用户名: 密码: 验证码:
介孔—大孔整体型催化剂的制备及用于CO优先氧化的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
富氢气氛中CO优先氧化反应(CO-PROX)作为质子交换膜燃料电池氢源系统中氢气净化的一个重要组成部分,其反应器的“小/微型化”是近年来研究的热点。本文抓住实现富氢气氛中CO-PROX反应器“小/微型化”这一条主线对研究工作进行开展,旨在开发出高性能的新型催化剂,同时有效的缩小CO-PROX反应器的体积。
     向具有大孔结构的整体型聚苯乙烯(PS)模板中填充氧化铝水溶胶,得到具有大孔结构的α-Al_2O_3(M-α-Al_2O_3),然后在其大孔壁上添加γ-Al_2O_3涂层,可以提高载体的比表面积,负载活性组分Pt和Ni后用于CO-PROX反应,在1 vol.% CO、1 vol.% O_2、50 vol.% H_2、12.5 vol.% CO_2、15 vol.% H_2O和N2平衡的反应气氛中,体积空速为16,000 h-1的条件下,当反应温度区间为140-180 oC时该催化剂能将CO出口浓度净化到100 ppm以下;该催化剂具有实现CO-PROX反应器小/微型化的潜能。
     以PS为大孔结构的硬模板,非离子表面活性剂三嵌段共聚物P123为介孔结构的软模板,异丙醇铝为铝源,制备了具有介孔-大孔结构的整体型氧化铝,该材料具有相互连通的大孔结构和蠕虫状的介孔结构;在具有大孔结构的整体型氧化铝的孔壁上组装介孔氧化铝,研究发现通过适当的增加介孔氧化铝的百分含量以及选择合适的焙烧温度可以得到较大的比表面积和所需尺寸的介孔结构。当介孔氧化铝的百分含量为4.4%时,以其为载体负载的Pt-Ni催化剂用于CO-PROX反应具有较好的抗H_2O和CO_2性能。
     以混酸H_2SO4/HNO3氧化处理后的碳纳米管为载体负载的Pt-Ni催化剂用于CO-PROX反应,在1 vol.% CO、1 vol.% O_2、50 vol.% H_2和N2平衡的反应气氛中,该催化剂具有较高的催化活性和选择性,反应气氛中12.5 vol.% CO_2的加入,对CO的转化率具有轻微的负面影响。而15 vol.% H_2O的加入使CO的转化率在100-120 oC降低,可能是由于水通过毛细管作用凝聚在碳纳米管的微孔中;当反应温度升高时,水的加入对CO的转化具有促进作用。
     向PS模板中填充碳纳米管-氧化铝水溶胶,制备得到了碳纳米管-氧化铝复合的具有介孔-大孔结构的整体型材料。该整体型复合材料具有相互连通的大孔结构和可调的介孔,并且碳纳米管可以均匀分散在氧化铝基体中。研究发现加入适量的CNTs以及在合适的焙烧温度条件下可以有效的提高复合材料的抗压强度以及导热系数,其中整体型复合材料5 wt.% CNT-Al_2O_3-1300-M具有很好的抗压强度和导热系数。以其为载体负载的Pt-Ni催化剂用于CO-PROX反应,在1 vol.% CO、1 vol.% O_2、50 vol.% H_2、12.5 vol.% CO_2、15 vol.% H_2O和N2平衡的反应气氛中,体积空速为10,400 h-1的条件下,在120-180 oC的温度区间内可以将CO的出口浓度降到100 ppm以下,并且该催化剂具有较好的稳定性。
The preferential oxidation of CO (CO-PROX) is a requisite step of hydrogen generator process for proton exchange membrane fuel cells. Recently, the miniaturization of the CO-PROX reactor has been the focus of widespread research. This work is to develop a new catalyst with high catalytic performance for CO-PROX, as well as to meet the requirements of the miniaturization.
     The macroporous monolithicα-Al_2O_3 (referred to M-α-Al_2O_3) was prepared by imbibing macroporous polystyrene foams with alumina hydrosols. Addingγ-Al_2O_3 to the macroporous walls could increase the specific surface area of M-α-Al_2O_3. Using M-γ/α-Al_2O_3 as supports loaded Pt-Ni catalyst for the CO-PROX reaction. This catalyst could purify the exit concentration of CO to less than 100 ppm in the temperature range of 140-180oC in 1 vol. % CO, 1 vol. % O_2, 50 vol. % H_2, 12.5 vol.% CO_2, 15 vol.% H_2O and N2 gases with a volume space velocity of 16,000 h-1. The results show that preparing catalysts to macroporous monolithic structure is a promising way for the miniaturization of CO removing reator.
     The meso-macroporous monolithic alumina was fabricated via using aluminum iso-propoxide as a alumina precursor, nonionic surfactant triblock copolymer P123 as a soft template for the meso-structure and PS as a hard template for macro-structure. The prepared samples had interconnected macropores and wormhole-like mesopores. Mesoporous alumina could assemble on the macroporous walls of M-α-Al_2O_3. The specific surface area and meso-structure of sample were affected by the loading amount of mesoporous alumina. The sample with 4.4% amount of mesoporous alumina was used as support to load Pt-Ni catalyst for the CO-PROX reaction. The experimental results indicated that the prepared catalyst was well tolerant to CO_2 and H_2O.
     Carbon nanotubes oxidized with H_2SO4/HNO3 solution supported Pt-Ni catalysts were prepared and used for CO-PROX. The results of catalytic preformance tests showed that the prepared catalysts were very active and highly selective at low temperature in 1 vol. % CO, 1 vol. % O_2, 50 vol. % H_2 and N2 gases. Adding 12.5 vol. % of CO_2 into the feed gases had slight negative influence on CO conversion. Adding 15 vol. % of H_2O led to a little decrease of CO conversion at the temperature range of 100 to 120 oC, which was proposed to be caused by capillary wetting of water in the micro-pores of carbon nanotubes. As the reaction temperature was higher, adding water could improve CO conversion.
     A series of carbon nanotube (CNT)-alumina composite monoliths with meso-macroporous structures were successfully synthesized by imbibing macroporous monolithic polystyrene foams with carbon nanotube-alumina hydrosols. These composite monoliths possessed interconnected spherical macropores and adjustable mesopores of several nanometers. CNTs were uniformly dispersed throughout the alumina matrix. The mechanical strength and thermal conductivity of composite monoliths can be improved with adding appropriate amounts of CNTs and with suitable calcination temperature. The sample of 5 wt.% CNT-Al_2O_3-1300-M had good mechnical strenghth and high thermal conductivity. The Pt-Ni/CNT-Al_2O_3 monoliths exhibited high activity and selectivity. The residual concentration of CO was purified to less than 100 ppm in the temperature range of 120-180oC in 1 vol. % CO, 1 vol. % O_2, 50 vol. % H_2, 12.5 vol.% CO_2, 15 vol.% H_2O and N2 gases with a volume space velocity of 10,400 h-1. This catalyst exhibited good stability.
引文
[1] Cropper M A J, Geiger S, Jollie D M, Fuel cells: a survey of current developments, Journal of Power Sources, 2004, 131(1-2): 57~61
    [2] Brown J E, Hendry C N, Harborne P, An emerging market in fuel cells? Residential combined heat and power in four countries, Energy Policy, 2007, 35(4): 2173~2186
    [3] Kirubakaran A, Jain S, Nema R K, A review on fuel cell technologies and power electronic interface, Renewable and Sustainable Energy Reviews, 2009, 13(9): 2430~2440
    [4] Akcaude F, Cabot P L, Brillas E, Fuel cells for chemicals and energy cogeneration, Journal of Power Sources, 2006, 153(1):47~60
    [5] Carrette L, Friedrich A K, Stimming U, Fuel cells: principles, types, fuels, and applications, ChemPhysChem, 2000, 1(4): 162~193
    [6] Rohland B, Plzak V, The PEMFC-integrated CO oxidation-a novel method of simplifying the fuel cell plant, Journal of Power Sources, 1999, 84(2): 183~186
    [7] Zalc J M, Lffler D G, Fuel processing for PEM fuel cells: transport and kinetic issues of system design, Journal of Power Sources, 2002, 111(1): 58~64
    [8] Turner J A, Sustainable hydrogen production, Science, 2004, 305(5686): 972~974
    [9] Das D, Veziroglu T N, Hydrogen production by biological processes: a survey of literature, International Journal of Hydrogen Energy, 2001, 26(1): 13~28
    [10] Brown L F, A comparative study of fuels for on-board hydrogen production for fuel-cell-powered automobiles, International Journal of Hydrogen Energy, 2001, 26(4): 381~397
    [11] Park E D, Lee D, Lee H C, Recent progress in selective CO removal in a H2-rich stream, Catalysis Today, 2009, 139(4): 280~290
    [12] Bion N, Epron F, Moreno M, Preferential oxidation of carbon monoxide in the presence of hydrogen (PROX) over noble metals and transition metal oxides: advantages and drawbacks, Topics in Catalysis, 2008, 51(1-4): 76~88
    [13] O’Connell M, Kolb G, Schelhaas K P, et al., The development and evaluation of microstructured reactors for the water gas shift and preferential oxidation reactions in the 5 kW range, International Journal of Hydrogen Energy, 2010, 35(6): 2317~2327
    [14] Choi Y, Stenger H G, Kinetics, simulation and insights for CO selective oxidation in fuel cell applications, Journal of Power Sources, 2004, 129(2): 246~254
    [15] Avgouropoulos G, Ioannides T, Papasopoulou C, et al., A comparative study of Pt/γ-Al2O3, Au/α-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen, Catalysis Today, 2002, 75(1-4): 157~167
    [16] Ebashi T, Ishida Y, Nakagawa Y, et al., Preferential CO oxidation in a H2-Rich stream on Pt-ReOx/SiO2: catalyst structure and reaction mechanism, The Journal of Physical Chemistry C, 2010, 114(14): 6518~6526
    [17] Delsman E R, Croon M H J M D, Pierik A, et al., Design and operation of a preferential oxidation microdevice for a portable fuel processor, Chemical Engineering Science, 2004, 59(22-23): 4795~4802
    [18] Chin P, Sun X L, Roberts G W, et al., Preferential oxidation of carbon monoxide with iron-promoted platinum catalysts supported on metal foams, Applied Catalysis A: General, 2006, 302(1): 22~31
    [19] Mishra A, Prasad R, A review on preferential oxidation of carbon monoxide in hydrogen rich gases, Bulletin of Chemical Reaction Engineering & Catalysis, 2011, 6(1): 1~14
    [20] Teng Y, Sakurai H, Ueda A, Oxidative removal of CO contained in hydrogen by using metal oxide catalysts, International Journal of Hydrogen Energy, 1999, 24(4): 355~358
    [21] Yung M M, Zhao Z K, Woods M P, et al., Preferential oxidation of carbon monoxide on CoOx/ZrO2, Journal of Molecular Catalysis A: Chemical, 2008, 279(1): 1~9
    [22] Ko E Y, Park E D, Seo K W, A comparative study of catalysts for the preferential CO oxidation in excess hydrogen, Catalysis Today, 2006, 116(3): 377~383
    [23] Gamarra D, Hornés A, Koppány Z, et al., Catalytic processes during preferential oxidation of CO in H2-rich streams over catalysts based on copper-ceria, Journal of Power Sources, 2007, 169(1): 110~116
    [24] Jung C R, Han J, Nam S W, et al., Selective oxidation of CO over CuO-CeO2 catalyst: effect of calcination temperature, Catalysis Today, 2004, 93-95: 183~190
    [25] Sirichaiprasert K, Luengnaruemitchai A, Pongstabodee S, Selective oxidation of CO to CO2 over Cu-Ce-Fe-O composite-oxide catalyst in hydrogen feed stream, International Journal of Hydrogen Energy, 2007, 32(7): 915~926
    [26] Moretti E, Lenarda M, Storaro L, et al., One-step synthesis of a structurally organized mesoporous CuO-CeO2-Al2O3 system for the preferential CO oxidation, Applied Catalysis A: General, 2008, 335(1): 46~55
    [27] Avgouropoulos G, Ioannides T, Effect of synthesis parameters on catalytic properties of CuO-CeO2, Applied Catalysis B: Environmental, 2006, 67(1-2):1~11
    [28] Gamarra D, Belver C, Fernández-García M, et al., Selective CO oxidation in excess H2 over copper-ceria catalysts: identification of active entities/species, Journal of the American Chemical Society, 2007, 129(40): 12064~12065
    [29] Galletti C, Fiorot S, Specchia S, et al., Catalytic performance of Au-TiO2 catalysts prepared by deposition-precipitation for CO preferential oxidation in H2-rich gases, Chemical Engineering Journal, 2007, 134(1-3): 45~50
    [30] Luengnaruemitchai A, Thoa D T K, Osuwan S, et al., A comparative study of Au/MnOx and Au/FeOx catalysts for the catalytic oxidation of CO in hydrogen rich stream, International Journal of Hydrogen Energy, 2005, 30(9): 981~987
    [31] Panzera G, Modafferi V, Candamano S, CO selective oxidation on ceria-supported Au catalysts for fuel cell application, Journal of Power Sources, 2004, 135(1-2): 177~183
    [32] Moreau F, Bond G C, CO oxidation activity of gold catalysts supported on various oxides and their improvement by inclusion of an iron component, Catalysis Today, 2006, 114(4): 362~368
    [33] Grisel R J H, Weststrate C J, Goossens A, Oxidation of CO over Au/MOx/Al2O3 multi-component catalysts in a hydrogen-rich environment, Catalysis Today, 2002, 72(1-2): 123~132
    [34] Luengnaruemitchai A, Osuwan S, Gulari E, Selective catalytic oxidation of CO in the presence of H2 over gold catalyst, International Journal of Hydrogen Energy, 2004, 29(4): 429~435
    [35] Wang H, Zhu H Q, Qin Z F, et al., Preferential oxidation of CO in H2 rich stream over Au/CeO2-Co3O4 catalysts, Catalysis Communications, 2008, 9(6): 1487~1492
    [36] Yang Y F, Sangeetha P, Chen Y W, Au/TiO2 catalysts prepared by photo-deposition method for selective CO oxidation in H2 stream, International Journal of Hydrogen Energy, 2009, 34(21): 8912~8920
    [37] Dai W X, Zheng X P, Yang H Y, et al., The promoted effect of UV irradiation on preferential oxidation of CO in an H2-rich stream over Au/TiO2, Journal of Power Sources, 2009, 188(2): 507~514
    [38] Kandoi S, Gokhale A A, Grabow L C, Why Au and Cu are more selective than Pt for preferential oxidation of CO at low temperature, Catalysis Letters, 93(1-2): 93~100
    [39] Mozer T S, Dziuba D A, Vieira C T P, et al., The effect of copper on the selective carbon monoxide oxidation over alumina supported gold catalysts, Journal of Power Sources, 2009, 187(1): 209~215
    [40] Atalik B, Uner D, Structure sensitivity of selective CO oxidation over Pt/γ-Al2O3,Journal of Catalysis, 2006, 241(2): 268~275
    [41] Zhou S L, Yuan Z S, Wang S D, Selective CO oxidation with real methanol reformate over monolithic Pt group catalysts: PEMFC applications, International Journal of Hydrogen Energy, 2006, 31(7): 924~933
    [42] Kahlich M J, Gasteiger H A, Behm R J, Kinetics of the selective CO oxidation in H2-rich gas on Pt/Al2O3, Journal of Catalysis, 1997, 171(1): 93~105
    [43] Manasilp A, Gulari E, Selective CO oxidation over Pt/alumina catalysts for fuel cell applications, Applied Catalysis B: Environmental, 2002, 37(1): 17~25
    [44] Ayastuy J L, Gil-Rodríguez A, González-Marcos, Effect of process variables on Pt/CeO2 catalyst behaviour for the PROX reaction, International Journal of Hydrogen Energy, 2006, 31(15): 2231~2242
    [45] Rosso I, Galletti C, Fiorot S, et al., Preferential CO oxidation over Pt/3A zeolite catalysts in H2-rich gas for fuel cell application, Journal of Porous Materials, 2007, 14(3): 245~250
    [46] Ren S Z, Hong X L, CO selective oxidation in hydrogen-rich gas over platinum catalysts, Fuel Processing Technology, 2007, 88(4): 383~386
    [47] Fukuoka A, Kimura J I, Oshio T, Preferential oxidation of carbon monoxide catalyzed by platinum nanoparticles in mesoporous silica, Journal of the American Chemical Society, 2007, 129(33): 10120~10125
    [48] Suh D J, Kwak C, Kim J H, et al., Removal of carbon monoxide from hydrogen-rich fuels by selective low-temperature oxidation over base metal added platinum catalysts, Journal of Power Sources, 2005, 142(1-2): 70~74
    [49] Monyanon S, Pongstabodee S, Luengnaruemitchai A, Catalytic activity of Pt-Au/CeO2 catalyst for the preferential oxidation of CO in H2-rich stream, Journal of Power Sources, 2006, 163(1): 547~554
    [50] Komatsu T, Tamura A, Pt3Co and PtCu intermetallic compounds: Promising catalysts for preferential oxidation of CO in excess hydrogen, Journal of Catalysis, 2008, 258(2): 306~314
    [51] Ayastuy J L, Gonzállez Marcos M P, González-Velasco, et al., MnOx/Pt/Al2O3 catalysts for CO oxidation in H2-rich streams, Applied Catalysis B: Environmental, 2007, 70(1-4): 532~541
    [52] Epling W S, Cheekatamarla P K, Lane A M, Reaction and surface characterization studies of titania-supported Co, Pt and Co/Pt catalysts for the selective oxidation of CO in H2-containing streams, Chemical Engineering Journal, 2003, 93(3): 61~68
    [53] Sirijaruphan A, Goodwin J G, Jr, et al., Effect of Fe promotion on the surface reaction parameters of Pt/γ-Al2O3 for the selective oxidation of CO, Journal of Catalysis, 2004, 224(2): 304~313
    [54] Ko E Y, Park E D, Seo K W, et al., Pt-Ni/γ-Al2O3 catalyst for the preferential CO oxidation in the hydrogen stream, Catalysis Letters, 2006, 110(3-4): 275~279
    [55] Son I H, Shamsuzzoha M, Lane A M, Promotion of Pt/γ-Al2O3 by new pretreatment for low-temperature preferential oxidation of CO in H2 for PEM fuel cells, Journal of Catalysis, 2002, 210(2): 460~465
    [56] Schubert M M, Kahlich M J, Feldmeyer G, et al., Bimetallic PtSn catalyst for selective CO oxidation in H2-rich gases at low temperatures, Physical Chemistry Chemical Physics, 2001, 3(6): 1123~1131
    [57] Liu X S, Korotkikh O, Farrauto R, Selective catalytic oxidation of CO in H2: structural study of Fe oxide-promoted Pt/alumina catalyst, Applied Catalysis A: General, 2002, 226(1-2): 293~303
    [58] Cho S H, Park J S, Choi S H, et al., Effect of magnesium on preferential oxidation of carbon monoxide on platinum catalyst in hydrogen-rich stream, Journal of Power Sources, 2006, 156(2): 260~266
    [59] Chan K, Park T J, Suh D J, Effects of sodium addition on the performance of PtCo/Al2O3 catalysts for preferential oxidation of carbon monoxide from hydrogen-rich fuels, Applied Catalysis A: General, 2005, 278(2): 181~186
    [60] Ko E Y, Park E D, Lee Hyun C, Supported Pt-Co catalysts for selective CO oxidation in a hydrogen-rich stream, Angewandte Chemie International Edition, 2007, 46(5): 734~737
    [61] Oh S H, Sinkevitch R M, Carbon monoxide removal from hydrogen-rich fuel cell feedstreams by selective catalytic oxidation, Journal of Catalysis, 1993, 142(1): 254~262
    [62] Chin S Y, Alexeev O S, Amiridis M D, Preferential oxidation of CO under excess H2 conditions over Ru catalysts, Applied Catalysis A: General, 2005, 286(2): 157~166
    [63] Echigo M, Tabata T, A study of CO removal on an activated Ru catalyst for polymer electrolyte fuel cell applications, Applied Catalysis A: General, 2003, 251(1): 157~166
    [64] Echigo M, Tabata T, Reaction and surface characterization studies of Ru/Al2O3 catalysts for CO preferential oxidation in reformed gas, Catalysis Letters, 2004, 98(1): 37~42
    [65] Echigo M, Tabata T, Development of novel Ru catalyst of preferential CO oxidation for residential polymer electrolyte fuel cell systems, Catalysis Today, 2004, 90(3-4): 269~275
    [66] Huang Y, Wang A, Wang X, et al., Preferential oxidation of CO under excess H2 conditions over iridium catalysts, International Journal of Hydrogen Energy, 2007, 32(16): 3880~3886
    [67] Tanaka H, Ito S, Kameoka S, et al., Catalytic performance of K promoted Rh/USY catalysts in preferential oxidation of CO in rich hydrogen, Applied Catalysis A: General, 2003, 250(2): 255~263
    [68] Lee S H, Han J, Lee K Y, Development of 10-kWe preferential oxidation system for fuel cell vehicles, Journal of Power Sources, 2002, 109(2): 394~402
    [69] Lopez E, Kolios G, Eigenberger G, Preferential oxidation of CO in a folded-plate reactor, Chemical Engineering Science, 2007, 62(18-20): 5598~5601
    [70] Ouyang X, Besser R S, Effect of reactor heat transfer limitations on CO preferential oxidation, Journal of Power Sources, 2005, 141(1): 39~46
    [71] Yu X H, Li H L, Tu S T, et al., Pt-Co catalyst-coated channel plate reactor for preferential CO oxidation, International Journal of Hydrogen Energy, 2011, 36(5): 3778~3788
    [72] Roberts G W, Chin P, X L Sun, et al., Preferential oxidation of carbon monoxide with Pt/Fe monolithic catalysts: interactions between external transport and the reverse water-gas-shift reaction, Applied Catalysis B: Environmental, 2003, 46(3): 601~611
    [73] Neri G, Rizzo G, Corigliano F, et al., A novel Pt/zeolite-based honeycomb catalyst for selective CO oxidation in a H2-rich mixture, Catalysis Today, 2009, 147: S210~S214
    [74] Ahluwalia R K, Zhang Q Z, Chmielewski D J, et al., Performance of CO preferential oxidation reactor with noble-metal catalyst coated on ceramic monolith for on-board fuel processing applications, Catalysis Today, 2005, 99(3-4): 271~283
    [75] Marbán G, López I, Valdés-Solís T, et al. Highly active structured catalyst made up of mesoporous Co3O4 nanowires supported on a metal wire mesh for the preferential oxidation of CO, International Journal of Hydrogen Energy, 2008, 33(22): 6687~6695
    [76] Giroux T, Hwang S, Liu Y, et al., Monolithic structures as alternatives to particulate catalysts for the reforming of hydrocarbons for hydrogen generation, Applied Catalysis B: Environmental, 2005, 56(1-2): 95~110
    [77] Ayastuy J L, Gamboa N K, González-Marcos M P, et al., CuO/CeO2 washcoated ceramic monoliths for CO-PROX reaction, Chemical Engineering Journal, 2011, 171(1): 224~231
    [78] Groppi G, Tronconi E, Honeycomb supports with high thermal conductivity for gas/solid chemical processes, Catalysis Today, 2005, 105(3-4): 209~304
    [79] Guan G Q, Zapf R, Kolb G, et al., Preferential CO oxidation over catalysts with well-defined inverse opal structure in microchannels, International Journal of Hydrogen Energy, 2008, 33(2): 797~801
    [80] Kolb G, Hessel V, Micro-structured reactors for gas phase reactions, Chemical Engineering Journal, 2004, 98(1-2): 1~38
    [81] Markowz G, Schirrmeister S, Albrecht J, et al., Microstructured reactors for heterogeneously catalyzed gas-phase reactions on an iIndustrial scale, Chemical Engineering & Technology, 2005, 28(4): 459~464
    [82] Hsueh C Y, Chu H S, Yan W M, et al., Numerical study of heat and mass transfer in a plate methanol steam micro reformer with methanol catalytic combustor, International Journal of Hydrogen Energy, 2010, 35(12): 6227~6238
    [83] Kolb G, Cominos V, Hofmann C, et al., Integrated microstructured fuel processors for fuel cell applications, Chemical Engineering Research and Design, 2005, 83(6): 626~633
    [84] Kiwi-Minsker, L, Renken A, Microstructured reactors for catalytic reactions, Catalysis Today, 2005, 110(1-2): 2~14
    [85] Vahabi M, Akbari M H, Three-dimensional simulation and optimization of an isothermal PROX microreactor for fuel cell applications, International Journal of Hydrogen Energy, 2009, 34(3): 1531~1541
    [86] Snytnikov P V, Potemkin D I, Rebrov E V, et al., Design, scale-out, and operation of a microchannel reactor with a Cu/CeO2-x catalytic coating for preferential CO oxidation, Chemical Engineering Journal, 2010, 160(3): 923~929
    [87] Hwang S M, Kwon O J, Ahn S H, et al., Silicon-based micro-reactor for preferential CO oxidation, Chemical Engineering Journal, 2009, 146(1): 105~111
    [88] Srinivas S, Dhingra A, Im H, et al., A scalable silicon microreactor for preferential CO oxidation: performance comparison with a tubular packed-bed microreactor, Applied Catalysis A: General, 2004, 274(1-2): 285~293
    [89] Dudfield C D, Chen R, Adcock P L, A compact CO selective oxidation reactor for solid polymer fuel cell powered vehicle application, Journal of Power Sources, 2000, 86(1-2): 214~222
    [90] Kolb G, Hofmann C, O’Connell M, et al., Microstructured reactors for diesel steam reforming, water-gas shift and preferential oxidation in the kiloWatt power range, Catalysis Today, 2009, 147S: S176~S184
    [91] Kin K Y, Nam S W, Han J, et al., Development of a multi-layered micro-reactor coated with Pt-Co/Al2O3 catalyst for preferential oxidation of CO, Journal of Industrial and Engineering Chemistry, 2008, 14(6): 853~859
    [92] Cruz S, Sanz O, Poyato R, et al., Design and testing of a microchannel reactor for the PROX reaction, Chemical Engineering Journal, 2011, 167(2-3): 634~642
    [93] Davis M E, Ordered porous materials for emerging applications, Nature, 2002, 417: 813~821
    [94] Meng Q B, Gu Z Z, Sato O, Fabrication of highly ordered porous structures, Applied Physics Letters, 77 (26): 4313~4315
    [95] Zhao D Y, Sun J Y, Li Q Z, et al., Morphological control of highly ordered mesoporous silica SBA-15, Chemistry of Materials, 2000, 12(2): 275~279
    [96] Honma I, Zhou H S, Self-assembling functional molecules in mesoporous silicate materials: optical properties and mesophase of dye-doped M41S, Advanced Materials, 1999, 10(18): 1532~1536
    [97]刘应亮,谢春林,介孔碳材料制备的研究进展,暨南大学学报,2011, 32(3): 339~344
    [98] Wan Y, Yang H F, Zhao D Y,“Host-Guest”chemistry in the synthesis of ordered nonsiliceous mesoporous materials, Accounts of Chemical Research, 2006, 39(7): 423~432
    [99] Kresge C T, Leonowicz M E, Roth W J, et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal temple mechanism, Nature, 1992, 359: 710~712
    [100]Corma A, From microporous to mesoporous molecular sieve materials and their use in catalysis, Chemical Reviews, 1997, 97(6): 2373~2420
    [101]Yuan Z Y, Su B L, Insights into hierarchically meso-macroporous structured materials, Journal of Materials Chemistry, 2006, 16(7): 663~677
    [102]Li F, Wang Z Y, Ergang N S, et al., Controlling the shape and alignment of mesopores by confinement in colloidal crystals: designer pathways to silica monoliths with hierarchical porosity, Langmuir, 2007, 23(7): 3996~4004
    [103]Sm?tt J H, Schunk S, Lindén M, Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity, Chemistry of Materials, 2003, 15(12): 2354~2361
    [104]Sen T, Tiddy G J T, Casci J L, et al., Synthesis and characterization of hierarchically ordered porous silica materials, Chemistry of Materials, 2004, 16(11): 2044~2054
    [105]Brun N, Ungureanu S, Deleuze H, et al., Hybrid foams, colloids and beyond: From design to applications, Chemical Society Reviews, 2011, 40(2): 771~788
    [106]Zhang H F, Cooper A I, Synthesis and applications of emulsion-templated porous materials, Soft Matter, 2005, 1(2): 107~113
    [107]Maekawa H, Esquena J, Bishop S, et al., Meso/macroporous inorganic oxide monoliths from polymer foams, Advanced Materials, 2003, 15(7-8): 591~596
    [108]Wan Y, Shi Y F, Zhao D Y, Supramolecular aggregates as templates: ordered mesoporous polymers and carbons, Chemistry of Materials, 2008, 20(3): 932~945
    [109]Lee J, Kim J, Hyeon T, Recent progress in the synthesis of porous carbonmaterials, Advanced Materials, 2006, 18(16): 2073~2094
    [110]Huang Y, Cai H Q, Feng D, et al., One-step hydrothermal synthesis of ordered mesostructured carbonaceous monoliths with hierarchical porosities, Chemical Communications, 2008, 23: 2641~2643
    [111]Zakhidov A A, Baughman R H, Iqbal Z, et al., Carbon structures with three-dimensional periodicity at optical wavelengths, Science, 1998, 282(5390): 897~901
    [112]Alvarez S, Esquena J, Solans C, et al., Meso/macroporous carbon monoliths from polymeric foams, Advanced Engineering Materials, 2004, 6(11): 897~899
    [113]王晓燕,李宇慧,王景刚等,介孔氧化铝的制备及应用研究进展,2010, 29: 574~576
    [114]Márquez-Alvarez C, ZilkováB, Pérez J, et al., Synthesis, Characterization and Catalytic Applications of Organized Mesoporous Aluminas, Catalysis Reviews, 2008, 50: 222~286
    [115]Casey W H, Large aqueous aluminum hydroxide molecules, Chemical Reviews, 2006, 106(1): 1~16
    [116]Niesz K, Yang P D, Somorjai G A, Sol-gel synthesis of ordered mesoporous alumina, Chemical Communications, 2005, 15: 1986~1987
    [117]Yuan Q, Yin A Y, Luo C, et al., Facile synthesis for ordered mesoporousγ-aluminas with high thermal stability, Journal of the American Society, 2008, 130(11): 3465~3472
    [118]Li L L, Duan W T, Yuan Q, et al., Hierarchicalγ-Al2O3 monoliths with highly ordered 2D hexagonal mesopores in macroporous walls, Chemical Communications, 2009, 41: 6174~6176
    [119]Dacquin J P, Dhainaut, J, Duprez D, et al., An efficient route to highly organized, tunable macroporous-mesoporous alumina, Journal of the American Society, 2009, 131(36): 12896~12897
    [120]Schnorr J M, Swager T M, Emerging applications of carbon nanotubes, Chemistry of Materials, 2011, 23(3): 646~657
    [121]Baughman R H, Zakhidov A A, Heer W A, Carbon nanotubes-the route toward applications, Science, 2002, 297(5582): 787~792
    [122]Dresselhaus M S, Dresselhaus G, Saito R, Physics of carbon nanotubes, Carbon, 1995, 33(7): 883~891
    [123]Saito R, Fujita M, Dresselhaus G, Electronic structure of chiral Graphene tubules, Applied Physics Letters, 1992, 60(18): 2204~2206
    [124]Maruyama S, Kojima R, Miyauchi Y, et al., Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chemical Physics Letters, 2002, 360(3-4): 229~234
    [125]Lijima S, Helical microtubles of graphitic carbon, Nature, 1991, 354: 56~58
    [126]朱雷,李仲谨,余丽丽等,碳纳米管/聚合物复合材料研究进展,化工科技,2009, 17(1): 71~75
    [127]刘政,赵素,碳纳米管增强复合材料研究进展,宇航材料工艺,2005, 1: 1~5
    [128]Thostenson E, Ren Z, Chou T W, Advances in the science and technology of carbon nanotubes and their composites: a review, 2001, 61(13): 1899~1912
    [129]Kearns J C, Shambaugh R L, Polypropylene fibers reinforced with carbon nanotubes, Journal of Applied Polymer Science, 2002, 86(8): 2079~2084
    [130]Qian D, Dickey E C, Andrews R, et al., Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites, Applied Physics Letters, 2000, 76(20): 2868~2870
    [131]Zhan G D, Kuntz J D, Wan J, et al., Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites, Nature Materials, 2003, 2(1): 38~42
    [132]Peigney A, Laurent Ch, Dobigeon F, et al., Carbon nanotubes grown in-situ by a novel catalytic method, Journal of Materials Research, 1997, 12(3): 613~615
    [133]Peigney A, Laurent Ch, Dumortier O, et al., Carbon nanotubes-Fe-alumina nanocomposites. Part I: influence of the Fe content on the synthesis of powders, Journal of European Ceramic Society, 1998, 18(14): 1995~2004
    [134]Laurent Ch, Peigney A, Dumortier O, et al., Carbon Nanotubes-Fe-Alumina Nanocomposites. Part II: Microstructure and Mechanical Properties of the Hot-Pressed Composites, Journal of European Ceramic Society, 1998, 18(14): 2005~2013
    [135]Peigney A, Laurent Ch, Flahaut E, et al., Carbon nanotubes in nvel ceramic matrix nanocomposites, Ceramicas International, 2000, 26(6): 677~683
    [136]An J W, You D H, Lim D S, Tribological properties of hot-pressed alumina-CNT composites, Wear, 2003, 255(1-6): 677~681
    [137]Siegel R W, Chang S K, Ash B J, et al., Mechanical behavior of polymer and ceramic matrix nanocomposites, Scripta Materialia, 2001, 44(8-9): 2061~2064
    [138]Fan J P, Zhao D Q, Wu M S, et al., Preparation and microstructure of multi-wall carbon nanotubes-toughened Al2O3 composite, Journal of the American Ceramic Society, 2006, 89(2): 750~753
    [139]Ma R Z, Wu J, Wei B Q, et al., Processing and properties of carbon nanotubes-nano-SiC ceramic, Journal of Materials Science, 1998, 33(21): 5243~5246 [ 1 40]Sun J, Gao L, Li W, Colloidal processing of carbon nanotube/alumina composites, Chemistry of Materials, 2002, 14(12): 5169~5172
    [141]Berber S, Kwon Y K, Tománek D, Unusually high thermal conductivity ofcarbon nanotubes, Physical Review Letters, 2000, 84(20): 4613~4616
    [142]Ning J W, Zhang J J, Pan Y B, et al., Fabrication and thermal property of carbon nanotube/SiO2 composites, Journal of Materials Science Letters, 2003, 22(14):1019~1021
    [143]Sivakumar R, Guo S Q, Nishimura T, et al., Thermal conductivity in multi-wall carbon nanotube/silica-based nanocomposites,Scripta Materialia, 2007, 56(4): 265~268
    [144]Kumari L, Zhang T, Du G H, et al., Thermal properties of CNT-Alumina nanocomposites, Composites Science and Technology, 2008, 68(9): 2178~2183
    [145]Zhan G D, Mukherjee A K, Carbon nanotube reinforced alumina-based ceramics with novel mechanical, electrical, and thermal properties, International Journal of Applied Ceramic Technology, 2004, 1(2): 161~171
    [146]Lu W G, Dong J M, Li Z Y, Optical properties of aligned carbon nanotube systems studied by the effective-medium approximation method, Physical Review B, 2001, 63(3): 33401~33404
    [147]Ichida M, Mizuno S, Nakamura A, Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer, Applied Physics A: Materials Science & Processing, 2004, 78(8): 1117~1120
    [148]Zhang Y, Gong T, Liu W J, et al., Strong visible light emission from well-aligned multiwalled carbon nanotube films under infrared laser irradiation, Applied Physics Letters, 2005, 87(17): 173114~173116
    [149]Yao Y, Li G H, Ciston S, et al., Photoreactive TiO2/carbon nanotube composites: synthesis and reactivity, Environmental Science & Technology, 2008, 42(13): 4952~4957
    [150]Chen L C, Ho Y C, Guo W S, et al., Enhanced visible light-induced photoelectrocatalytic degradation of phenol by carbon nanotube-doped TiO2 electrodes, Electrochimica Acta, 2009, 54(15): 3884~3891
    [151]Gao B, Peng C, Chen G Z, et al., Photo-electro-catalysis enhancement on carbon nanotubes/titanium dioxide (CNTs/TiO2) composite prepared by a novel surfactant wrapping sol-gel method, Applied Catalysis B: Environmental, 2008, 85(1-2): 17~23
    [152]Gao B, Chen G Z, Puma G L, Photocatalytic degradation of 2,4-dinitrophenol (DNP) by multi-walled carbon nanotubes (MWCNTs)/TiO2 composite in aqueous solution under solar irradiation, Applied Catalysis B: Environmental, 2009, 89(1): 503~509
    [153]Dai H, Carbon nanotubes: opportunities and challenges, Surface Science, 2002, 500(1-3): 218~241
    [154]Dai H, Carbon nanotubes: synthesis, integration and properties, Accounts ofChemical Research, 2002, 35(12): 1035~1044
    [155]Popov V N, Carbon nanotubes: properties and application, Materials Science and Engineering : R: Peports, 2004, 43(3): 61~102
    [156]Ouyang M, Huang J L, Lieber C M, Fundamental electronicproperties and applications of single-walled carbon nanotubes, Accounts of Chemical Research, 35(12): 1018~1025
    [157]Lee J Y, Liang K, An K H, et al., Nickel oxide/carbon nanotubes nanocomposite for electrochemical capacitance, 2005, 150(2): 153~157
    [158]Nam K W, Kim K H, Lee E S, et al., Pseudocapacitive properties of electrochemically prepared nickel oxides on 3-dimensional carbon nanotube film substrates, Journal of Power Sources, 2008, 182(2): 642~652
    [159]Zhang H, Cao G P, Wang Z Y, et al., Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage, Nano Letters, 2008, 8(9): 2664~2668
    [160]Subramanian V, Zhu H W, Wei B Q, Synthesis and electrochemical characterizations of amorphous manganese oxide and single walled carbon nanotube composites as supercapacitor electrode materials, Electrochemistry Communications, 2006, 8(5): 827~832
    [161]Fang W C, Synthesis and electrochemical characterization of vanadium oxide/carbon nanotube composites for supercapacitors, The Journal of Physical Chemistry C, 2008, 112(30): 11552~11555
    [162]Sun Z Y, Liu Z M, Han B X, et al., Microstructural and electrochemical characterization of RuO2/CNT composites synthesized in supercritical diethylamine, Carbon, 2006, 44(5): 888~893
    [163]Tasis D, Tagnatarchis N, Bianco A, Chemistry of carbon nanotubes, Chemical Reviews, 2006, 106(3): 1105~1136
    [164]Karousis N, Tagmatarchis N, Current progress on the chemical modification of carbon nanotubes, Chemical Reviews, 2010, 110(9): 5366~5397
    [165]Datsyuk V, Kalyva M, Papagelis K, et al., Chemical oxidation of multiwalled carbon nanotubes, Carbon, 2008, 46(6): 833~840
    [166]Ziegler K J, Gu Z N, Peng H Q, Controlled oxidative cutting of single-walled carbon nanotubes, Journal of The American Chemical Society, 2005, 127(5): 1541~1547
    [167]Banerjee S, Hemraj-Benny T, Wong S S, Covalent surface chemistry of single-walled carbon nanotubes, Advanced materials, 2005, 17(1): 17~29
    [168]Xing Y C, Li L, Chusuei C C, et al, Sonochemical oxidation of multiwalled carbon nanotubes, Langmuir, 2005, 21(9): 4185~4190
    [169]Avilés F, Cauich-Rodríguez J V, Moo-Tah L, et al., Evaluation of mild acidoxidation treatments for MWCNT functionalization, Carbon, 2009, 47(13): 2970~2975
    [170]Huang L M, Cui X D, Dukovic G, et al., Self-organizing high-density single-walled carbon nanotube arrays from surfactant suspensions, Nanotechnology, 2004, 15(11): 1450~1454
    [171]Islam M F, Rojas E, Bergey D M, et al., High weight fraction surfactant solubilization of single-wall carbon nanotubes in water, Nano Letters, 2003, 3(2): 269~273
    [172]Matarredona O, Rhoads H, Li Z R, et al., Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS, The Journal of Physical Chemistry B, 2003, 107(48): 13357~13367
    [173]Eder D, Carbon nanotube-inorganic hybrids, Chemical Reviews, 2010, 110(3): 1348~1385
    [174]Wildgoose G G, Banks C E, Compton R G, Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications, 2006, 2(2): 182~183
    [175]Cha S I, Kim K T, Arshad S N, et al., Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing, Advanced Materials, 2005, 17(11): 1377~1381
    [176]Jiang L Q, Gao L, Fabrication and characterization of ZnO-coated multi-walled carbon nanotubes with enhanced photocatalytic activity, Materials Chemistry and Physics, 2005, 91(2-3): 313~316
    [177]Liu T X, Phang I Y, Shen L, et al., Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites, Macromolecules, 2004, 37(19): 7214~7222
    [178]Cho J, Boccaccini A R, Shaffer M S P, Ceramic matrix composites containing carbon nanotubes, Journal of Materials Science, 2009, 44(8): 1934~1951
    [179]Rul S, Laurent C, Peigney A, et al., Carbon nanotubes prepared in situ in a cellular ceramic by the gelcasting-foam method, Journal of the European Ceramic Society, 2003, 23(8): 1233~1241
    [180]Bocdaccini A R, Acevedo D R, Brusatin G, et al., Borosilicate glass matrix composites containing multi-wall carbon nanotubes, Journal of the European Ceramic Society, 2005, 25(9): 1515~1523
    [181]Balazsi C, Sedlackova K, Czigany Z, Structural characterization of Si3N4-carbon nanotube interfaces by transmission electron microscopy, Composites Science and Technology, 2008, 68(6): 1596~1599
    [182]Sun J, Gao L, Development of a dispersion process for carbon nanotubes in ceramic matrix by heterocoagulation, Carbon, 2003, 41(5): 1063~1068
    [183]Guo S Q, Sivakumar R, Kitazaewa H, et al., Electrical properties of silica-based nanocomposites with multiwall carbon nanotubes, Journal of the American Ceramic Society, 2007, 90(5): 1667~1670
    [184]Seeger T, Redlich P, Grobert N, et al., SiOx-coating of carbon nanotubes at room temperature, Chemical Physics Letters, 2001, 339(1-2): 41~46
    [185]Seeger T, Fuente G, Maser W K, et al., Evolution of multiwalled carbon-nanotube/SiO2 composites via laser treatment, Nanotechnology, 2003, 14(2): 184~187
    [186]Hernadi K, Ljubovi E, Seo J W, et al., Synthesis of MWNT-based composite materials with inorganic coating, Acta Materialia, 2003, 51(5): 1447~1452
    [187]Serp P, Corrias M, Kalck P, Carbon nanotubes and nanofibers in catalysis, Applied Catalysis A: General, 2003, 253(2): 337~358
    [188]Planeix J M, Coustel N, Coq B, et al., Application of carbon Nanotubes as supports in heterogeneous catalysis, Journal of the American Chemistry Society, 1994, 116(17): 7935~7936
    [189]Tessonnier J P, Pesant L, Ehret G, et al., Pd nanoparticles introduced inside multi-walled carbon nanotubes for selective hydrogenation of cinnamaldehyde into hydrocinnamaldehyde, Applied Catalysis A: General, 2005, 288(1-2): 203~210
    [190]Pereíra M F R, Figueiredo J L, Orfǎo J J M, et al., Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene, Carbon, 2004, 42(14): 2807~2813
    [191]Chen H B, Lin J D, Cai Y, et al., Novel multi-walled nanotubes-supported and alkali-promoted Ru catalysts for ammonia synthesis under atmospheric pressure, Applied Surface Science, 2001, 180(3-4): 328~335
    [192]Cai Y, Lin J D, Chen H B, et al., Novel Ru-K/carbon nanotubes catalyst for ammonia synthesis, Chinese Chemical Letters, 2000, 11(4): 373~374
    [193]Wang H, Wang H L, Jiang W F, Solar photocatalytic degradation of 2,6-dinitropcresol (DNPC) using multi-walled carbon nanotubes (MWCNTs)-TiO2 composite photocatalysts, Chemosphere, 2009, 75(8): 1105~1111
    [194]Xia X H, Jia Z J, Yu Y, et al., Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O, Carbon, 2007, 45(4): 717~721
    [195]Wang C, Waje M, Wang X, et al., Proton exchange membrane fuel cells with carbon nanotube based electrodes, Nano Letters, 2004, 4(2): 345~348
    [196]Liu Z L, Lin X H, Lee J Y, et al., Preparation and characterization of platinum-based electrocatalysts on multiwalled carbon nanotubes for protonexchange membrane fuel cells, Langmuir, 2002, 18(10): 4054~4060
    [197]Tanaka K, Shou M, Zhang H B, et al., An extremely active Pt/carbon nano-tube catalyst for selective oxidation of CO in H2 at room temperature, Catalysis Letters, 2008, 126(1-2): 89~95
    [198]Yang H W, Wang C, Li B D, et al., Doping effects of Ni-MgO on the structure and performance of carbon nanotube-supported Pt catalysts for preferential oxidation of CO in a H2 stream, Applied Catalysis A: General, 2011, 402(1-2): 168~175
    [199]Li B D, Wang C, Yi G Q, et al., Enhanced performance of Ru nanoparticles confined in carbon nanotubes for CO preferential oxidation in a H2-rich stream, Catalysis Today, 2011, 164(1): 74~79
    [200]Castillejos E, Chico R, Bacsa R, et al., Selective deposition of gold nanoparticles on or inside carbon nanotubes and their catalytic activity for preferential oxidation of CO, European Journal of Inorganic Chemistry, 2010, 2010(32): 5096~5102
    [201]Delsman E R, Laarhoven B J P F, Croon M H J M D, et al., Comparison between conventional fixed-bed and microreactor technology for a portable hydrogen production case, Chemical Engineering Research and Design, 2005, 83(9): 1063~1075
    [202]Zhang Y, Zhao C Y, Liang H, et al., Macroporous monolithic Pt/γ-Al2O3 and K-Pt/γ-Al2O3 catalysts used for preferential oxidation of CO, Catalysis Letters, 2009, 127(3-4): 339~347
    [203]Zhang Y, Liang H, Zhao C Y, et al., Macroporous alumina monoliths prepared by filling polymer foams with alumina hydrosols, Journal of Materials Science 2009, 44(3): 931~938
    [204]杜中杰,张晨,励杭泉,反相浓乳液法制备聚苯乙烯/二乙烯苯结构型泡孔聚合物,高等学校化学学报, 2002, 23(8): 1614~1617
    [205]Hoffer B W, Langeveld A D, Janssens J P, et al., Stability of highly dispersed Ni/Al2O3 catalysts: effects of pretreatment, Journal of Catalysis, 2000, 192(2): 432~440
    [206]Akande A J, Idem R O, Dalai A K, Synthesis, characterization and performance evaluation of Ni/Al2O3 catalysts for reforming of crude ethanol for hydrogen production, Applied Catalysis A: General, 2005, 287(2): 159~175
    [207]Li B T, Kado S, Mukainakano Y, et al., Temperature profile of catalyst bed during oxidative steam reforming of methane over Pt-Ni bimetallic catalysts, Applied Catalysis A: General, 2006, 304: 62~71
    [208]Friedrich K A, Henglein F, Stimming U, et al., Size dependence of the CO monolayer oxidation on nanosized Pt particles supported on gold, ElectrochimicaActa, 2000, 45(20): 3283~3293
    [209]Holmgren A, Azarnoush F, Fridell E, Influence of pre-treatment on the low-temperature activity of Pt/ceria, Applied Catalysis A: General, 1999, 22(1): 49~61
    [210]Jain S K, Crabb E M, Smart L E, et al, Controlled modification of Pt/Al2O3 for the preferential oxidation of CO in hydrogen: A comparative study of modifying element, Applied Catalysis B: Environmental, 2009, 89(3-4): 349~355
    [211]Snytnikov P V, Sobyanin V A, Belyaev V D, et al., Selective oxidation of carbon monoxide in excess hydrogen over Pt-, Ru- and Pd-supported catalysts, Applied Catalysis A: General, 2003, 239(1-2): 149~156
    [212]Luengnaruemitchai A, Nimsuk M, Naknam P, et al., A comparative study of synthesized and commercial A-type zeolite-supported Pt catalysts for selective CO oxidation in H2-rich stream, International Journal of Hydrogen Energy, 2008, 33(1): 206~213
    [213]Sirijaruphan A, Goodwin J G, Rice R W, Investigation of the initial rapid deactivation of platinum catalysts during the selective oxidation of carbon monoxide, Journal of Catalysis, 2004, 221(2): 288~293
    [214]Galletti C, Specchia S, Saracco G, et al., Development of a lab scale catalytic metal plate-channels reactor for CO preferential oxidation, Chemical Engineering Journal, 2009, 154(1-3): 246~250
    [215]Maeda N, Matsushima T, Kotobuki M, et al., H2O-tolerant monolithic catalysts for preferential oxidation of carbon monoxide in the presence of hydrogen, Applied Catalysis A: General, 2009, 370(3): 50~53
    [216]Chen G W, Yuan Q, Li H Q, et al., CO selective oxidation in a microchannel reactor for PEM fuel cell, Chemical Engineering Journal, 2004, 101(1-3): 101~106
    [217]?ejka J, Organized mesoporous alumina: synthesis, structure and potential in catalysis, Applied Catalysis A: General, 2003, 254(2): 327~338
    [218]Xu B J, Xiao T C, Yan Z F, et al., Synthesis of mesoporous alumina with highly thermal stability using glucose template in aqueous system, Micrporous and Mesoporous Materials, 2006, 91(1-3): 293~295
    [219]Niesz K, Yang P D, Somorjai G A, Sol-gel synthesis of ordered mesoporous alumina, Chemicla Communications, 2005, 15: 1985~1987
    [220]Tsung C K, Fan J, Zheng N F, et al., A general route to diverse mesoporous metal oxide submicrospheres with highly crystalline frameworks, Angewandte Chemie International Edition, 2008, 47(45): 8682~8686
    [221]Liu Q, Wang A, Wang X D, et al., Ordered crystalline alumina molecular sieves synthesized via a nanocasting route, Chemistry of Materials, 2006, 18(22):5153~5155
    [222]Morris S M, Fulvio P F, Jaroniec M, Ordered mesoporous alumina-supported metal oxides, Journal of the American Chemistry Society, 2008, 130(45): 15210~15216
    [223]Ren J, Du Z J, Zhang C, et al., Macroporous titania monolith prepared via sol-gel process with polymer foam as the template, Chinese Journal of Chemistry, 2006, 24(7): 955~960
    [224]Zhao D Y, Huo Q S, Feng J L, et al., Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, Journal of the Americal society, 1998, 120(24): 6024~6036
    [225]Wang H N, Zhou X F, Yu M H, et al., Supra-assembly of siliceous vesicles, Journal of the Americal society, 2006, 128(50): 15992~15993
    [226]Sel O, Kuang D B, Thommes M, et al., Principles of hierarchical meso- and macropore architectures by liquid crystalline and polymer colloid templating, Langmiur, 2006, 22(5): 2311~2322
    [227]?imsek E, ?zkara ?, Aksoylu A E, et al., Preferential CO oxidation over activated carbon supported catalysts in H2-rich gas streams containing CO2 and H2O, Applied Catalysis A: General, 2007, 316(2): 169~174
    [228]温春娅,李光磊,孙雪玲,碳纳米管的改性及其应用,当代化工,2010,39(2): 199~201
    [229]孟令杰,伏传龙,路庆华,碳纳米管的功能化研究,自然科学进展,2009,19(2): 148~157
    [230]Jitianu A, Cacciaguerra T, Berger M H, et al., New carbon multiwall nanotubes- TiO2 nanocomposites obtained by the sol-gel method, Journal of Non-Crystalline Solids, 2004, 345-346: 596~600
    [231]Goyanes S, Rubiolo G R, Salazar A, et al., Carboxylation treatment of multiwalled carbon nanotubes monitored by infrared and ultraviolet spectroscopies and scanning probe microscopy, Diamond & Related Materials, 2007, 16(2): 412~417
    [232]Eitan A, Jiang K Y, Dukes D, et al., Surface modification of multiwalled carbon nanotubes: toward the tailoring of the interface in polymer composites, Chemisty of Materials, 2003, 15(16): 3198~3201
    [233]Gao C, He H K, Zhou L, et al., Scalable Functional Group Engineering of Carbon Nanotubes by Improved One-Step Nitrene Chemistry, Chemisty of Materials, 2009, 21(2): 360~370
    [234]Jang J, Baea J, Yoon S H, A study on the effect of surface treatment of carbon nanotubes for liquid crystalline epoxide-carbon nanotube composites, Journal ofMaterials Chemistry, 2003, 13(4): 676~681
    [235]Chen X H, Chen C S, Xiao H N, et al., Corrosion behavior of carbon nanotubes-Ni composite coating, Surface & Coatings Technology, 2005, 191(2-3): 351~356
    [236]Zhang H B, Lin G D, Zhou Z H, et al., Raman spectra of MWCNTs and MWCNT-based H2-adsorbing system, Carbon, 2002, 40(13): 2429~2436
    [237]Li B T, Kado S, Mukainakano Y, et al., Surface modification of Ni catalysts with trace Pt for oxidative steam reforming of methane, Journal of Catalysis, 2007, 245(1): 144~155
    [238]Ouyang X, Bednarova L, Besser R S, et al., Preferential oxidation of carbon monoxide in a thin-film catalytic microreactor: advantages and limitations, AIChE Journal, 2005, 51(6): 1758~1772
    [239]Souz M M V M, Ribeiro N F P, Schmal M, Influence of the support in selective CO oxidation on Pt catalysts for fuel cell applications, International Journal of Hydrogen Energy, 2007, 32(3): 425~429
    [240]Hulteberg P C, Brandin J G M, Silversand F A, et al., Preferential oxidation of carbon monoxide on mounted and unmounted noble-metal catalysts in hydrogen-rich streams, International Journal of Hydrogen Energy, 2005, 30(3): 1235~1242
    [241]Kotobuki M, Watanabe A, Uchida H, et al., High catalytic performance of Pt Fe alloy nanoparticles supported in mordenite pores for preferential CO oxidation in H2-rich gas, Applied Catalysis A: General, 2006, 307(2): 275~283
    [242]Su H Y, Bao X H, Li W X, Modulating the reactivity of Ni-containing Pt(111)-skin catalysts by density functional theory calculations, The Journal of Chemical Physics, 2008, 128(19): 194707~194714
    [243]Trimm D L, Minimisation of carbon monoxide in a hydrogen stream for fuel cell application, Applied Catalysis A: General, 2005, 296(1): 1~11
    [244]Parinyaswan A, Pongstabodee S, Luengnaruemitchai A, Catalytic performances of Pt-Pd/CeO2 catalysts for selective CO oxidation, International Journal of Hydrogen Energy, 2006, 31(13): 1942~1949
    [245]Son I H, Study of Ce-Pt/γ-Al2O3 for the selective oxidation of CO in H2 for application to PEFCs: Effect of gases, Journal of Power Sources, 2006, 159(2): 1266~1273
    [246]Worsley M A, Kucheyev S O, Kuntz J D, et al., Carbon scaffolds for stiff and highly conductive monolithic oxide-carbon nanotube composites, Chemistry of Materials, 2011, 23(12): 3054~3061
    [247]Huang Q, Gao L, Manufacture and electrical properties of multiwalled carbon nanotube/BaTiO3 nanocomposite ceramics, Journal of Materials Chemistry, 2004,14(16): 2536~2541
    [248]Zhang S C, Fahrenholtz W G, Hilmas G E, et al., Pressureless sintering of carbon nanotube-Al2O3 composites, Journal of the European Ceramic Society, 2010, 30(6): 1373~1380
    [249]Zhang T, Kumari L, Du G H, et al., Mechanical properties of carbon nanotube-alumina nanocomposites synthesized by chemical vapor deposition and spark plasma sintering, Composite: Part A, 2009, 40(1): 86~93
    [250]Cai W Q, Yu J G, Anand C, et al., Facile synthesis of ordered mesoporous alumina and alumina-supported metal oxides with tailored adsorption and framework properties, Chemistry of Materials, 2011, 23(5): 1147~1157
    [251]Kim D Y, Yang C M, Park Y S, et al., Characterization of thin multi-walled carbon nanotubes synthesized by catalytic chemical vapor deposition, Chemical Physics Letter, 2005, 413(1-3): 135~141
    [252]Ismaili H, Laguguné-Labarthet F, Workentin M S, Covalently assembled gold nanoparticle-carbon nanotube hybrids via a photoinitiated carbene addition reaction, Chemistry of Materials, 2011, 23(6): 1519~1525
    [253]Kumari L, Zhang T, Dua G H, et al., Thermal properties of CNT-Alumina nanocomposites, Composites Science and Technology, 2008, 68(9): 2178~2183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700