用户名: 密码: 验证码:
不同形貌的纳米ZnO材料的控制合成及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化学工业的迅速发展,环境污染问题,尤其是有机物的污染日趋严重,对有机污染物的治理已刻不容缓。光催化降解是一种非常有效的治理有机污染物的方法,与传统的吸附、过滤、沉降等处理方法相比,光催化降解过程不需要复杂的后处理工序,大大降低了实际应用过程中的操作成本。在此背景下,本论文拟研发高性能的纳米ZnO光催化材料用于有机污染物的催化降解。主要开展以下几个方面的研究:(1)对ZnO的制备方法进行系统优化,(2)对不同形貌纳米ZnO的形成机制进行详细探讨,(3)以罗丹明B降解为模型反应,评价不同形貌ZnO的光催化性能,分析影响催化活性的因素,(4)在多种表征基础上,对催化剂的结构与催化性能进行关联。
     在最初的工作中,采用简单的一步溶剂热合成法,成功制备出了一种具有特殊绒球状三维纳米结构的ZnO材料,这种材料由一些纳米片组装而成,具有独特的孔道结构和较大的比表面积;借助实验结果,我们推测了这种三维纳米ZnO结构的生长机理。光催化测试结果表明:与具有花状,螺旋盘状,哑铃状和棒状形貌的纳米ZnO材料相比,绒球状纳米ZnO材料具有更高的光生电子-光生空穴分离效率,因而具有更高的光催化活性。为了进一步提高材料的光催化效率,采用一步合成法成功制备出了Ag掺杂的绒球状纳米ZnO材料,结果表明Ag的掺杂非但没有破坏ZnO原有的绒球状结构,而且还大大提高了其光催化性能。借助表征手段,对Ag在ZnO材料上的作用机制进行了深入探讨。
     为了进一步探索纳米材料的制备方法,在制备过程中引入了一些新的考察因素。
     首先,采用简单的超声辅助水热合成方法,通过调变柠檬酸的用量,成功制备出了一系列花状纳米ZnO材料,并系统考察了超声作用对花状纳米ZnO材料的形貌、光致发光和光催化性能的影响。超声作用对花状纳米ZnO材料形貌的影响程度与反应体系中柠檬酸的用量密切相关。光致发光和光催化性能测试结果表明,超声作用有效抑制了花状纳米ZnO材料中氧空位的相对含量,进而抑制了其绿色发光性能和光催化活性。在大量实验结果的基础上,提出了这种花状纳米ZnO材料所具有的独特的两步双模板生长机理,并对带缺陷ZnO材料的光致发光和光催化作用机制进行了深入探讨。
     其次,基于大量的实验摸索,直接利用简单的超声作用成功制备出了纳米ZnO材料,并实现了Ag的一步掺杂。通过考察超声频率和Ag~+的加入对ZnO形貌的影响,深入探讨了超声作用下Ag~+参与的纳米ZnO材料独特的生长机理。光催化测试结果表明:Ag的掺杂能大幅提高ZnO的光催化活性。
     最后,为了提高所合成的纳米ZnO材料的比表面积,引入P123作为模板剂来制备纳米ZnO材料,通过调节Zn~(2+)和P123的用量成功制备出了一系列具有较大比表面积的纳米ZnO材料。结果表明,无论是Zn~(2+)的用量还是P123的用量,对最终纳米ZnO材料的形貌和光催化性能都有显著影响。
     综合以上研究内容,在论文的结尾部分对“纳米ZnO光催化材料的研究方法”进行了系统总结和深入探讨,并对纳米光催化材料的发展前景进行了展望。
With the rapid development of chemical industry, the pollution on environment, especially that originating from organic pollutants, becomes more and more serious, so, it is urgent to eliminate organic pollutants. Photocatalytic degradation is a kind of effective techniques for the removal of organic pollutants. Compared with traditional methods such as adsorption, filter and sedimentation, photocatalytic degradation can directly eliminate the secondary pollution without further treatment, largely decreasing the process cost. Under this background, we aim to develop high-performance nano ZnO photocatalytic materials used for the organic pollutants elimination. This dissertation mainly focuss on the following aspects: (1) the systematic optimization of preparation methods of ZnO materials, (2) the careful investigation on the formation mechanisms for the ZnO with different morphology, (3) the evaluation of photocatalytic performance by using the degradation of Rhodamine B as model reaction, (4) the exploration of structure-performance relationship on the basis of multiple characterizations.
     Firstly, a series of nanosheets-constructed ZnO spheres with novel three-dimensional (3D) fluffy structure were successfully synthesized by a facile one-step solvothermal method. Such special hollow 3D structure makes the ZnO exhibit larger specific surface area. The photocatalytic activity measurement shows that such fluffy ZnO spheres do possess much higher photocatalytic activity than other commonly reported nanostructured ZnO, such as nanoflowers, nanospiraldisks, nanodumbbells and nanorods. Through one-pot synthesis Ag is readily doped on the fluffy spheres, which strongly interacts with them, further improving the photocatalytic performance of ZnO. Based on the properties and characterization results, a special growth mechanism for such fluffy ZnO spheres is proposed, and the photocatalytic reaction mechanism is also discussed.
     Secondly, to further optimize the preparation methods, the ultrasonic technique was introduced to the preparation process. For comparison, a series of flower-like ZnO materials were successfully synthesized with or without ultrasonic-assistance through changing the dosage of citric acid during hydrothermal synthesis. It is found that both the ultrasonic treatment and the dosage of citric acid have influences on the flower-like structure. The photoluminescence spectra and the photocatalytic activity evaluation show that the employment of ultrasonic treatment during preparation decreases the relative content of oxygen vacancy, thus suppressing green emission and lowering the photocatalytic activity of such flower-like ZnO. However, the ultrasonic treatment can be used for the direct preparation of nano ZnO or Ag/ZnO meterials, whose morphology and photocatalytic activity are obviously influenced by the dosage of Ag~+ and the ultrasonic frequency. The special growth mechanism of such nano ZnO materials with or without Ag~+ involvement under ultrasonic treatment was
     investigated in detail. Thirdly, to increase the specific surface area of ZnO materials, P123 was adopted as the template during preparation, as a result, a series of nano ZnO materials with special morphology and larger specific surface area were successfully synthesized. The effects of the concentration of Zn~(2+) and P123 on the morphology and photocatalytic activity of the ZnO materials were also studied.
     Finally, a summary about“the Research Methods of Nano ZnO Materials”was made, and the development perspective of nano materials was outlooked.
引文
[1]政府间气候变化专门委员会(IPCC)核心撰写组,Pachauri R. K., Reisinger, A,气候变化2007综合报告,日内瓦(瑞士):政府间气候变化专门委员会,2008
    [2] Kamat P. V., Meeting the clean energy demand: nanostructure architectures for solar energy conversion, J. Phys. Chem. C, 2007, 111: 2834-2860
    [3] Fujishima A., Honda K., Nature, 1972, 238: 37-38
    [4]桥本和仁,藤岛昭主编,邱建荣,朱从善译,图解光催化技术大全,北京:科学技术出版社,2007
    [5] Kudo A., Miseki Y., Heterogeneous photocatalyst materials for water splitting, Chem.Soc.Rev., 2009, 38: 253-278
    [6] Chen J., Poon C. S., Photocatalytic construction and building materials: From fundamentals to applications, Build. Environ., 2009, 44: 1899-1906
    [7] Mccullagh C., Skillen N., Adams M. et al., Photocatalytic reactors for environmental remediation: a review, J. Chem. Technol. Biotechnol. 2011, 86: 1002-1017
    [8] Bahnemann D., Photocatalytic water treatment: solar energy applications, Solar Energy, 2004, 77: 445-459
    [9] Foster H. A., Ditta I. B., Varghese S. et al., Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity, Appl. Microbiol. Biotechnol., 2011, 90:1847-1868
    [10] Jagannathan H., Yaralioglu G. G., Ergun A. S. et al., Micro-Fluidic Channels with Integrated Ultrasonic Transducers, USA, Information Technology, 6789426, 2004.09.14
    [11] Zhao J., Yang X. D., Photocatalytic oxidation for indoor air purification: a literature review, Build. Environ., 2003, 38: 645-654
    [12] Bhatkhande D. S., Pangarkar V. G., Beenackers A.A., Photocatalytic degradation for environmental applications-a review, J. Chem. Technol. Biotechnol. 2001, 77: 102-116
    [13] Linsebigler A. L., Lu G. Q., Yates J. T. et al., Photocatalysis on TiO2 Surfaces: principles, mechanisms, and selected results, Chem. Rev. 1995, 95: 735-758
    [14] Thiruvenkatachari R., Vigneswaran S., Moon II S., A review on UV/TiO2 photocatalytic oxidation process, Korean J. Chem. Eng., 2008, 25: 64-72
    [15]胡蓉蓉,负载型金属修饰的复合半导体的制备及光催化CO2和C3H8合成异丁烯醛的反应性能,博士学位论文,天津大学化工学院,2005.06
    [16]张金龙,陈锋,何斌,光催化,上海:华东理工大学出版社,2004.10
    [17] Zheng Y.H., Chen C. Q., Zhan Y. Y., Lin X. Y. et al., Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property, Inorg. Chem. 2007, 46:6675-6682
    [18] Lai Y. L., Meng M., Yu Y. F. et al., Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance, Appl. Catal. B: Environ., 2011, 105, 335-345
    [19] Mclaren A., Valdes-Solis T., Li G. Q. et al., Shape and size effects of ZnO nanocrystals on photocatalytic activity, J. Am. Chem. Soc., 2009, 131: 12540-12541
    [20] Li G. R., Pan G. L., Yan T. Y. et al., morphology function relationship of ZnO: polar planes, oxygen vacancies, and activity, J. Phys. Chem. C, 2008, 112: 11859-11864
    [21] Jang E. S., Won J., Hwang S. et al., Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity, Adv. Mater. 2006, 18: 3309-3312
    [22] Kamat P. V., Photochemistry on nonreactive and reactive (Semiconductor) surfaces, Chem. Rev. 1993, 93: 207-300
    [23] Fujishima A., Zhang X. T., Tryk D. A., TiO2 photocatalysis and related surface phenomena, Surf. Sci. Rep., 2008, 63: 515-582
    [24] Photocatalytic oxidation of toluene to benzaldehyde over anatase TiO2 hollow spheres with exposed {001} facets, Catal. Commun., 2011, 12: 946-950
    [25] Liu Y., Kang Z. H., Chen Z. H., et al., Synthesis, characterization, and photocatalytic application of different ZnO nanostructures in array configurations, Cryst. Growth Des., 2009, 9: 3222-3227
    [26] Wang G., Chen D., Zhang H., et al., Tunable photocurrent spectrum in well-oriented zinc oxide nanorod arrays with enhanced photocatalytic activity, J. Phys. Chem. C 2008, 112: 8850-8855
    [27] Li H., X., Bian Z. F., Zhu J. et al., Mesoporous Au/TiO2 nanocomposites with enhanced photocatalytic activity, J. Am. Chem. Soc. 2007, 129: 4538-4539
    [28] Li H., X., Bian Z. F., Zhu J. et al., Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity, J. Am. Chem. Soc. 2007, 129: 8406-8407
    [29] Guillard C., Lachheb H., Houas A. et al., Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2, J. Photochem. Photobiol., A , 2003, 158: 27-36
    [30] Wang J., Jiang Z., Zhang Z. H. et al., Study on inorganic oxidants assisted sonocatalytic degradation of Acid Red B in presence of nano-sized ZnO powder, Sep. Purif. Technol., 2009, 67:38-43
    [31] Rauf M. A., Ashraf S. S., Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution, Chem. Eng. J, 2009, 151: 10-18
    [32] Ahmed S., Rasul M.G., Brown R. et al., Influence of parameters on the heterogeneous photocatalytic degradation of pesticides and phenolic contaminants in wastewater: A short review, J.Environ. Manage, 2011, 92: 311-330
    [33] Thakur R. S., Chaudhary R., Singh C., Fundamentals and applications of the photocatalytic treatment for the removal of industrial organic pollutants and effects of operational parameters: A review, J. Renewable Sustainable Energy, 2010, 2: 042701
    [34] Fox M. A., Dulay M. T., Heterogeneous photocatalysis, Chem. Rev., 1995, 83: 341-357
    [35] Gerven T. V., Mul G., Moulijn J. et al., A review of intensification of photocatalytic processes, Chem. Eng. Process., 2007, 46: 781-789
    [36] Lin D. D., Wu H., Zhang R. et al., Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers, Chem. Mater., 2009, 21: 3479-3484
    [37] Wood A., Giersig M., Mulvaney P., Fermi level equilibration in quantum dot-metal nanojunctions, J. Phys. Chem. B, 2001, 105: 8810-8815
    [38] Subramanian V., Wolf E. E., Kamat P. V., Green emission to probe photoinduced charging events in ZnO-Au nanoparticles. charge distribution and fermi-level equilibration, J. Phys. Chem. B, 2003, 107: 7479-7485
    [39] Chang Y. G., Xu J., Zhang Y. Y. et al., Optical properties and photocatalytic performances of Pd modified ZnO samples, J. Phys. Chem. C, 2009, 113: 18761-18767
    [40] Zeng H. B., Liu P. S., Cai W. P. et al., Controllable Pt/ZnO porousn nanocages with improved photocatalytic activity, J. Phys. Chem. C, 2008, 112: 19620-19624
    [41] Chen D., Zhang H., Hu S. et al., Preparation and enhanced photoelectrochemical performance of coupled bicomponent ZnO-TiO2 nanocomposites, J. Phys. Chem. C, 2008, 112: 117-122
    [42] Bessekhouad Y., Chaoui N., Trzpit M. et al., UV-vis versus visible degradation of Acid Orange II in a coupled CdS/TiO_2 semiconductors suspension, J. Photochem. Photobiol., A, 2006, 183: 218-224
    [43] Kang M., G., Han H., Kim K., Enhanced photodecomposition of 4-chlorophenol in aqueous solution by deposition of CdS on TiO_2, J. Photochem. Photobiol., A, 1999, 125: 119-125
    [44] Lin C., Wu C., Onn Z., Degradation of 4-chlorophenol in TiO_2, WO_3, SnO_2, TiO_2/WO_3 and TiO_2/SnO_2 systems, J. Hazard. Mater., 2008, 154, 1033-1039
    [45] Shinguu H., Bhuiyan M.M.H., Ikegami T. et al., Preparation of TiO_2/WO_3 multilayer thin film by PLD method and its catalytic response to visible light, Thin Solid Films, 2006, 506-507:111-114
    [46] Puddu V., Mokaya R., Mokaya R. Novel one step hydrothermal synthesis of TiO_2/WO_3 nanocomposites with enhanced photocatalytic activity, Chem. Commun., 2007, 45: 4749-4751
    [47] El-Maghraby E.M., Nakamura Y., Rengakuji S., Composite TiO_2-SnO_2 nanostructured films prepared by spin-coating with high photocatalytic performance, Catal. Commun., 2008, 9: 2357-2360
    [48] Zakrzewska K., Radecka M., TiO_2-SnO_2 system for gas sensing- Photodegradation of organic contaminants, Thin Solid Films, 2007 515: 8332-8338
    [49] Kansal S. K., Singh M., Sud D., Studies on TiO_2/ZnO photocatalysed degradation of lignin, J. Hazard. Mater., 2008, 153: 412-417
    [50] William L. K. IV, Ismail A.A., Mazyck D. W., Impact of heat treatment and composition of ZnO-TiO_2 nanoparticles for photocatalytic oxidation of an azo dye, Ind. Eng. Chem. Res. 2008, 47: 1483-1487
    [51] Jiang Y. H., Sun Y. M., Liu H. et al., Solar photocatalytic decolorization of C.I. Basic Blue 41 in an aqueous suspension of TiO_2-ZnO, Dyes Pigments, 2008, 78: 77-83
    [52] Natori H., Kobayashi K., Takahashi M., Fabrication and photocatalytic activity of TiO_2/MnO_3 particulate films, J. Oleo Sci., 2009, 58: 203-211
    [53] Takahashi Y., Ngaotrakanwiwat P., Tatsuma T., Energy storage TiO_2-MoO_3 photocatalysts, Electrochim. Acta, 2004, 49: 2025-2029
    [54] Lee J., Kim T. G., Choi H. et al., Enhanced photochemical response of TiO_2/CdSe heterostructured nanowires, Cryst. Growth Des., 2007, 7: 2588-2593
    [55] Lee J., Sung Y., TiO_2-CdSe nanowire arrays showing visible-range light absorption, Appl. Phys. Lett., 2007, 91:113104
    [56] Lin H., Li X., Liu Y. Z., et al., Progresses in dye-sensitized solar cells, Mater. Sci. Eng., B, 2009, 161: 2-7
    [57] Shang J., Chai M., Zhu Y. F., Photocatalytic degradation of polystyrene plastic under fluorescent light, Environ. Sci. Technol., 2003, 37: 4494-4499
    [58] Gao R., Wang L. D., Geng Y. et al., Effects of an intercalation nanocomposite at the photoanode/electrolyte interface in quasi-solid dye-sensitized solar cells, J. Phys. Chem. C, 2011, 115: 17986-17992
    [59] Zhou F., Shi R., Zhu Y. F., Significant enhancement of the visible photocatalytic degradation performances ofγ-Bi_2MoO_6 nanoplate by graphene hybridization, J. Mol. Catal. A: Chem., 2011, 340: 77-82
    [60] Wang Y. J., Xu J., Zong W. Z., et al., Enhancement of photoelectric catalytic activity of TiO_2 ?lm via Polyaniline hybridization, J. Solid State Chem. , 2011, 184: 1433-1438
    [61] Xu T. G., Zhang L. W., Chen H. Y. et al., Significantly enhanced photocatalytic performance of ZnO via grapheme hybridization and the mechanism study, Appl. Catal. B: Environ., 2011, 101, 382-387
    [62] Zhang L. W., Wang Y. J., Xu T. G. et al., Surface hybridization effect of C60 molecules on TiO_2 and enhancement of the photocatalytic activity, J. Mol. Catal. A: Chem., 2010, 331: 7-14
    [63] Wang Y. J., Shi R., Lin J. et al., Significant photocatalytic enhancement in methylene blue degradation of TiO_2 photocatalysts via graphene-like carbon in situ hybridization, Appl. Catal. B: Environ., 2010, 100, 179-183
    [64] Zhang H., Zhu Y. F., Significant visible photoactivity and antiphotocorrosion performance of CdS photocatalysts after monolayer polyaniline hybridization, J. Phys. Chem. C, 2010, 114: 5822-5826
    [65] Kang I., Zhang Q. W., Yin S. et al., Improvement in photocatalytic activity of TiO_2 under visible irradiation through addition of N-TiO_2, Environ. Sci. Technol., 2008, 42: 3622-3626
    [66] Fang J., Wang F., Qian K. et al., Bifunctional N-Doped mesoporous TiO_2 photocatalysts, J. Phys. Chem. C, 2008, 112: 18150-18156
    [67] Qin H. C., Li W. Y., Xia Y. J. et al., Photocatalytic activity of heterostructures based on ZnO and N-doped ZnO, Appl. Mater. Interfaces, 2011, 3: 3152-3156
    [68] Zhu L., Xie J. S., Cui X. L. et al., Photoelectrochemical and optical properties of N-doped TiO_2 thin films prepared by oxidation of sputtered TiNx films, Vacuum, 2010, 84: 797-802
    [69] Kontos A. I., Kontos A. G., Raptis Y. S. et al., Nitrogen modified nanostructured titania: electronic, structural and visible-light photocatalytic properties, Phys. Stat. Sol., 2008, 2:83-85
    [70] Ji G. H., Gu Z. B., Lu M. H. et al., First principles calculations of N:H co-doping effect on energy gap narrowing of ZnO, Phys. B, 2010, 405: 4948-4950
    [71] Yuan J. X., Wang E. J., Chen Y. M. et al., Doping mode, band structure and photocatalytic mechanism of B-N-codoped TiO_2, Appl. Surf. Sci., 2011, 257: 7335-7342
    [72] Patil A. B., Patil K. R., Pardeshi S. K., Ecofriendly synthesis and solar photocatalytic activity of S-doped ZnO, J. Hazard. Mater., 2010, 183: 315-323
    [73] Ma H. C., Han J. H., Fu Y. H. et al., Synthesis of visible light responsive ZnO-ZnS/C photocatalyst by simple carbothermal reduction, Appl. Catal. B: Environ., 2011, 102: 417-423
    [74] Ahmad S., Kharkwal M., Govind et al., Application of KZnF3 as a single source precursor for the synthesis of nanocrystals of ZnO_2:F and ZnO:F; synthesis, characterization, optical, and photocatalytic properties, J. Phys. Chem. C, 2011, 115: 10131-10139
    [75] Wu C. L., Huang Q. L., Synthesis of Na-doped ZnO nanowires and their photocatalytic properties, J. Lumin., 2010, 130: 2136-2141
    [76] Lu X. Y., Liu Z. Y., Zhu Y. et al., Sonochemical synthesis and photocatalytic property of zinc oxide nanoparticles doped with magnesium(II), Materials Research Bulletin, 2011, 46:1638-1641
    [77] Dong S. H., Xu K. J., Liu J. C. et al., Photocatalytic performance of ZnO:Fe array ?lms under sunlight irradiation, Phys. B, 2011, 406: 3609-3612
    [78] Barick K. C., Singh S., Aslam M. et al., Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters, Microporous Mesoporous Mater., 2010, 134:195-202
    [79] Zhao J., Wang L., Yan X. Q. et al., Structure and photocatalytic activity of Ni-doped ZnO nanorods, Mater. Res. Bull. 2011, 46: 1207-1210
    [80] You M., Kim T. G., Sung Y., Synthesis of Cu-Doped TiO_2 nanorods with various aspect ratios and dopant concentrations, Cryst. Growth Des., 2010, 10: 983-987
    [81] Donkova B., Dimitrov D., Kostadinov M. et al., Catalytic and photocatalytic activity of lightly doped catalysts M:ZnO (M= Cu, Mn), Mater. Chem. Phys. , 2010, 123: 563-568
    [82] Fang C., Wu J. M., Lee L. et al., Photocatalytic activity and electron field emission of necked ZnO:Bi nanowires, Electrochem. Solid-State Lett., 2010, 13: K63-K66
    [83]曹茂盛,关长斌,徐甲强,纳米材料导论,哈尔滨:哈尔滨工业大学出版社,2001.08
    [84]李晓俊,刘丰,刘小兰,纳米材料的制备及应用研究,济南:山东大学出版社,2006.07
    [85] Rao C.N.R., Thomas P. J., Kulkarni G.U., Nanocrystals: synthesis, properties and applications, Berlin Heidelberg: Springer-Verlag, 2007
    [86] Koch C. C., Nanostructured materials: processing, properties and potential applications, Norwich, New York, U.S.A.: Noyes Publications/William Andrew Publishing, 2002
    [87] Cerofolini C. F., Nanoscale devices: fabrication, functionalization, and accessibility from the macroscopic world, Berlin Heidelberg: Springer-Verlag, 2009
    [88] Burke M. T., Nanotechnology: the business, Boca Raton, FL: CRC Press, Taylor & Francis Group, 2009
    [89] Foster L. E., Nanotechnology: science, innovation, and opportunity, New Jersey Pearson Education, Inc., 2006
    [90] Ramsden J. R., Applied nanotechnology, Burlington: Elsevier Inc.,2009
    [91] Davies J. C., Oversight of next-generation nanotechnology, Woodrow Wilson international center for scholars, PEN 18, 2009.04
    [92]黄剑锋,溶胶-凝胶原理与技术,北京:化学工业出版社,2005.09
    [93] Znaidi L., Soler-Illia G. J. A. A., Benyahia S. et al., Oriented ZnO thin films synthesis by sol-gel process for laser application,Thin Solid Films, 2003, 428: 257-262
    [94]徐如人,庞文琴,于吉红等,分子筛与多孔材料化学,北京:科学出版社,2004
    [95]施尔畏,夏长泰,王步国等,水热法的应用和发展,无机材料学报,1996.06, 11(2): 193-206
    [96] Chen Z. T., Gao L., A New route toward ZnO hollow spheres by a base-erosion mechanism, Cryst. Growth Des., 2008, 8: 460-464
    [97] Su C., Goforth A. M., Smith M. D. et al., Exceptionally stable, hollow tubular metal organic architectures synthesis, characterization, and solid-state transformation study, J. Am. Chem. Soc., 2004, 126: 3576-3586
    [98] Ehrentraut D., Sato H., Kagamitani Y. et al., Solvothermal growth of ZnO, Prog. Cryst. Growth Charact. Mater., 2006, 52: 280-335
    [99] Soler-Illia G. J. A. A., Crepaldi E. L., Grosso D. et al., Block copolymer-templated mesoporous oxides, Curr. Opin. Colloid Interface Sci., 2003, 8: 109-126
    [100] Ying J. Y., Mehnert C. P., Wong M. S., Synthesis and applications of supramolecular-templated mesoporous materials, Angew. Chem. Int. Ed., 1999, 38: 56-77
    [101] Shen L. M., Bao N. Z., Yanagisawa K., et al., Organic molecule-assisted hydrothermal self-assembly of size-controlled tubular ZnO nanostructures, J. Phys. Chem. C, 2007, 111: 7280-7287
    [102] Lai Y. L., Meng M., Yu Y. F., One-step synthesis, characterizations and mechanistic study of nanosheets-constructed fluffy ZnO and Ag/ZnO spheres used for Rhodamine B photodegradation, Appl. Catal. B: Environ., 2010, 100: 491-501
    [103]李玲,表面活性剂与纳米技术,北京:化学工业出版社,2003.12
    [104] Suslick K. S., Hyeon T., Fang M. M., Nanostructured materials generated by high-intensity ultrasound: sonochemical synthesis and catalytic studies, Chem. Mater., 1996, 8: 2172-2179
    [105] Suslick K. S., Hyeon T., Fang M. M. et al., Sonochemical synthesis of nanostructured catalysis, Mater. Sci. Eng., 1995, A204, 186-192
    [106] Dhas N. A., Suslick K. S., Sonochemical preparation of hollow nanospheres and hollow nanocrystals, J. Am. Chem. Soc., 2005, 127: 2368-2369
    [107] Dantsin G., Suslick K. S., Sonochemical preparation of a nanostructured bifunctional catalyst, J. Am. Chem. Soc., 2000, 122: 5214-5215
    [108] Wang Z. L., Zinc oxide nanostructures: growth, properties and applications, J. Phys.: Condens. Matter, 2004, 16: R829-R858
    [109] Norton D. P., Heo Y. W., Ivill M. O. et al., ZnO: growth, doping & processing, Mater. Today, 2004, 7: 34-40
    [110] Klingshirn C., Fallert J., Zhou H. et al., 65 years of ZnO research-old and very recent results, Phys. Status Solidi B, 2010, 247: 1424-1447
    [111] Zhang Q. F., Chou T. P., Russo B. et al., Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells, Angew. Chem. Int. Ed., 2008, 47: 2402-2406
    [112] Cooper J. C., Koltick D. S., Mihalczo J. T. et al., Evaluation of ZnO(Ga) coatings as alpha particle transducers within a neutron generator, Nucl. Instrum. Methods Phys. Res., Sect. A, 2003, 506: 498-501
    [113] Yamamoto Y., Half-matter, half-light amplifier, Nature, 2000, 405: 629-630
    [114] Look D. C., Recent advances in ZnO materials and devices, Mater. Sci. Eng., 2001, B80:383-387
    [115] Look D. C., Claflin B., Alivov Y. I. et al., The future of ZnO light emitters, Phys. Stat. Sol. (a), 2004, 201: 2203-2212
    [116] Yi G., Wang C. R., Park W. II, ZnO nanorods: synthesis, characterization and applications, Semicond. Sci. Technol., 2005, 20: S22-S34
    [117] Heo Y. W., Norton D. P., Tien L. C. et al., ZnO nanowire growth and devices, Mater. Sci. Eng., 2004, R 47:1-47
    [118] Han M. J., Zhao K. S., Dielectric behavior of suspensions of polystyrene Zinc Oxide composite microspheres, J. Phys. Chem. C, 2008, 112: 9192-9202
    [119] Das J., Khushalani D., Nonhydrolytic route for synthesis of ZnO and its use as a recyclable photocatalyst, J. Phys. Chem. C, 2010, 114: 2544-2550
    [120] Roy S., Basu S., Improved zinc oxide film for gas sensor applications, Bull. Mater. Sci., 2002, 25: 513-515
    [121] Wang Z. L., Kong X.Y., Ding Y. et al., Adv. Funct. Mater., 2004, 14: 943-956
    [122] Boyle T. J., Bunge S. D., Andrews N. L. et al., Precursor structural influences on the final ZnO nanoparticle morphology from a novel family of structurally characterized Zinc alkoxy alkyl precursors, Chem. Mater., 2004, 16: 3279-3288
    [123] Wahab R., Ansari S. G., Kim Y. S. et al., Synthesis and characterization of hydrozincite and its conversion into zinc oxide nanoparticles, J. Alloys Compd., 2008, 461: 66-71
    [124] Pan Z. W., Dai Z. R., Wang Z. L., Nanobelts of semiconducting oxides, Science, 2001, 291: 1947-1949
    [125] Murphy C. J., Jana N. R., Controlling the aspect ratio of inorganic nanorods and nanowires, Adv. Mater., 2002, 14: 80-82
    [126] ZnO thin ?lms and light-emitting diodes, J. Phys. D: Appl. Phys., 2007, 40: R387-R412
    [127] Sbrockey N. M., Ganesan S., ZnO thin films by MOCVD, III-Vs Review, 2004, 17: 23-25
    [128] Gao S. Y., Zhang H. J., Wang X. M. et al., ZnO-based hollow microspheres: biopolymer-assisted assemblies from ZnO nanorods, J. Phys. Chem. B, 2006, 110: 15847-15852
    [129] Liu B., Zeng H. C., Fabrication of ZnO“Dandelions”via a modified Kirkendall process, J. Am. Chem. Soc., 2004, 126: 16744-16746
    [130] Jang E. S., Won J., Hwang S. et al., Fine tuning of the face orientation of ZnO crystals to optimize their photocatalytic activity, Adv. Mater., 2006, 18: 3309-3312
    [131] Mclaren A., Valdes S. T., Li G. Q. et al., Shape and size effects of ZnO nanocrystals on photocatalytic activity, 2009, 131: 12540-12541
    [132] Kawano K., Komatsu M., Yajima Y. et al., Photoreduction of Ag ion on ZnO single crystal, Appl. Surf. Sci., 2002, 189: 265-270
    [133] Lin D. D., Wu H., Zhang R. et al., Enhanced photocatalysis of electrospun Ag-ZnO heterostructured nanofibers, Chem. Mater. 2009, 21: 3479-3484
    [134] Wang J., Jiang Z., Zhang Z. H. et al., Sonocatalytic degradation of acid red B and Rhodamine B catalyzed by nano-sized ZnO powder under ultrasonic irradiation, Ultrason. Sonochem., 2008, 15: 768-774
    [135] Wan Q., Wang T. H., Zhao J. C., Enhanced photocatalytic activity of ZnO nanotetrapods, Appl. Phys. Lett., 2005, 87: 083105
    [136] Lu F., Cai W. P., Zhang Y. G., ZnO Hierarchical micro/nanoarchitectures: solvothermal synthesis and structurally enhanced photocatalytic performance, Adv. Funct. Mater., 2008, 18: 1047-1056
    [137] Lu W. W., Gao S. Y., Wang J. J., One-Pot synthesis of Ag/ZnO self-assembled 3D hollow microspheres with enhanced photocatalytic performance, J. Phys. Chem. C, 2008, 112: 16792-16800
    [138] Bagnall D. M., Chen Y. F., Zhu Z. et al., High temperature excitonic stimulated emission from ZnO epitaxial layers, Appl. Phys. Lett., 1998, 73: 1038-1040
    [139] Height M. J., Pratsinis S. E., Mekasuwandumrong O. et al., Ag-ZnO catalysts for UV-photodegradation of methylene blue, Appl. Catal. B: Environ., 2006, 63: 305-312
    [140] Zhang L., Zhu Y. J., ZnO micro- and nano-structures: microwave-assisted solvothermal synthesis, morphology control and photocatalytic properties, Applied Physics A: Materials Science & Processing, 2009, 97: 847-852
    [141] Asl S. K., Sadrnezhaad S. K., rad M. K., The seeding effect on the microstructure and photocatalytic properties of ZnO nano powders, Mater. Lett., 2010, 64: 1935-1938
    [142] Fu Y. S., Du X. W., Sun J. et al., Single-crystal ZnO cup based on hydrothermal decomposition route, J. Phys. Chem. C, 2007, 111: 3863-3867
    [143] Jia X. H., Fan H. Q., Room temperature solid-state synthesis and ethanol sensing properties of sea-urchin-like ZnO nanostructures, Mater. Lett., 2010, 64:1574-1576
    [144] Tian Z.R., Voigt J. A., Liu J. et al., Biomimetic arrays of oriented helical ZnO nanorods and columns, J. Am. Chem. Soc., 2002, 124: 12954-12955
    [145] Yahiro J., Kawano T., Imai H., Nanometric morphological variation of zinc oxide crystals using organic molecules with carboxy and sulfonic groups, J. Colloid Interface Sci, 2007, 310: 302-311
    [146] Sing K. S. W., Reporting physisorption date for gas/solid systems with special reference to the determination of surface area and porosity, Pure & Appl. Chem., 1982, 54:2201-2218
    [147] Zheng Y. H., Chen C. Q. Zhan Y. Y. et al., Photocatalytic activity of Ag/ZnO heterostructure nanocatalyst: correlation between structure and property, J. Phys. Chem. C, 2008, 112: 10773-10777
    [148] Ethayaraja M., Bandyopadhyaya R., Mechanism and modeling of nanorod formation from nanodots, Langmuir, 2007, 23: 6418-6423
    [149] Fu Z. P., Wang Z., Yang B. F. et al., Shape-control of nano-ZnO by changing the solvent, Mater. Lett., 2007, 61: 4832-4835
    [150] Yang Z., Liu Q. H., Yu H. C. et al., Substrate-free growth, characterization and growth mechanism of ZnO nanorods close-packed arrays, Nanotechnology, 2008, 19: 035704
    [151] Gao S. Y., Zhang H. J., Wang X. M. et al., ZnO-Based hollow microspheres: biopolymer-assisted assemblies from ZnO nanorods, J. Phys. Chem. B, 2006, 110: 15847-15852
    [152] Zhang H., Yang D. R., Ji Y. J., et al., Low temperature synthesis of flowerlike ZnO nanostructures by cetyltrimethylammonium bromide-assisted hydrothermal process, J. Phys. Chem. B, 2004, 108: 3955-3958
    [153] Georgekutty R., Seery M. K., Pillai S. C., A highly efficient Ag-ZnO photocatalyst: synthesis, properties, and mechanism, J. Phys. Chem. C, 2008, 112: 13563-1357
    [154] Zheng Y. H., Zheng L. R., Zhan Y. Y. et al., Ag/ZnO heterostructure nanocrystals: synthesis, characterization, and photocatalysis, Inorg. Chem., 2007, 46: 6980-6986
    [155] Lu J., Ng K. M., Efficient, one-Step mechanochemical process for the synthesis of ZnO nanoparticles, Ind. Eng. Chem. Res., 2008, 47: 1095-1101
    [156] Lee M., Kim T. G., Kim W. et al., Surface plasmon resonance (SPR) electron and energy transfer in noble metal Zinc Oxide composite Nnanocrystals, J. Phys. Chem. C, 2008, 112: 10079-10082
    [157] Shan G. Y., Xu L. H., Wang G. R. et al., Enhanced Raman scattering of ZnO quantum dots on silver colloids, J. Phys. Chem. C, 2007, 111: 3290-3293
    [158] Wang Z. L., Nanostructures of zinc oxide, Mater. Today 2004, 7: 26-33
    [159] Fan Z. Y., Lu J. G., Zinc Oxide nanostructures: synthesis and properties, J. Nanosci. Nanotech., 2005, 5: 1561-1573
    [160] Pan A. L., Yu R. C., Xie S. S. et al., ZnO flowers made up of thin nanosheets and their optical properties, J. Cryst. Growth, 2005, 282:165-172
    [161] Suh H., Kim G., Jung Y. et al., Growth and properties of ZnO nanoblade and nano?ower prepared by ultrasonic pyrolysis, J. Appl. Phys., 2005, 97: 044305
    [162] Mishra P., Yadav R. S., Pandey A. C., Growth mechanism and photoluminescence property of flower-like ZnO nanostructures synthesized by starch-assisted sonochemical method, Ultrason. Sonochem., 2010, 17: 560-565
    [163] Li B. X., Wang Y. F., Facile synthesis and enhanced photocatalytic performance of flower-like ZnO hierarchical microstructures, J. Phys. Chem. C, 2010, 114: 890-896
    [164] Wang Y. X., Li X. Y., Wang N. et al., Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities, Sep. Purif. Technol., 2008, 62: 727-732
    [165] Wang Y. X., Li X. Y., Lu G. Synthesis and photo-catalytic degradation property of nanostructured-ZnO with different morphology, Mater. Lett., 2008, 62: 2359-2362
    [166] Movahedi M., Kowsari E., Mahjoub A. R. et al., A task specific basic ionic liquid for synthesis of flower-like ZnO by hydrothermal method, Mater. Lett., 2008, 62: 3856-3858
    [167] Yi R., Zhang N., Zhou H. F. et al., Selective synthesis and characterization of flower-like ZnO microstructures via a facile hydrothermal route, Mater. Sci. Eng., B, 2008, 153: 25-30
    [168] Zhang Y. Y., Mu J., Controllable synthesis of flower- and rod-like ZnO nanostructures by simply tuning the ratio of sodium hydroxide to zinc acetate, Nanotechnology, 2007, 18: 075606
    [169] Mazloumi M., Zanganeh S., Kajbafvala A., et al., Ultrasonic induced photoluminescence decay in sonochemically obtained cauliflower-like ZnO nanostructures with surface 1D nanoarrays, Ultrason. Sonochem., 2009, 16: 11-14
    [170] Jung S., Oh E., Lee K. et al., Sonochemical preparation of shape-selective ZnO nanostructures, Cryst. Growth Des., 2008, 8: 265-269
    [171] Raula M., Rashid M. H., Paira T. K. et al., Ascorbate-assisted growth of hierarchical ZnO nanostructures: sphere, spindle, and flower and their catalytic properties, Langmuir, 2010, 26: 8769-8782
    [172] Jing L. Q., Qu Y. C., Wang B. Q. et al., Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity, Sol. Energy Mater. Sol. Cells, 2006, 90: 1773-1787
    [173] Kohan A. F., Ceder G., Morgan D., First-principles study of native point defects in ZnO, Phys. Rev. B: Condens. Matter Mater. Phys., 2000, 61: 15019-15027
    [174] Liu B., Zeng H. C., Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm, J. Am. Chem. Soc., 2003, 125: 4430-4431
    [175] Li W. J., Shi E. W., Zhong W. G. et al., Growth mechanism and growth habit of oxide crystals, Journal of Crystal Growth, 1999, 203: 186-196
    [176] Zhang X.L., Qiao R., Qiu R. et al., Fabrication of hierarchical ZnO nanostructures via a surfactant-directed process, Cryst. Growth Des., 2009, 9: 2906-2910
    [177] Zhang J. W., Zhu P. L., Li Z. W. et al., Fabrication of polycrystalline tubular ZnO via a modified ultrasonically assisted two-step polyol process and characterization of the nanotubes, Nanotechnology, 2008, 19: 165605
    [178] Zhang H., Yang D. R., Li D. S. et al., Controllable growth of ZnO microcrystals by a capping-molecule-assisted hydrothermal process, Cryst. Growth Des., 2005, 5: 547-550
    [179] Cho S., Jung S., Lee K., Morphology-controlled growth of ZnO nanostructures using microwave irradiation: from basic to complex structures, J. Phys. Chem. C, 2008, 112: 12769-12776
    [180] Elilarassi R., Chandrasekaran G., Effect of annealing on structural and optical properties of zinc oxide films, Mater. Chem. Phys., 2010, 121: 378-384
    [181] Vanheusden K., Seager C. H., Warren W. L. et al., Correlation between photoluminescence and oxygen vacancies in ZnO phosphors, Appl. Phys. Lett., 1996, 68: 403-405
    [182] Palumbo M., Henley S. J., Lutz T. et al., A fast sonochemical approach for the synthesis of solution processable ZnO rods, J. Appl. Phys., 2008, 104: 074906
    [183] Penn R. L., Banfield J. F., Imperfect oriented attachment dislocation generation in defect-free nanocrystals, Science, 1998, 281: 969-971
    [184] Marqusee J. A., Ross J., Kinetics of phase transitions: theory of Ostwald ripening, J. Chem. Phys., 1983, 79: 373-378
    [185] Fan H. J., G?sele U., Zacharias M., Formation of nanotubes and hollow Nanoparticles Based on Kirkendall and diffusion processes: a review, Small, 2007, 3:1660-1671

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700