2001,22(3):91~95.
    48.魏益民,康立宁,张波等.高水分大豆蛋白组织化生产工艺和机理分析.农业工程学报,2006,22(10):193~197.
    49.魏益民,杜双奎,赵学伟著.食品挤压理论与技术(上卷).北京:中国轻工业出版社,2009a.
    50.魏益民,康立宁,张汆著.食品挤压理论与技术(中卷).北京:中国轻工业出版社,2009b.
    51.魏益民,张汆,张波,康立宁.花生蛋白高水分挤压组织化过程中的化学键变化.中国农业科学,2007,40(11):2575~2581.
    52.刑本刚,梁宏. FT-IR在蛋白质二级结构研究中的应用进展.广西师范大学学报(自然科学版),1997,15(3):45~49.
    53.邢应生,程燕,朱复华.挤出过程中聚合物相变行为的可视化研究.合成橡胶工业,2004,27(6):387.
    54.徐红华,申德超.不同挤压参数对大豆粕蛋白质结构的影响.农业工程学报,2007,23(7):267~271.
    55.余微微,王勇,路红波等.双螺杆挤压蒸煮中过程参数与系统参数关系的研究.大连水产学院学报,2006,21(2):141~144.
    56.张汆.花生蛋白挤压组织化技术及其机理研究[博士学位论文].杨凌:西北农林科技大学,2007.
    57.张裕中,戴宁.食品物料在双螺杆挤压机中的流动状态分析.包装与食品机械,2000a,18(5):7~10.
    58.张裕中,王景主编.食品挤压加工技术与应用.北京:中国轻工业出版社,2000b.
    59.张兆国,蒋亦元,张敏,申德超.基于量纲分析的油菜籽挤压膨化试验参数的研究.农业工程学报,2007,23(7):247~252.
    60.赵学伟,魏益民,张波.挤压对小米蛋白溶解性和分子量的影响.中国粮油学报,2006,21(2):38~43.
    61.郑建仙.蛋白质在挤压蒸煮过程中的变化.食品与发酵工业,1994,4:78~82.
    62.钟昔阳,姜绍通,潘丽军等.高活性小麦谷朊粉产业化加工技术研究及其应用概述.食品科学,2004,25(增刊):95~100.
    63.周素梅,金世合,姚惠源.挤压稳定化处理对米糠蛋白性质影响的研究.食品科学,2003,24(5):49~53.
    64.朱复华,刘廷华,郭奕崇等.同向旋转双螺杆挤出可视化研究.塑料,1996,25(4):9~15.
    65.朱复华,江顺亮,刘廷华.可视化挤出促进了聚合物加工科学的研究.化工进展,1997,1:5~9.
    66.朱复华,郭奕崇,袁明君等.聚合物挤出理论与形态结构研究的有机结合——宏观与微观可视化在线研究.中国塑料,1998,12(3):96~104.
    67.朱复华著.挤出理论及应用.北京:中国轻工业出版社,2001.
    68.朱文华,姚惠源.米糠挤压过程的可视化研究.无锡轻工大学学报,2002,21(5):443~446.
    69.朱向哲,谢禹钧.食品加工用三螺杆挤压机三维流场数值模拟.食品包装与机械,2005,21(3):45~48.
    70. Abbott T. P., Nabetani H., Sessa D. J., et al. Effects of bound water on FTIR spectra of glycinin.Journal of Agricultural and Food Chemistry, 1996, 44(8): 2220~2224.
    71. Akdogan H. Pressure, torque, and energy responses of a twin screw extruder at high moisture contents. Food Research International, 1996, 29(5-6): 423~429.
    72. Akdogan H. High moisture food extrusion. International Journal of Food Science and Technology, 1999, 34(3): 195~207.
    73. Alonso R., Orue E., Zabalza M. J., et al. Effect of extrusion cooking on structure and functional properties of pea and kidney bean proteins. Journal of the Science of Food and Agriculture, 2000, 80(3): 397~403.
    74. Arêas J. A. G. Extrusion of food proteins. Critical Reviews in Food Science and Nutrition, 1992, 32(4): 365~392.
    75. Arhaliass A., Bouvier J. M., Legrand J. Melt growth and shrinkage at the exit of the die in the extrusion- cooking process. Journal of Food Engineering, 2003, 60(2): 185~192.
    76. Bandekar J. Amide modes and protein conformation. Biochimica et Biophysica Acta, 1992, 1120(2): 123~143.
    77. Bargale P. C., Ford R. J., Sosulski F. W., et al. Mechanical oil expression from extruded soybean samples. Journal of American Oil and Chemists‘Society, 1999, 76(2): 223~229.
    78. Barres C., Vergens B., Tayeb J., et al. Transformation of wheat flour by extrusion cooking: influence of screw configuration and operating conditions. Cereal Chemical, 1990, 67(5): 427~433.
    79. Bates L., Ames J. M., MacDougall D. B. The use of a reaction cell to model the development and control of colour in extrusion cooked foods. Lebensmittel-Wissenschaft und-Technologie, 1994, 27(4): 375~379.
    80. Barrett J. E., Klopfenstein C. F., Leipold H. W. Detoxification of rapeseed meal by extrusion with an added basic salt. Cereal Chemistry, 1997, 74(2): 168~170.
    81. Bourne M. C. Texture profile analysis. Food Technology, 1978, 32(7): 62~66, 72.
    82. Burgess L. D., Stanley D. W. A possible mechanism for thermal texturization of soybean protein. Canadian Institute of Food Science and Technology Journal, 1976, 9(4): 228~231.
    83. Byler D. M., Susi H. Examination of the secondary structure of proteins by deconvolved FTIR spectra. Biopolymers, 1986, 25(3): 467~487.
    84. Cai W., Diosady L. L. Model for gelatinization of wheat starch in a twin-screw extruder. Journal of Food Science, 1993, 58(4): 872~875.
    85. Cai W., Diosady L. L., Rubin L. J. Degradation of wheat starch in a twin-screw extruder. Journal of Food Engineering, 1995, 26(3): 289~300.
    86. Camire M. E. Protein functional modification by extrusion cooking. Journal of the American Oil Chemists‘Society, 1991, 68(3): 200~205.
    87. Cheftel J. C., Kitagawa M., Quéguiner C. New protein texturization process by extrusion cooking at high moisture levels. Food Reviews International, 1992, 8(2): 235~275.
    88. Chen A. H., Jao Y. C., Larkin J. W., et al. Rheological model of soy dough in extrusion. Journal of Food Process Engineering, 1978, 2(4): 337~342.
    89. Chen P.L., Long Z., Ruan R., et al. Nuclear magnetic resonance studies of water mobility in bread during storage. Lebensmittel-Wissenschaft und-Technologie, 1997, 30(2): 178~183.
    90. Chiang A. Protein-protein interactions of soy protein isolate from extrusion processing [Ph.D. Dissertation]. University of Missouri-Columbia, 2007.
    91. Chiruvella R. V., Jaluria Y., Karwe M. V. Numerical simulation of the extrusion process for food materials in a single-screw extruder. Journal of Food Engineering, 1996, 30(3-4): 449~467.
    92. Chou D. H., Morr C. V. Protein-water interactions and functional properties. Journal of American Oil Chemists‘Society, 1979, 56(1): 53~62.
    93. Colonna P., Melcion J. P., Vergenes B., et al. Flow, mixing and residence time distribution of maize starch within a twin screw extruder with a longitudinally split barrel. Journal of Cereal Science, 1983, 1(2):115~125.
    94. Cornillon P., Salim L. C. Characterization of water mobility and distribution in low- and intermediate- moisture food systems. Magnetic Resonance Imaging, 2000, 18(3): 335~341.
    95. Czarnecki Z., Nowak J. Ethanol fermentation of HTST extruded rye grain by bacteria and yeasts. Acta biotechnology, 1997, 17(1): 63~71.
    96. Del Valle F. R., Escobedo M., Ramos P., et al. Evaluation of extrusion cooked cottonseed/soybean blends of different proportions. Journal of Food Processing and Preservation, 1985, 9(1): 35~41.
    97. Ding Q. B., Ainsworth P., Tucker G., et al. The effect of extrusion conditions on the physicochemical properties and sensory characteristics of rice-based expanded snacks. Journal of Food Engineering, 2005, 66(3): 283~289.
    98. Ding Q. B., Ainsworth P., Plunkettet A., et al. The effect of extrusion conditions on the functional and physical properties of wheat-based expanded snacks. Journal of Food Engineering, 2006, 73(2): 142~148.
    99. Elsey J., Riepenhausen J., Mckay B., et al. Modeling and control of a food extrusion process. Computers and Chemical Engineering, 1997, 21(1): 361~366.
    100. Elsey J., Barton G. W., Jungk S., et al. Acoustics based on-line quality estimation. Computers and Chemical Engineering, 1998, 22(2): 925~928.
    101. Franks F. Protein Hydration, in Protein Biotechnology, Felix Franks, Eds., Humana Press Inc, 1993, 437~465.
    102. Fischer T. Effect of extrusion cooking on protein modification in wheat flour. European Food Research and Technology, 2004, 218(2): 128~132.
    103. Fujio Y., Hayashi N., Hayakawa I. Effect of moisture content on flow behavior of molten soy-protein isolate under an elevated temperature. International Journal of Food Science and Technology, 1991, 26(1): 45~51.
    104. Giddey G. Phenomena involved in the ?texturization‘of vegetable proteins and various technological processes used. Plant Foods Human Nutrition, 1983, 32: 425~437.
    105. Godavarti S., Karwe M. V. Determination of specific mechanical energy distribution on a twin- screw extruder. Journal of Agricultural Engineering Research, 1997, 67(4): 277~287.
    106. Gutkoski L. C., El-dash A. A. Effect of extrusion process variables on physical and chemical properties of extruded oat products. Plant Foods for Human Nutrition, 1999, 54(4): 315~325.
    107. Hager D. F. Effects of extrusion upon soy concentrate solubility. Journal of Agricultural and Food Chemistry, 1984, 32(2): 293~296.
    108. Hansen J. R. Hydration of soybean protein. Journal of Agricultural and Food Chemistry, 1976, 24(6): 1136~1141.
    109. Harper J. M., Rhodes T. P., Wanninger L. A. Viscosity model for cooked cereal doughs. Chemical Engineering Progress Symposium Series, 1971, 67(108): 40~43.
    110. Harper J. M., Clark J. P. Food extrusion. Critical Reviews in Food Science and Nutrition, 1979, 11(2): 155~215.
    111. Hayashi N., Hayakawa I., Fujio Y. Hydration of heat-treated soy protein isolate and its effect on the molten flow properties at an elevated temperature. International Journal of Food Science and Technology, 1992, 27(5): 565~571.
    112. Hills B. Food processing: An MRI perspective. Trends in Food Science and Technology, 1995, 6(4): 111~117.
    113. Horvath E., Czukor B. Effect of extrusion temperature and initial moisture content on the protein solubility and distribution in full fat soybean. Acta alimentaria, 1993, 22(2): 169~174.
    114. Hwang J. K., Kim C. J., Kim C. T. Extrusion of apple pomace facilitates pectin extraction. Journal of Food Science, 1998, 63(5): 1~4.
    115. Isengard H. D. Rapid water determination in foodstuffs. Trends in food science and technology, 1995, 6(5): 155~162.
    116. Isobe S, Noguchi A. High moisture extrusion with a twin-screw extruder: fate of soy protein during the repetition of extrusion cooking. Nippon Shokuhin Kogyo Gakkaishi, 1987, 34: 456~461.
    117. Iwe M. O. Effects of extrusion cooking on some functional properties of soy-sweet potato mistures—A response surface analysis. Plant Foods for Human Nutrition, 2000, 55(2): 169~184.
    118. Izzo H. V., Lincoln M. D., Ho C. T. Effect of temperature, feed moisture, and pH on protein deamidation in an extruded wheat flour. Journal of Agricultural and Food Chemistry, 1993, 41(2): 199~202.
    119. Jackson M., Mantsch H. H. The use and misuse of FTIR spectroscopy in the determination of protein structure. Critical Reviews in Biochemistry and Molecular Biology, 1995, 30(2): 95~120.
    120. Kajirat R., Sunanta T., Jirawat Y. Effect of soy protein isolate on chemical and physical characteristics of meat analog. Asian Journal of Food and Agro-Industry, 2008, 1(2): 99~106.
    121. Karathanos V. T., Saravacos G. D. Water diffusivity in the extrusion cooking of starch materials. Edited by Kokini J. L., Ho C. T., Karwe M. V. Food Extrusion Science and Technology. Inc., New York, 1992, 177~187.
    122. Kitabatake N., Megard D., Cheftel J. C. Continuous gel formation by HTST extrusion-cooking: Soy proteins. Journal of Food Science, 1985, 50(5): 1260~1265.
    123. Kitabatake N., Tahara M., Doi E.Thermal denaturation of soybean protein at low water contents.Agricultural and Biological Chemistry, 1990, 54(9): 2205~2212.
    124. Kitabatake N., Doi E. Denaturation and texturization of food protein by extrusion cooking. Edited by Kokini J. L., Ho C. T., Karwe M. V. Food Extrusion Science and Technology. Inc., New York, 1992, 361~372.
    125. Kuo M. I., Gunasekaran S., Johnson M., et al. Nuclear magnetic resonance study of water mobility in pasta filata and non-pasta filata Mozzarella. Journal of Dairy Science, 2001, 84(9):1950~1958.
    126. Lasekan O. O., Lasekan W., Idowu M. A., et al. Effect of extrusion cooking conditions on the nutritional value, storage stability and sensory characteristics of a maize-based snack food. Journal of Cereal Science, 1996, 24(1): 79~85.
    127. Ledward D. A., Tester R. F. Molecular transformations of proteinaceous foods during extrusion processing. Trends in Food Science and Technology, 1994, 5(4): 117~120.
    128. Lewicki P. P. Water as the determinant of food engineering properties. A review. Journal of Food Engineering, 2004, 61(4): 483~495.
    129. Li M., Lee T. C. Effect of extrusion temperature on solubility and molecular weight distribution of wheat flour proteins. Journal of Agricultural and Food Chemistry, 1996, 44(3): 763~768.
    130. Li P. X., Campanella O. H., Hardacre A. K. Using an in-line slit-die viscometer to study the effects of extrusion parameters on corn melt rheology. Cereal Chemistry, 2004, 81(1): 70~76.
    131. Lin S., Huff H. E., Hsieh F. Texture and chemical characteristics of soy protein meat analog extruded at high moisture. Journal of Food Science, 2000, 65(2): 264~269.
    132. Lin S., Huff H. E., Hsieh F. Extrusion process parameters, sensory characteristics, and structural properties of a high moisture soy protein meat analog. Journal of Food Science, 2002, 67(3): 1066~1072.
    133. Liu K. S., Hsieh F. Protein-protein interaction in high moisture-extruded meat analogs and heat-induced soy protein gels. Journal of the American Oil Chemists‘Society, 2007, 84(8): 741~748.
    134. Liu K. S., Hsieh F. Protein-protein interactions during high-moisture extrusion for fibrous meat analogues and comparison of protein solubility methods using different solvent systems. Journal of Agricultural and Food Chemistry, 2008, 56 (8): 2681~2687.
    135. Liu W. G., Li F., Yao K. D. Thermal and NMR investigation of the change in the states of water caused by volume phase transition of gelatin gel. Polymer International, 2000, 49(12): 1624~1628.
    136. Loh J., Breene W. M. Texture analysis of textured soy protein products: relations between instrumental and sensory evaluation. Journal of Texture Studies, 1977, 7(4): 405~419.
    137. Manski J. M., van der Goot A. J., Boom R. M. Advances in structure formation of anisotropic protein-rich foods through novel processing concepts. Trends in Food Science and Technology, 2007, 18(11): 546~557.
    138. Marsman G. J. P., Gruppen H., van Zuilichem D. J., et al. The influence of screw configuration on the in vitro digestibility and protein solubility of soybean and rapeseed meals. Journal of Food Engineering, 1995, 26(1): 13~28.
    139. Mccarthy, M. J., Lasseux D., Maneval J. E. NMR imaging in the study of diffusion of water in foods. Journal of Food Engineering, 1994, 22(1-4): 211~224.
    140. Meuser F., Van L. B. System analytical model for the extrusion of starches. In: Zeuthen P., Chefiel J. C., et al. Thermal processing and quality of foods. London and New York: Elsevier Applied Science Publishers, 1984, 175~179.
    141. Miller R. C. Low moisture extrusion: effects of cooking moisture on product characteristics. Journal of Food Science, 1985, 50(1): 249~253.
    142. Moraru C.I., Lee T. C., Karwe M.V., et al. Plasticizing and antiplasticizing effects of water and polyols on a meat-starch extruded matrix. Journal of Food Science, 2002, 67(9): 3396~3401.
    143. Moure A., Sineiro J., Dominguez H., et al. Functionality of oilseed protein products: A review. Food Research International, 2006, 39(9): 945~963.
    144. Noguchi A. Extrusion cooking of high-moisture protein foods. Edited by Mercier C., Linko P., and Harper J. M. Extrusion Cooking. Inc., American Association of Cereal Chemists, 1989, 343~370.
    145. Pansawata N., Jangchuda K., Jangchuda A., et al. Effects of extrusion conditions on secondary extrusion variables and physical properties of fish, rice-based snacks. Lebensmittel-Wissenschaft- Technologie, 2008, 41(4): 632~641.
    146. Patil R. T., Berrios J. De J., Tang J., et al. Evaluation of methods for expansion properties of legume extrudates. American Society of Agricultural and Biological Engineers, 2007, 23(6): 777~783.
    147. Pelton J. T., McLean L. R. Spectroscopic methods for analysis of protein secondary structure. Analytical Biochemistry, 2000, 277(2): 167~176.
    148. Petruccelli S., Anon M. C. Thermal aggregation of soy protein isolates. Journal of Agricultural and Food Chemistry, 1995, 43(12): 3035~3041.
    149. Pham C. B., Del Rosario P. R. Studies on the development of texturized vegetable products by the extrusion process.Ⅰ. Effect of processing variables on protein properties. International Journal of Food Science and Technology, 1984, 19(5): 535~547.
    150. Prudencio-Ferreira S. H., Areas J. A. G. Protein-protein interactions in the extrusion of soya at various temperatures and moisture contents. Journal of Food Science, 1993, 58(2): 378~381.
    151. Ranasinghesagara J., Hsieh F., Yao G.. An image processing method for quantifying fiber formation in meat analogs under high moisture extrusion. Journal of Food Science, 2005, 70(8): 450~454.
    152. Ranasinghesagara J., Hsieh F., Yao G. A photon migration method for characterizing fiber formation in meat analogs. Journal of Food Science, 2006, 71(5): 227~231.
    153. Ranasinghesagara J., Hsieh F., Huff H., Yao G. Laser scanning system for real-time mapping of fiber formations in meat analogues. Journal of Food Science, 2009, 74(2): 39~45.
    154. Ruan R. S., Litchfield J. B. Determination of water distribution and mobility inside maize kernels during steeping using magnetic resonance imaging. Cereal Chemistry, 1992, 69(1): 13~17.
    155. Ruan R. R., Chen P. L. Water in foods and biological materials—A nuclear magnetic resonance approach. CRC Press LLC, 1998, 11~24.
    156. Seker M. Residence time distributions of starch with high moisture content in a single-screw extruder. Journal of Food Engineering, 2005, 67(3): 317~324.
    157. Sheard P. R., Mitchell J. R., Ledward D. A. Comparison of the extrusion cooking of a soya isolate and a soya flour. Journal of Food Technology, 1985, 20(6): 763~771.
    158. Sheard P. R., Fellowa A., Ledward D.A., et al. Macromolecular changes associated with the heat treatment of soya isolate. Journal of Food Technology, 1986, 21(1): 55~60.
    159. Shiau S. Y., Yeh A. I. On-line measurement of rheological properties of wheat flour extrudates with added oxido-reductants, acid, and alkali. Journal of Food Engineering, 2004, 62(2): 193~202.
    160. Shihani N., Kumbhar B. K., Kulshreshtha M. Modeling of extrusion process using response surface methodology and artificial neural networks. Journal of Engineering Science and Technology, 2006, 1(1): 31~40.
    161. Singh P., Kumar R., Sabapathy S. N., et al. Functional and edible uses of soy protein products. Comprehensive Reviews in Food Science and Food Safety, 2008, 7(1): 14~28.
    162. Stanley D. W., deMan J. M. Structural and mechanical properties of textured proteins. Journal of Texture Studies, 1978, 9(1-2): 59~76.
    163. Stanley D. W. Protein reactions during extrusion processing. Edited by Mercier C., Linko P., and Harper J.M. Extrusion Cooking. Inc., American Association of Cereal Chemists, 1989, 321~341.
    164. Tayeb J., Valle G. D., Barres C., et al. Simulation of transport phenomena in twin-screw extruders. Edited by Jozef L. Kokini, Chi-Tang Ho and Mukund V. Karwe. Food Extrusion Science and Technology. Inc., New York, 1992, 41~70.
    165. Thanh V. H., Shibasaki K. Major proteins of soybean seeds. A straightforward fractionation and their characterization. Journal of Agricultural and Food Chemistry, 1976, 24 (6): 1117~1121.
    166. Tolstoguzov V. B. Thermoplastic extrusion—the mechanism of the formation of extrudate structure and properties. Journal of the American Oil Chemists' Society, 1993, 70(4): 417~424.
    167. Tomas R., Oliveira J. C., Akdogan H., et al. Effect of operation conditions on physical characteristics of extruded rice starch. International Journal of Food Science and Technology, 1994, 29(5): 503~514.
    168. Tomer G., Newton J. M., Kinchesh P. Magnetic resonance imaging (NRI) as a method to investigate movement of water during the extrusion of pastes. Pharmaceutical Research, 1999a, 16(5): 666~671.
    169. Tomer G., Newton J. M. Water movement evaluation during extrusion of wet powder. International Journal of Pharmaceutics, 1999b, 182(1): 71~77.
    170. Tsukada H., Takano K., Hattori M., et al. Effect of sorbed water on the thermal stability of soybean protein. Bioscience, biotechnology, and biochemistry, 2006, 70(9): 2096~2103.
    171. Ummadi P., Chenoweth W. L., Ng P. K. W. Changes in solubility and distribution of semolina proteins due to extrusion processing. Cereal Chemistry, 1995, 72(6): 564~567.
    172. Unlu E., Faller J. F. RTD in twin-screw food extrusion. Journal of Food Engineering, 2002, 53(2): 115~131.
    173. Valadez-Blanco R., Virdi A. I. S., Balke S. T., et al. In-line colour monitoring during food extrusion: sensitivity and correlation with product colour. Food Research International, 2007, 40(9): 1129~1139.
    174. Van der Burgt M. C., van der Woude M. E., Janssen L. P. B. M. The influence of plasticizer on extruded thermoplastic starch. Journal of Vinyl and Additive Technology, 1996, 2(2): 170~174.
    175. Vergnes B., Berzin F. Modeling of reactive systems in twin-screw extrusion: challenges and applications. Comptes Rendus Chimie, 2006, 9(11-12): 1409~1418.
    176. Wolf D., White D. H. Experimental study of the residence time distribution in plasticating screw extruders. AI ChE Journal, 1976, 22(1): 122~131.
    177. Yacu W. A. Modeling a twin screw co-rotating extruder. Journal of Food Engineering, 1985, 8(1): 1~21.
    178. Yao G., Liu K. S., Hsieh F. A new method for characterizing fiber formation in meat analogs during high-moisture extrusion. Journal of Food Science, 2004, 69(7): 303~307.
    179. Yeh A. I., Jaw Y. M. Modeling residence time distributions for single screw extrusion process. Journal of Food Engineering, 1998, 35(2): 211~232.
    180. Yoshida H., Hatakeyama T., Hatakeyama H. Characterization of water in polysaccharide hydrogels by DSC. Journal of Thermal Analysis, 1992, 40(2): 483~489.
    181. Yuryev V. P., Zasypkin D. V., Alexeyev V. V., et al. Structure of protein texturates obtained by thermoplastic extrusion. Molecular Nutrition and Food Research, 1990, 34(7): 607~613.
    182. Zasypkin D. V., Lee T. Extrusion of soybean and wheat flour as affected by moisture content. Journal of Food Science, 1998, 63(6): 1058~1061.
    183. Zhao X. Y., Chen F. S., Xue W. T., et al. FTIR spectra studies on the secondary structures of 7S and 11S globulins from soybean proteins using AOT reverse micellar extraction. Food Hydrocolloids, 2008, 22(4): 568~575.
    184. Zhong Z. K., Sun X. S. Thermal behavior and nonfreezing water of soybean protein components. Cereal Chemistry, 2000, 77(4): 495~500.
    185. Zhu S. W, Riaz M. N., Lusas E. W. Effect of different extrusion temperatures and moisture content on lipoxygenase inactivation and protein solubility in soybeans. Journal of Agricultural and Food Chemistry, 1996, 44(10): 3315~3318.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700